Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Study Period
2.3. Data Collection
2.4. Clinical Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Ethical Approval Statement
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO COVID-19 Dashboard. Geneva: World Health Organization. Available online: https://covid19.who.int/ (accessed on 15 February 2023).
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet Infect. Dis. 2022, 22, 1681–1693. [Google Scholar] [CrossRef] [PubMed]
- Bager, P.; Wohlfahrt, J.; Bhatt, S.; Stegger, M.; Legarth, R.; Møller, C.H.; Skov, R.L.; Valentiner-Branth, P.; Voldstedlund, M.; Fischer, T.K.; et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: An observational cohort study. Lancet Infect. Dis. 2022, 22, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared with Previous Waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Haitao, T.; Vermunt, J.V.; Abeykoon, J.; Ghamrawi, R.; Gunaratne, M.; Jayachandran, M.; Narang, K.; Parashuram, S.; Suvakov, S.; Garovic, V.D. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin. Proc. 2020, 95, 2189–2203. [Google Scholar] [CrossRef] [PubMed]
- Terada, M.; Ohtsu, H.; Saito, S.; Hayakawa, K.; Tsuzuki, S.; Asai, Y.; Matsunaga, N.; Kutsuna, S.; Sugiura, W.; Ohmagari, N. Risk factors for severity on admission and the disease progression during hospitalisation in a large cohort of patients with COVID-19 in Japan. BMJ Open 2021, 11, e047007. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef]
- Molins, B.; Figueras-Roca, M.; Valero, O.; Llorenç, V.; Romero-Vázquez, S.; Sibila, O.; Adán, A.; García-Vidal, C.; Soriano, A. C-reactive protein isoforms as prognostic markers of COVID-19 severity. Front. Immunol. 2022, 13, 1105343. [Google Scholar] [CrossRef]
- Napolitano, F.; Di Spigna, G.; Vargas, M.; Iacovazzo, C.; Pinchera, B.; Spalletti Cernia, D.; Ricciardone, M.; Covelli, B.; Servillo, G.; Gentile, I.; et al. Soluble Urokinase Receptor as a Promising Marker for Early Prediction of Outcome in COVID-19 Hospitalized Patients. J. Clin. Med. 2021, 10, 4914. [Google Scholar] [CrossRef]
- Madian, A.; Eliwa, A.; Abdalla, H.; Azeem Aly, H.A. Aspartate transferase-to-platelet ratio index-plus: A new simplified model for predicting the risk of mortality among patients with COVID-19. World J. Gastroenterol. 2022, 28, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Önal, U.; Gülhan, M.; Demirci, N.; Özden, A.; Erol, N.; Işık, S.; Gülten, S.; Atalay, F.; Çöplü, N. Prognostic value of neutrophile-to-lymphocyte ratio (NLR) and lactate dehydrogenase (LDH) levels for geriatric patients with COVID-19. BMC Geriatr. 2022, 22, 362. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Chen, G.; Li, X.; Lan, X.; Ji, C.; Hou, M.; Zhang, D.; Zeng, G.; Wang, Y.; Xu, C.; et al. Dynamic changes of D-dimer and neutrophil-lymphocyte count ratio as prognostic biomarkers in COVID-19. Respir. Res. 2020, 21, 169. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Cevallos, P.; Higuera-De-La-Tijera, F.; Chávez-Tapia, N.C.; Sanchez-Giron, F.; Cerda-Reyes, E.; Rosales-Salyano, V.H.; Servin-Caamaño, A.; Vázquez-Medina, M.U.; Méndez-Sánchez, N. Lactate-dehydrogenase associated with mortality in hospitalized patients with COVID-19 in Mexico: A multi-centre retrospective cohort study. Ann. Hepatol. 2021, 24, 100338. [Google Scholar] [CrossRef]
- Gupta, G.S. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, L.; Chen, J.; Wu, M.; Zhang, C.; Liu, Z.; Li, J.; Li, K.; Xiong, Z.; Wu, Q.; et al. Serum Lactate Dehydrogenase Level as a Prognostic Factor for COVID-19: A Retrospective Study Based on a Large Sample Size. Front. Med. 2021, 8, 671667. [Google Scholar] [CrossRef]
- Zeng, Z.; Yu, H.; Chen, H.; Qi, W.; Chen, L.; Chen, G.; Yan, W.; Chen, T.; Ning, Q.; Han, M.; et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit. Care 2020, 24, 525. [Google Scholar] [CrossRef]
- Matsunaga, N.; Hayakawa, K.; Terada, M.; Ohtsu, H.; Asai, Y.; Tsuzuki, S.; Suzuki, S.; Toyoda, A.; Suzuki, K.; Endo, M.; et al. Clinical Epidemiology of Hospitalized Patients with Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin. Infect. Dis. 2021, 73, e3677–e3689. [Google Scholar] [CrossRef]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Z.; Jiang, Y.; Shi, O.; Zhang, X.; Xu, K.; Suo, C.; Wang, Q.; Song, Y.; Yu, K.; et al. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int. J. Epidemiol. 2021, 49, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Garg, A.; Vinod, P.K.; Priyakumar, U.D. Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction. Front. Public Health 2021, 9, 626697. [Google Scholar] [CrossRef] [PubMed]
- Forkasiewicz, A.; Dorociak, M.; Stach, K.; Szelachowski, P.; Tabola, R.; Augoff, K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell. Mol. Biol. Lett. 2020, 25, 35. [Google Scholar] [CrossRef] [PubMed]
- Kishaba, T. Evaluation and management of Idiopathic Pulmonary Fibrosis. Respir. Investig. 2019, 57, 300–311. [Google Scholar] [CrossRef]
- Rowson, K.E.; Mahy, B.W. Lactate dehydrogenase-elevating virus. J. Gen. Virol. 1985, 66, 2297–2312. [Google Scholar] [CrossRef]
- Reichling, J.J.; Kaplan, M.M. Clinical use of serum enzymes in liver disease. Dig. Dis. Sci. 1988, 33, 1601–1614. [Google Scholar] [CrossRef]
- Patschan, D.; Witzke, O.; Dührsen, U.; Erbel, R.; Philipp, T.; Herget-Rosenthal, S. Acute myocardial infarction in thrombotic microangiopathies--clinical characteristics, risk factors and outcome. Nephrol. Dial. Transplant. 2006, 21, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2021, 113, 45–57. [Google Scholar] [CrossRef]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020, 96, 467–474. [Google Scholar] [CrossRef]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Dogu, S.Y.; Serin, I.; Dogu, M.H.; Guleroglu, F.Y.; Dane, C. Efficacy of the lactate dehydrogenase (LDH)/lymphocyte ratio (LLR) to reduce the need for X-ray in pregnant patients with COVID-19. J. Perinat. Med. 2022, 50, 887–895. [Google Scholar] [CrossRef] [PubMed]
Total | H–H | H–L | L–H | L–L | p-Value | |
---|---|---|---|---|---|---|
(n = 8860) | (n = 4044) | (n = 1365) | (n = 1115) | (n = 2336) | ||
Patient characteristics | ||||||
Age | 65.00 [51.00, 77.00] | 69.00 [55.00, 78.00] | 61.00 [50.00, 73.00] | 68.00 [54.00, 79.00] | 56.00 [39.00, 73.00] | <0.001 |
Female sex, n (%) | 3492 (39.4) | 1406 (34.8) | 566 (41.5) | 429 (38.5) | 1091 (46.7) | <0.001 |
BMI | 23.88 [21.35, 26.84] | 24.51 [21.91, 27.70] | 23.98 [21.70, 26.84] | 24.00 [21.60, 26.56] | 22.84 [20.48, 25.38] | <0.001 |
Comorbidities, n (%) | ||||||
Cardiovascular diseases | 502 (5.7) | 298 (7.4) | 45 (3.3) | 76 (6.8) | 83 (3.6) | <0.001 |
Respiratory diseases | 901 (10.2) | 485 (12.0) | 126 (9.2) | 98 (8.8) | 192 (8.2) | <0.001 |
Liver diseases | 264 (3.0) | 150 (3.7) | 46 (3.4) | 28 (2.5) | 40 (1.7) | <0.001 |
Renal diseases | 187 (2.1) | 101 (2.5) | 21 (1.5) | 32 (2.9) | 33 (1.4) | 0.003 |
Neoplasms | 498 (5.6) | 257 (6.4) | 69 (5.1) | 76 (6.8) | 96 (4.1) | <0.001 |
Diabetes mellitus | 1932 (21.8) | 1062 (26.3) | 289 (21.2) | 222 (19.9) | 359 (15.4) | <0.001 |
Cerebrovascular diseases | 660 (7.4) | 337 (8.3) | 91 (6.7) | 105 (9.4) | 127 (5.4) | <0.001 |
Respiratory status on admission, n (%) | ||||||
Room air | 7217 (81.8) | 2790 (69.3) | 1146 (84.3) | 1026 (92.7) | 2255 (96.9) | <0.001 |
Oxygen therapy | 1566 (17.8) | 1200 (29.8) | 214 (15.7) | 80 (7.2) | 72 (3.1) | |
Non-invasive mechanical ventilation | 3 (0.0) | 3 (0.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Invasive mechanical ventilation | 32 (0.4) | 31 (0.8) | 0 (0.0) | 1 (0.1) | 0 (0.0) | |
Missing | 42 (0.5) | 20 (0.5) | 5 (0.3) | 8 (0.7) | 9 (0.4) | |
Clinical outcome, n (%) | ||||||
In-hospital death | 475 (5.4) | 379 (9.4) | 9 (0.7) | 76 (6.8) | 11 (0.5) | <0.001 |
Laboratory values | ||||||
WBC (×103/µL) | ||||||
day1 | 5.10 [4.00, 6.59] | 5.31 [4.13, 7.00] | 5.31 [4.20, 6.80] | 4.80 [3.90, 5.98] | 4.70 [3.70, 5.90] | <0.001 |
day8 | 6.70 [5.00, 9.41] | 8.00 [5.90, 11.05] | 6.60 [5.11, 8.77] | 6.30 [4.60, 9.05] | 5.38 [4.30, 7.00] | <0.001 |
lymphocyte cell (%) | ||||||
day1 | 20.20 [13.70, 27.50] | 17.20 [11.30, 24.00] | 20.10 [14.10, 27.10] | 21.60 [16.00, 28.20] | 25.00 [18.00, 32.40] | <0.001 |
day8 | 20.00 [11.70, 28.60] | 14.80 [8.20, 23.00] | 24.00 [16.50, 30.30] | 17.40 [9.65, 25.90] | 27.55 [19.90, 34.80] | <0.001 |
Platelet count (×103/µL) | ||||||
day1 | 167.00 [119.00, 214.00] | 160.00 [116.00, 206.00] | 180.00 [130.00, 232.00] | 159.00 [114.00, 199.00] | 175.00 [122.00, 220.00] | <0.001 |
day8 | 236.00 [152.00, 321.00] | 251.00 [159.00, 343.00] | 291.00 [190.00, 372.00] | 196.00 [130.00, 260.50] | 215.00 [140.75, 278.00] | <0.001 |
AST (U/L) | ||||||
day1 | 32.00 [23.00, 46.00] | 42.00 [31.00, 60.00] | 33.00 [25.00, 47.00] | 26.00 [22.00, 33.00] | 23.00 [19.00, 28.00] | <0.001 |
day8 | 27.00 [20.00, 40.00] | 33.00 [23.00, 50.00] | 24.00 [18.00, 32.00] | 32.00 [24.00, 45.00] | 21.00 [17.00, 27.00] | <0.001 |
ALT (U/L) | ||||||
day1 | 25.00 [16.00, 41.00] | 30.00 [19.00, 49.00] | 27.00 [18.00, 46.00] | 21.00 [15.00, 32.00] | 18.00 [13.00, 28.00] | <0.001 |
day8 | 33.00 [19.00, 59.00] | 41.00 [24.00, 76.00] | 34.00 [20.00, 61.00] | 31.00 [20.00, 54.50] | 22.00 [14.00, 37.00] | <0.001 |
LDH (U/L) | ||||||
day1 | 246.00 [198.00, 326.00] | 320.00 [265.00, 413.00] | 265.00 [240.00, 309.00] | 199.00 [183.00, 211.00] | 182.00 [162.00, 201.00] | <0.001 |
day8 | 238.00 [192.00, 308.00] | 299.50 [257.00, 376.00] | 196.00 [180.00, 210.00] | 269.00 [240.50, 320.00] | 175.00 [153.00, 196.00] | <0.001 |
CK (U/L) | ||||||
day1 | 92.00 [59.00, 159.00] | 122.50 [74.00, 248.25] | 84.00 [54.00, 136.00] | 85.00 [58.00, 124.00] | 69.00 [49.00, 100.00] | <0.001 |
day8 | 38.00 [25.00, 59.00] | 40.00 [25.00, 71.00] | 30.00 [21.00, 48.00] | 44.00 [29.00, 73.00] | 36.00 [25.00, 51.25] | <0.001 |
CRP (mg/dL) | ||||||
day1 | 2.81 [0.70, 7.13] | 5.58 [2.42, 10.42] | 3.91 [1.25, 7.70] | 1.45 [0.53, 3.37] | 0.59 [0.19, 1.96] | <0.001 |
day8 | 1.07 [0.30, 3.51] | 1.63 [0.54, 4.88] | 0.43 [0.17, 1.13] | 3.42 [1.29, 6.74] | 0.41 [0.10, 1.50] | <0.001 |
Creatinine (mg/dL) | ||||||
day1 | 0.84 [0.68, 1.02] | 0.88 [0.72, 1.10] | 0.82 [0.66, 0.97] | 0.87 [0.71, 1.04] | 0.78 [0.63, 0.93] | <0.001 |
day8 | 0.77 [0.63, 0.92] | 0.77 [0.64, 0.94] | 0.77 [0.65, 0.91] | 0.78 [0.65, 0.95] | 0.75 [0.62, 0.89] | <0.001 |
Variables | Estimate | Standard Error | χ2 | p-Value |
---|---|---|---|---|
Sex | −0.2275 | 0.1298 | 3.070 | 0.09 |
Age | 0.0818 | 0.0067 | 149.500 | <0.001 |
BMI | −0.0307 | 0.0149 | 4.252 | 0.05 |
Cardiovascular diseases | 0.4444 | 0.1628 | 7.458 | 0.005 |
Respiratory diseases | 0.4277 | 0.1600 | 7.145 | 0.005 |
Liver diseases | 0.5002 | 0.3065 | 2.663 | 0.11 |
Renal diseases | 0.4008 | 0.3088 | 1.685 | 0.19 |
Neoplasms | 0.5944 | 0.1786 | 11.076 | <0.001 |
Diabetes mellitus | 0.3777 | 0.1296 | 8.491 | 0.004 |
Cerebrovascular diseases | 0.3291 | 0.1577 | 4.356 | 0.04 |
LDH_day8 | 0.0062 | 0.0004 | 249.798 | <0.001 |
lymphocyte_day8 | −0.1131 | 0.0100 | 126.630 | <0.001 |
CRP_day8 | 0.0185 | 0.0035 | 27.301 | <0.001 |
Platelets_day8 | −0.0018 | 0.0005 | 11.042 | <0.001 |
Creatinine_day1 | 0.0939 | 0.0394 | 5.693 | 0.02 |
CK_day8 | −0.0003 | 0.0002 | 4.866 | 0.03 |
CRP_day1 | 0.0006 | 0.0005 | 1.628 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakakubo, S.; Unoki, Y.; Kitajima, K.; Terada, M.; Gatanaga, H.; Ohmagari, N.; Yokota, I.; Konno, S. Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan. Viruses 2023, 15, 671. https://doi.org/10.3390/v15030671
Nakakubo S, Unoki Y, Kitajima K, Terada M, Gatanaga H, Ohmagari N, Yokota I, Konno S. Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan. Viruses. 2023; 15(3):671. https://doi.org/10.3390/v15030671
Chicago/Turabian StyleNakakubo, Sho, Yoko Unoki, Koji Kitajima, Mari Terada, Hiroyuki Gatanaga, Norio Ohmagari, Isao Yokota, and Satoshi Konno. 2023. "Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan" Viruses 15, no. 3: 671. https://doi.org/10.3390/v15030671
APA StyleNakakubo, S., Unoki, Y., Kitajima, K., Terada, M., Gatanaga, H., Ohmagari, N., Yokota, I., & Konno, S. (2023). Serum Lactate Dehydrogenase Level One Week after Admission Is the Strongest Predictor of Prognosis of COVID-19: A Large Observational Study Using the COVID-19 Registry Japan. Viruses, 15(3), 671. https://doi.org/10.3390/v15030671