Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth and WDV Inoculation
2.2. Resistance Assessment of Wheat Genotypes to WDV
2.3. RNA Isolation, cDNA Library Construction and Sequencing
2.4. Transcriptome Analysis
2.5. Differential Expression Analysis of mRNAs
2.6. RT-qPCR Analysis
3. Results
3.1. Evaluation Resistance of Wheat Genotypes to WDV
3.2. Sequencing Output and Assembly
3.3. Differential Expression Analysis
3.4. Metabolic KEGG Pathway Analysis for DETs in the Tested Genotypes
3.5. Transcription Factors in Relation to WDV Infection
3.6. Validation of the DETs by RT-qPCR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vacke, J. Wheat dwarf virus disease. Biol. Plant. 1961, 3, 228–233. [Google Scholar] [CrossRef]
- Lindsten, K.; Vacke, J. A possible barley adapted strain of wheat dwarf virus (WDV). Acta Phytopathol. Entomol. Hung. 1991, 26, 175–180. [Google Scholar]
- Gutierrez, C. Geminivirus DNA replication. Cell. Mol. Life Sci. 1999, 56, 313–329. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, W.; Wang, L.; Wang, X. Replication-associated proteins encoded by wheat dwarf virus act as RNA silencing suppressors. Virus Res. 2014, 190, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Boulton, M.I. Functions and interactions of mastrevirus gene products. Physiol Mol. Plant. Pathol. 2002, 60, 243–255. [Google Scholar] [CrossRef]
- Fohrer, F.; Lebrun, I.; Lapierre, H. Acquisitions recéntes sur le virus du nanisme du blé. Phytoma Défense Végétaux 1992, 443, 18–20. [Google Scholar]
- Lindsten, K.; Lindsten, B. Wheat dwarf—An old disease with new outbreaks in Sweden / wheat dwarf. J. Plant Dis. Prot. 1999, 106, 325–332. [Google Scholar]
- Vacke, J.; Cibulka, R. Response of selected winter wheat varieties to wheat dwarf virus infection at an early growth stage. Czech. J. Genet. Plant. Breed. 2000, 36, 1–4. [Google Scholar]
- Lindblad, M.; Waern, P. Correlation of wheat dwarf incidence to winter wheat cultivation practices. Agric. Ecosyst. Environ. 2002, 92, 115–122. [Google Scholar] [CrossRef]
- Manurung, B.; Witsack, W.; Mehner, S.; Grüntzig, M.; Fuchs, E. The epidemiology of wheat dwarf virus in relation to occurrence of the leafhopper Psammotettix alienus in Middle-Germany. Virus Res. 2004, 100, 109–113. [Google Scholar] [CrossRef]
- Širlová, L.; Vacke, J.; Chaloupková, M. Reaction of selected winter wheat varieties to autumnal infection with wheat dwarf virus. Plant Prot. Sci. 2005, 41, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, X.; Liu, Y.; Peng, Y.; Zhou, G. First Report of the Occurrence of wheat dwarf virus in Wheat in China. Plant Dis. 2007, 91, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abt, I.; Jacquot, E. Wheat dwarf. In Virus Diseases of Tropical and Subtropical Crops; Tennant, P., Fermin, R., Eds.; Plant Protection Series; CAB International: Boston, MA, USA, 2015; pp. 27–41. [Google Scholar]
- Lindblad, M.; Sigvald, R. Temporal spread of wheat dwarf virus and mature plant resistance in winter wheat. Crop. Protect. 2004, 23, 229–234. [Google Scholar] [CrossRef]
- Benkovics, A.H.; Vida, G.; Nelson, D.; Veisz, O.; Bedford, I.; Silhavy, D.; Boulton, M.I. Partial resistance to wheat dwarf virus in winter wheat cultivars. Plant Pathol. 2010, 59, 1144–1151. [Google Scholar] [CrossRef]
- Ripl, J.; Dráb, T.; Gadiou, S.; Kundu, J.K. Differences in responses to Wheat dwarf virus infection in contrasting wheat cultivars Ludwig and Svitava. Plant Protect. Sci. 2020, 56, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pfrieme, A.-K.; Ruckwied, B.; Habekuß, A.; Will, T.; Stahl, A.; Pillen, K.; Ordon, F. Identification and validation of quantitative trait loci for wheat dwarf virus resistance in wheat (Triticum spp.). Front. Plant Sci. 2022, 13, 828639. [Google Scholar] [CrossRef]
- Fraile, A.; García-Arenal, F. The coevolution of plants and viruses: Resistance and pathogenicity. Adv. Virus Res. 2010, 76, 1–32. [Google Scholar]
- Soosaar, L.M.; Burchsmith, T.M.; Dineshkumar, S.P. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 2005, 3, 789–798. [Google Scholar] [CrossRef]
- Whitham, S.A.; Yang, C.; Goodin, M.M. Global impact: Elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 2006, 19, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, J.P.; Lewsey, M.G.; Palukaitis, P. Signaling in induced resistance. Adv. Virus Res. 2010, 76, 57–121. [Google Scholar]
- Ahmed, M.M.S.; Ji, W.; Wang, M.; Bian, S.; Xu, M.; Wang, W.; Zhang, J.; Xu, Z.; Yu, M.; Liu, Q.; et al. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene 2017, 628, 38–47. [Google Scholar] [CrossRef]
- Konstantinov, D.K.; Zubairova, U.S.; Ermakov, A.A.; Doroshkov, A.V. Comparative transcriptome profiling of a resistant vs susceptible bread wheat (Triticum aestivum L.) cultivar in response to water deficit and cold stress. Peer J. 2021, 9, e11428. [Google Scholar] [CrossRef]
- Postnikova, O.A.; Nemchinov, L.G. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 2012, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.A.; Li, Y.; Lei, L.; Di, D.; Miao, H.; Fan, Z. Alteration of gene expression profile in maize infected with a double-stranded RNA Fijivirus associated with symptom development. Mol. Plant Pathol. 2012, 13, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jo, Y.; Lian, S.; Jo, K.M.; Chu, H.; Yoon, J.Y.; Choi, S.K.; Kim, K.H.; Cho, W.K. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Mol. Biol. 2015, 88, 233–248. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.; Duan, C.; Chen, Y.; Meng, Q.; Wu, J.; Hao, Z.; Wang, Z.; Li, M.; Yong, H.; et al. Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize. J. Exp. Bot. 2016, 67, 4593–4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Lv, Y.; Zhao, T.; Li, N.; Yang, Y.; Yu, W.; He, X.; Liu, T.; Zhang, B. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 2013, 8, e80816. [Google Scholar] [CrossRef]
- Allie, F.; Pierce, E.J.; Okoniewski, M.J.; Rey, C. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genomics 2014, 15, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, A.; Singh, P.K.; Dey, A.; Ganguli, S.; Pal, A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep. 2019, 9, 8858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Cheng, Y.; Gong, M.; Zhao, Q.; Jiang, C.; Cheng, L.; Ren, M.; Wang, Y.; Yang, A. Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible tobacco cultivars in response to infection by cucumber mosaic virus. The Crop. J. 2019, 7, 307–321. [Google Scholar] [CrossRef]
- Kundu, J.K.; Gadiou, S.; Červená, G. Discrimination and genetic diversity of wheat dwarf virus in the Czech Republic. Virus Genes 2009, 38, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Gadiou, S.; Ripl, J.; Jaňourová, B.; Jarošová, J.; Kundu, J.K. Real-Time PCR assay for the discrimination and quantification of wheat and barley strains of wheat dwarf virus. Virus Genes 2011, 44, 349–355. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.; Shin, G.S.; Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006, 123, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Levesque-Sergerie, J.P.; Duquette, M.; Thibault, C.; Delbecchi, L.; Bissonnette, N. Detection limits of several commercial reverse transcriptase enzymes: Impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR. BMC Mol. Biol. 2007, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 94, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching during Cell Differentiation. Nat. Biotechnol. 2010, 28, 511–515. Available online: http://cole-trapnell-lab.github.io/cufflinks/ (accessed on 5 March 2021). [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. Nucleic Acids Res. 2012, 40, 4288–4297. Available online: http://www.pantherdb.org (accessed on 5 March 2021). [CrossRef] [PubMed] [Green Version]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Radonić, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Jarosová, J.; Kundu, J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010, 10, 146. [Google Scholar]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO Summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.I.; Jones, A.T. Responses of plants to viruses: Proposals for the use of terms. Phytopathology 1983, 73, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Jarošová, J.; Beoni, E.; Kundu, J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Res. 2016, 198, 200–214. [Google Scholar] [CrossRef]
- Nygren, J.; Shad, N.; Kvarnheden, A.; Westerbergh, A. Variation in susceptibility to wheat dwarf virus among wild and domesticated wheat. PLoS ONE 2015, 10, e0121580. [Google Scholar] [CrossRef]
- Schoelz, J.E.; Harries, P.A.; Nelson, R.S. Intracellular transport of plant viruses: Finding the door out of the cell. Mol. Plant 2011, 4, 813–831. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, H. Host factors against plant viruses. Mol. Plant Pathol. 2019, 20, 1588–1601. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, S.T.; Parra, M.A.; Anderberg, R.J.; Carrington, J.C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol. 2001, 127, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Decroocq, V.; Salvador, B.; Sicard, O.; Glasa, M.; Cosson, P.; Svanella-Dumas, L.; Revers, F.; García, J.A.; Candresse, T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant-Microbe Interact. 2009, 22, 1302–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederickson Matika, D.E.; Loake, G.J. Redox regulation in plant immune function. Antioxid. Redox Signal. 2014, 21, 1373–1388. [Google Scholar] [CrossRef]
- Yuan, W.; Jiang, T.; Du, K.; Chen, H.; Cao, Y.; Xie, J.; Li, M.; Carr, J.P.; Wu, B.; Fan, Z.; et al. Maize phenylalanine ammonia-lyases contribute to resistance to sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. Mol. Plant Pathol. 2019, 20, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.P. Recruitment of Hsp70 chaperones: A crucial part of viral survival strategies. Rev. Physiol Biochem Pharmacol. 2005, 153, 1–46. [Google Scholar]
- Nagy, P.D.; Pogany, J. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 2012, 10, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Gorovits, R.; Czosnek, H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection. Front. Plant Sci. 2017, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.X.; Howell, S.H. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol. 2016, 211, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Cun, Y.; Yu, H.; Tong, Z.; Xiao, B.; Song, Z.; Wang, B.; Li, Y.; Liu, Y. Transcriptomic profile of tobacco in response to tomato zonate spot orthotospovirus infection. Virol. J. 2017, 14, 153. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Yuan, S.; Wang, S.-D.; Xi, D.-H.; Lin, H.-H. The higher expression levels of dehydroascorbate reductase and glutathione reductase in salicylic acid-deficient plants may contribute to their alleviated symptom infected with RNA viruses. Plant Signal. Behav. 2011, 6, 1402–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, Y.; Spetz, C.; Li, L.; Wang, X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phyto hormone and photosynthesis metabolism pathways. Phytopathol. Res. 2020, 2, 3. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Feng, M.; Zuo, D.; Hu, Y.; Jiang, T. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by Strawberry vein banding virus (SVBV). Virol. J. 2016, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agudelo-Romero, P.; Carbonell, P.; de La Iglesia, F.; Carrera, J.; Rodrigo, G.; Jaramillo, A.; Pérez-Amador, M.A.; Elena, S.F. Changes in the gene expression profile of Arabidopsis thaliana after infection with tobacco etch virus. Virol. J. 2008, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Du, Z.X.; Kong, J.; Chen, L.N.; Qiu, Y.H.; Li, G.F.; Meng, X.H.; Zhu, S.F. Transcriptome Analysis of Nicotiana tabacum infected by cucumber mosaic virus during systemic symptom development. PLoS ONE 2012, 7, e43447. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, W.; Li, L.; Francls, F.; Wang, X. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection. J. Integr. Agric. 2022; in press. [Google Scholar] [CrossRef]
- Li, Y.; Cui, H.; Cui, X.; Wang, A. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 2016, 17, 19–24. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Chakraborty, S. Chloroplast: The trojan horse in plant-virus interaction. Mol. Plant Pathol. 2018, 19, 504–518. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, Q.; Zhang, H.; Jia, Q.; Hong, Y.; Liu, Y. The rubisco small subunit is involved in Tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiol. 2013, 161, 374. [Google Scholar] [CrossRef] [Green Version]
- Góngora-Castillo, E.; Ibarra-Laclette, E.; Trejo-Saavedra, D.L.; Rivera-Bustamante, R.F. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol. J. 2012, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Goyer, A.; Hamlin, L.; Crosslin, J.M.; Buchanan, A.; Chang, J.H. RNA-Seq analysis of resistant and susceptible potato varieties during the early stages of potato virus Y infection. BMC Genom. 2015, 16, 295. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Wu, J.; Lu, L.; Xu, Y.; Zhou, X. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol. Plant 2014, 7, 691–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramaniam, M.; Kim, B.S.; Hutchens-Williams, H.M.; Loesch-Fries, L.S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Mol. Plant-Microbe Interact. 2014, 27, 1107–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, J.L.; Mamillapalli, P.; Burch-Smith, T.M.; Czymmek, K.; Dinesh-Kumar, S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 2008, 132, 449. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Ma, D.; Dong, J.; Li, D.; Deng, C.; Jin, G.; Wang, T. The HC-Pro protein of potato virus Y interacts with NtMinD of tobacco. Mol. Plant Microbe Interact. 2007, 20, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Selway, J.W. Antiviral activity of flavones and flavans. Prog. Clin. Biol. Res. 1986, 213, 521–536. [Google Scholar] [PubMed]
- Hrmova, M.; Hussain, S.S. Plant Transcription Factors Involved in Drought and Associated Stresses. Inter. J. Mol. Sci. 2021, 22, 5662. [Google Scholar] [CrossRef]
- Pandey, A.; Khan Mohd, K.; Hamurcu, M.; Brestic, M.; Topal, A.; Gezgin, S. Insight into the Root Transcriptome of a Boron-Tolerant Triticum zhukovskyi Genotype Grown under Boron Toxicity. Agronomy 2022, 12, 2421. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. Bioch. Bioph. Res. Commun. 2018, 503, 397–401. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Dong, W.; Liu, S.; Tian, L.; Li, J.; Du, H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Inter. J. Mol. Sci. 2022, 23, 9262. [Google Scholar] [CrossRef]
- Cheng, Z.; Luan, Y.; Meng, J.; Sun, J.; Tao, J.; Zhao, D. WRKY Transcription Factor Response to High-Temperature Stress. Plants 2021, 10, 2211. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.N.; Ernst, H.A.; Leggio, L.L.; Skriver, K. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 2005, 10, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, P.; Yu, X.; Cao, J.; Chen, X.; Gao, L.; Chen, K.; Grierson, D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022, 11, 2484. [Google Scholar] [CrossRef]
- Arena, G.D.; Ramos-González, P.L.; Falk, B.W.; Casteel, C.L.; Freitas-Astúa, J.; Machado, M.A. Plant Immune System Activation Upon Citrus Leprosis Virus C Infection Is Mimicked by the Ectopic Expression of the P61 Viral Protein. Front. Plant Sci. 2020, 11, 1188. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.L.; Sun, S.; Xing, G.M.; Wang, F.; Li, M.Y.; Tian, Y.-S.; Xiong, A.S. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato. Plant Genome 2016, 9, plantgenome2015.09.0082. [Google Scholar] [CrossRef] [PubMed]
Metabolism | KEGG Pathways (KEGG Map) | Wheat Genotype | |||||
---|---|---|---|---|---|---|---|
Akteur *** | Fengyou 3 * | Svitava * | |||||
Number of DETs | FDR | Number of DETs | FDR | Number of DETs | FDR | ||
Global metabolism | Carbon metabolism (map01200) | 146 | −24.746 | 96 | −25.893 | 64 | 418.701 |
Biosynthesis of amino acids (map01230) | 129 | −35.222 | 105 | −66.673 | 57 | 445.971 | |
Biosynthesis of secondary metabolites (map01110) | 791 | −364.09 | 729 | −902.12 | 334 | 2259.25 | |
Metabolic pathways (map01100) | 1296 | −686.99 | 1156 | −809.86 | 597 | 4090.61 | |
Carbohydrate metabolism | Glycolysis/Gluconeogenesis (map00010) | 62 | −76.394 | 52 | −87.632 | 34 | 206.022 |
Starch and sucrose metabolism (map00500) | 75 | −15.253 | 70 | −05.103 | 32 | 237.417 | |
Glyoxylate and dicarboxylate metabolism (map00630) | 38 | 49.985 | 24 | −9.2318 | 15 | 62.9341 | |
Fructose and mannose metabolism (map00051) | 33 | −59.557 | 15 | 5.72201 | 14 | 85.7023 | |
Ascorbate and aldarate metabolism (map00053) | 23 | −32.463 | 25 | −01.951 | 16 | 133.646 | |
Pentose phosphate pathway (map00030) | 28 | −3.8213 | 19 | −3.3531 | 13 | 69.6349 | |
Amino sugar and nucleotide sugar metabolism (map00520) | 63 | −78.453 | 51 | −80.561 | 35 | 194.476 | |
Energy metabolism | Oxidative phosphorylation (map00190) | 50 | −77.127 | 38 | −7.5956 | 37 | 160.061 |
Photosynthesis (map00195) | 46 | 14.5403 | 20 | 72.2376 | 21 | 103.926 | |
Carbon fixation in photosynthetic organisms (map00710) | 59 | −3.6382 | 27 | 43.2827 | 21 | 112.541 | |
Nitrogen metabolism (map00910) | 26 | −33.916 | 17 | −8.3395 | 4 | 23.2274 | |
Lipid metabolism | Fatty acid biosynthesis (map00061) | 11 | −1.2844 | 24 | −37.331 | 12 | 98.2974 |
Glycerolipid metabolism (map00561) | 39 | −26.269 | 37 | −85.768 | 20 | 104.584 | |
Sphingolipid metabolism (map00600) | 22 | −98.815 | 23 | −155.87 | 14 | 125.386 | |
Glycerophospholipid metabolism (map00564) | 51 | −95.534 | 57 | −223.72 | 22 | 115.207 | |
Nucleotide metabolism | Purine metabolism (map00230) | 41 | −17.537 | 52 | −68.903 | 26 | 182.311 |
Pyrimidine metabolism (map00240) | 38 | −37.685 | 33 | −6.5075 | 14 | 119.248 | |
Amino acid metabolism | Cysteine and methionine metabolism (map00270) | 49 | −71.645 | 51 | −34.552 | 37 | 300.873 |
Arginine biosynthesis (map00220) | 24 | −42.567 | 15 | −6.6615 | 8 | 63.7785 | |
Phenylalanine, tyrosine and tryptophan biosynthesis (map00400) | 29 | −81.181 | 34 | −64.583 | 16 | 126.97 | |
Alanine, aspartate and glutamate metabolism (map00250) | 35 | −03.947 | 19 | −3.0665 | 14 | 77.4047 | |
Glutathione metabolism (map00480) | 61 | −66.911 | 62 | −22.133 | 30 | 209.633 | |
Glycan biosynthesis and metabolism | N-Glycan biosynthesis (map00510) | 25 | −49.812 | 25 | −30.927 | 15 | 108.616 |
Metabolism of cofactors and vitamins | Vitamin B6 metabolism (map00750) | 12 | −7.7555 | 12 | −0.16818 | 11 | 66.7719 |
Folate biosynthesis (map00790) | 11 | −4.7568 | 21 | −37.222 | 12 | 115.05 | |
Metabolism of terpenoids and polyketides | Terpenoid backbone biosynthesis (map00900) | 36 | −25.709 | 22 | −1.6716 | 14 | 126.986 |
Diterpenoid biosynthesis; Including: Gibberellin biosynthesis (map00904) | 15 | −5.7805 | 10 | −02.006 | 2 | 15.434 | |
Carotenoid biosynthesis (map00906) | 19 | −1.9556 | 23 | −3.7998 | 4 | 1.20272 | |
Biosynthesis of other secondary metabolites | Flavonoid biosynthesis (map00941) | 46 | −263.47 | 37 | −55.129 | 8 | 45.6125 |
Environmental adaptation | Plant-pathogen interaction (map04626) | 109 | −47.313 | 119 | −34.729 | 60 | 459.918 |
Folding, sorting and degradation | Protein processing in endoplasmic reticulum (map04141) | 123 | −81.442 | 103 | −01.685 | 43 | 355.089 |
Signal transduction | Mitogen-activated protein kinase (MAPK) signalling pathway—plant (map04016) | 96 | −74.825 | 91 | −26.981 | 39 | 244.76 |
Plant hormone signal transduction (map04075) | 100 | −58.428 | 117 | −36.569 | 52 | 396.553 | |
Xenobiotics biodegradation and metabolism | Metabolism of xenobiotics by cytochrome P450 (map00980) | 65 | −431.97 | 73 | −48.641 | 21 | 134.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf, A.; Nuc, P.; Ripl, J.; Alquicer, G.; Ibrahim, E.; Wang, X.; Maruthi, M.N.; Kundu, J.K. Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses 2023, 15, 689. https://doi.org/10.3390/v15030689
Sharaf A, Nuc P, Ripl J, Alquicer G, Ibrahim E, Wang X, Maruthi MN, Kundu JK. Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses. 2023; 15(3):689. https://doi.org/10.3390/v15030689
Chicago/Turabian StyleSharaf, Abdoallah, Przemysław Nuc, Jan Ripl, Glenda Alquicer, Emad Ibrahim, Xifeng Wang, Midatharahally N. Maruthi, and Jiban Kumar Kundu. 2023. "Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus" Viruses 15, no. 3: 689. https://doi.org/10.3390/v15030689
APA StyleSharaf, A., Nuc, P., Ripl, J., Alquicer, G., Ibrahim, E., Wang, X., Maruthi, M. N., & Kundu, J. K. (2023). Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses, 15(3), 689. https://doi.org/10.3390/v15030689