B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development
Abstract
:1. Introduction
Brief Evolutionary History of FMDV Vaccines (1930–2022)
2. Molecular Epidemiological Challenges of FMDV Serotype SAT2
3. Epitope-Based FMDV Vaccine Development Approaches
4. B and T Cell Epitopes of SAT2 FMDV and Vaccine Design and Developments
Adjuvants and Delivery System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, B.P.; Rodriguez, L.L.; Hammond, J.M.; Pinto, J.; Perez, A.M. Review of the Global Distribution of Foot-and-Mouth Disease Virus from 2007 to 2014. Transbound. Emerg. Dis. 2015, 64, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.oie.int/en/for-the-media/editorials/detail/article/fmd-the-oie-accepts-the-challenge/ (accessed on 21 February 2023).
- Melo, E.C.; Saraiva, V.; Astudillo, V. Review of the status of foot and mouth disease in countries of South America and approaches to control and eradication. Rev. Sci. Tech. 2002, 21, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Segundo, F.D.-S.; Medina, G.N.; Stenfeldt, C.; Arzt, J.; Santos, T.D.L. Foot-and-mouth disease vaccines. Vet. Microbiol. 2017, 206, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.; De Vleeschauwer, A.; Perez-Filgueira, M.; Li, Y.; Ludi, A.; Lefebvre, D.; Wilsden, G.; Statham, B.; Haas, B.; Mattion, N.; et al. FMD vaccine matching: Inter laboratory study for improved understanding of r1 values. J. Virol. Methods 2020, 276, 113786. [Google Scholar] [CrossRef]
- Doel, C.M.A.; Gloster, J.; Valarcher, J.-F. Airborne transmission of foot-and-mouth disease in pigs: Evaluation and optimisation of instrumentation and techniques. Vet. J. 2009, 179, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Maree, F.F.; Blignaut, B.; Esterhuysen, J.J.; de Beer, T.A.P.; Theron, J.; O’Neill, H.G.; Rieder, E. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories types using virus neutralization data. J. Gen. Virol. 2011, 92, 2297–2309. [Google Scholar] [CrossRef]
- Wubshet, A.K.; Dai, J.; Li, Q.; Zhang, J. Review on Outbreak Dynamics, the Endemic Serotypes, and Diversified Topotypic Profiles of Foot and Mouth Disease Virus Isolates in Ethiopia from 2008 to 2018. Viruses 2019, 11, 1076. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.; Haydon, D.; Sangaré, O.; Boshoff, C.I.; Edrich, J.L.; Thomson, G.R. The implications of virus diversity within the SAT 2 serotype for control of foot-and-mouth disease in sub-Saharan Africa. J. Gen. Virol. 2003, 84, 1595–1606. [Google Scholar] [CrossRef]
- Miguel, E.; Grosbois, V.; Caron, A.; Boulinier, T.; Fritz, H.; Cornélis, D.; Foggin, C.; Makaya, P.V.; Tshabalala, P.T.; de Garine-Wichatitsky, M. Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere 2013, 4, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.R.; Knowles, N.J. Foot-and-mouth disease type O viruses exhibit genetically and geographically distinct evolutionary lineages (topotypes). J. Gen. Virol. 2001, 82 Pt 3, 609–621. [Google Scholar] [CrossRef] [PubMed]
- WRLFMD. Available online: http://www.wrlfmd.org/east-africa/ethiopia (accessed on 14 February 2023).
- Roeder, P.L.; Knowles, N.J. Foot-and-Mouth Disease Virus Type C Situation: The First Target for Eradication in Report of the Session of the Research Group of the Standing Technical Committee of EUFMD. In Proceedings of the Open Session of the European Commission for the Control of Foot-and-Mouth Disease Standing Technical Committee, Erice, Italy, 14–17 October 2008. [Google Scholar]
- Knowles, N.; Samuel, A. Molecular epidemiology of foot-and-mouth disease virus. Virus Res. 2003, 91, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Kandeil, A.; El-Shesheny, R.; Kayali, G.; Moatasim, Y.; Bagato, O.; Darwish, M.; Gaffar, A.; Younes, A.; Farag, T.; Kutkat, M.A.; et al. Characterization of the recent outbreak of foot-and-mouth disease virus serotype SAT2 in Egypt. Arch. Virol. 2012, 158, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.L.; Gay, C. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev. Vaccines 2011, 10, 377–387. [Google Scholar] [CrossRef]
- Rueckert, R.R.; Wimmer, E. Systematic nomenclature of picornavirus proteins. J. Virol. 1984, 50, 957–959. [Google Scholar] [CrossRef] [Green Version]
- DI Nardo, A.; Knowles, N.; Paton, D. Combining livestock trade patterns with phylogenetics to help understand the spread of foot and mouth disease in sub-Saharan Africa, the Middle East and Southeast Asia. Rev. Sci. Tech. 2011, 30, 63–85. [Google Scholar] [CrossRef]
- Jennings, G.T.; Bachmann, M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008, 389, 521–536. [Google Scholar] [CrossRef]
- Belinda, B. Engineering of a Chimeric SAT2 Foot-and-Mouth Disease Virus for Vaccine Production. Ph.D. Thesis, Department of Microbiology and Plant Pathology University of Pretoria South Africa, Pretoria, South Africa, 2004. [Google Scholar]
- Cao, Y.; Lu, Z.; Liu, Z. Foot-and-mouth disease vaccines: Progress and problems. Expert Rev. Vaccines 2016, 15, 783–789. [Google Scholar] [CrossRef]
- Lombard, M.; Füssel, A.E. Antigen and vaccine banks: Technical requirements and the role of the european antigen bank in emergency foot and mouth disease vaccination. Rev. Sci. Tech. 2007, 26, 117–134. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Chen, H.-T.; Zhou, J.-H.; Ma, L.-N.; Ding, Y.-Z.; Liu, Y.-S. Research in advance for FMD Novel Vaccines. Virol. J. 2011, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Waldmann, O.; Kobe, K.P.G. Die aktive Immunisierung des Rindes gegen Maul- und Klauenseuche. Zbl. Bakt. I. Orig. 1937, 138, 401–412. [Google Scholar]
- Balamurugan, V.; Kumar, R.M.; Suryanarayana, V.V.S. Past and present vaccine development strategies for the control of foot-and-mouth disease. Acta Virol. 2004, 48, 201–214. [Google Scholar] [PubMed]
- Frenkel, H.S. Research on foot-and-mouth disease. III. The cultivation of the virus on a practical scale in explantations of bovine tongue epithelium. Am. J. Vet. Res. 1951, 12, 187–190. [Google Scholar] [PubMed]
- Barteling, S.J. Foot-and-mouth disease vaccine production and research in The Netherlands. Vet. Q. 1987, 9 (Suppl. S1), 5–15. [Google Scholar] [CrossRef]
- Capstick, P.B.; Telling, R.C.; Chapman, W.G.; Stewart, D.L. Growth of a Cloned Strain of Hamster Kidney Cells in Suspended Cultures and their Susceptibility to the Virus of Foot-and-Mouth Disease. Nature 1962, 195, 1163–1164. [Google Scholar] [CrossRef] [PubMed]
- Bahnemann, H.G. Inactivation of viruses in serum with binary ethyleneimine. J. Clin. Microbiol. 1976, 3, 209–210. [Google Scholar] [CrossRef]
- Kenubih, A. Foot and Mouth Disease Vaccine Development and Challenges in Inducing Long-Lasting Immunity: Trends and Current Perspectives. Vet. Med. Res. Rep. 2021, 12, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lu, Z.; Bai, X.; Li, D.; Sun, P.; Bao, H.; Fu, Y.; Cao, Y.; Chen, Y.; Xie, B.; et al. Evaluation of a 3A-truncated foot-and-mouth disease virus in pigs for its potential as a marker vaccine. Vet. Res. 2014, 45, 51. [Google Scholar] [CrossRef] [Green Version]
- Uddowla, S.; Hollister, J.; Pacheco, J.M.; Rodriguez, L.L.; Rieder, E. A Safe Foot-and-Mouth Disease Vaccine Platform with Two Negative Markers for Differentiating Infected from Vaccinated Animals. J. Virol. 2012, 86, 11675–11685. [Google Scholar] [CrossRef] [Green Version]
- Mowat, G.N.; Chapman, W.G. Growth of Foot-and-Mouth Disease Virus in a Fibroblastic Cell Line Derived from Hamster Kidneys. Nature 1962, 194, 253–255. [Google Scholar] [CrossRef]
- Mowat, G.N.; Barr, D.A.; Bennett, J.H. The development of an attenuated foot-and-mouth disease virus vaccine by modification and cloning in tissue cultures of BHK 21 cells. Arch. Gesamte. Virol. 1969, 26, 341–354. [Google Scholar] [CrossRef]
- Segundo, F.D.-S.; Medina, G.N.; Ramirez-Medina, E.; Velazquez-Salinas, L.; Koster, M.; Grubman, M.J.; Santos, T.D.L. Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response. J. Virol. 2016, 90, 1298–1310. [Google Scholar] [CrossRef] [Green Version]
- Chinsangaram, J.; Mason, P.W.; Grubman, M.J. Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine 1998, 16, 1516–1522. [Google Scholar] [CrossRef]
- Mason, P.; Piccone, M.; McKenna, T.-C.; Chinsangaram, J.; Grubman, M. Evaluation of a Live-Attenuated Foot-and-Mouth Disease Virus as a Vaccine Candidate. Virology 1997, 227, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Knight-Jones, T.J.D.; Charleston, B.; Rodriguez, L.L.; Gay, C.G.; Sumption, K.J.; Vosloo, W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7-Pathogenesis and Molecular Biology. Transbound. Emerg. Dis. 2016, 63, 63–71. [Google Scholar] [CrossRef]
- Avendaño, C.; Giraldo, C.T.C.; Ordoñez, D.; Diaz-Arevalo, D.; Rodríguez-Habibe, I.; Oviedo, J.; Curtidor, H.; García-Castiblanco, S.; Martínez-Panqueva, F.; Camargo-Castañeda, A.; et al. Evaluating the immunogenicity of chemically-synthesised peptides derived from foot-and-mouth disease VP1, VP2 and VP3 proteins as vaccine candidates. Vaccine 2020, 38, 3942–3951. [Google Scholar] [CrossRef] [PubMed]
- Mansuroğlu, B.; Derman, S.; Kızılbey, K.; Ateş, S.C.; Akdeste, Z.M. Synthetic peptide vaccine for Foot-and-Mouth Disease: Synthesis, characterization and immunogenicity. Turk. J. Biochem. 2020, 45, 859–868. [Google Scholar] [CrossRef]
- Kamel, M.; El-Sayed, A.; Vazquez, H.C. Foot-and-mouth disease vaccines: Recent updates and future perspectives. Arch. Virol. 2019, 164, 1501–1513. [Google Scholar] [CrossRef]
- Bijker, M.S.; Melief, C.J.M.; Offringa, R.; Van Der Burg, S.H. Design and development of synthetic peptide vaccines: Past, present and future. Expert Rev. Vaccines 2007, 6, 591–603. [Google Scholar] [CrossRef]
- Bittle, J.L.; Houghten, R.A.; Alexander, H.; Shinnick, T.M.; Sutcliffe, J.G.; Lerner, R.A.; Rowlands, D.J.; Brown, F. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 1982, 298, 30–33. [Google Scholar] [CrossRef]
- Wong, C.L.; Yong, C.Y.; Lee, K.W. Phage T7 as a Potential Platform for Vaccine Development. Methods Mol. Biol. 2022, 2412, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Segundo, F.D.-S.; Dias, C.C.; Moraes, M.P.; Weiss, M.; Perez-Martin, E.; Salazar, A.M.; Grubman, M.J.; Santos, T.D.L. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine. Virology 2014, 468, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Sainz, I.; Medina, G.N.; Ramirez-Medina, E.; Koster, M.J.; Grubman, M.J.; de Los Santos, T. Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection against FMDV O1 Manisa in swine. Virology 2017, 502, 123–132. [Google Scholar] [CrossRef]
- Sreenivasa, B.; Mohapatra, J.; Pauszek, S.; Koster, M.; Dhanya, V.; Selvan, R.T.; Hosamani, M.; Saravanan, P.; Basagoudanavar, S.H.; Santos, T.D.L.; et al. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle. Vet. Microbiol. 2017, 203, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.S.; Zhi, Y.; Guo, H.; Byun, E.-B.; Lim, J.H.; Seo, H.S. Promotion of Cellular and Humoral Immunity against Foot-and-Mouth Disease Virus by Immunization with Virus-Like Particles Encapsulated in Monophosphoryl Lipid A and Liposomes. Vaccines 2020, 8, 633. [Google Scholar] [CrossRef]
- Lei, Y.; Shao, J.; Ma, F.; Lei, C.; Chang, H.; Zhang, Y. Enhanced efficacy of a multi-epitope vaccine for type A and O foot-and-mouth disease virus by fusing multiple epitopes with Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA), a novel TLR4 agonist. Mol. Immunol. 2020, 121, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Song, H.; Shi, X.; Ru, J.; Tan, S.; Teng, Z.; Dong, H.; Guo, H.; Wei, F.; Sun, S. Preparation of a polysaccharide adjuvant and its application in the production of a foot-and-mouth disease virus-like particles vaccine. Biochem. Eng. J. 2022, 184, 108479. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, N.; Miao, C.; Yue, H.; Wu, J.; Ma, G. A novel multiple emulsion enhanced immunity via its biomimetic delivery approach. J. Mater. Chem. B 2020, 8, 7365–7374. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Teng, Z.; Lu, Y.; Luo, X.; Mu, S.; Ru, J.; Zhao, X.; Guo, H.; Ran, X.; Wen, X.; et al. Enhanced immunogenicity of foot and mouth disease DNA vaccine delivered by PLGA nanoparticles combined with cytokine adjuvants. Res. Vet. Sci. 2021, 136, 89–96. [Google Scholar] [CrossRef]
- Ward, G.; Rieder, E.; Mason, P.W. Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune responses in swine. J. Virol. 1997, 71, 7442–7447. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.-J.; Lee, H.-S.; Jeoung, H.-Y.; Heo, E.-J.; Ko, H.-R.; Chang, B.-S.; Joo, H.-D.; Gerelmaa, U.; Dashzeveg, B.; Tserendorj, S.; et al. Use of a Baculovirus-Expressed Structural Protein for the Detection of Antibodies to Foot-and-Mouth Disease Virus Type A by a Blocking Enzyme-Linked Immunosorbent Assay. Clin. Vaccine Immunol. 2010, 17, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Zhu, J. Computational tools for epitope vaccine design and evaluation. Curr. Opin. Virol. 2015, 11, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotecha, A.; Seago, J.; Scott, K.A.; Burman, A.; Loureiro, S.; Ren, J.; Porta, C.; Ginn, H.M.; Jackson, T.; Perez-Martin, E.; et al. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat. Struct. Mol. Biol. 2015, 22, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.H. Recent advances in the molecular design of synthetic vaccines. Nat. Chem. 2015, 7, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.E.; Bates, J.T.; Loomis, R.J.; Baneyx, G.; Carrico, C.; Jardine, J.G.; Rupert, P.; Correnti, C.; Kalyuzhniy, O.; Vittal, V.; et al. Proof of principle for epitope-focused vaccine design. Nature 2014, 507, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachanek-Bankowska, K.; Di Nardo, A.; Wadsworth, J.; Mioulet, V.; Pezzoni, G.; Grazioli, S.; Brocchi, E.; Kafle, S.C.; Hettiarachchi, R.; Kumarawadu, P.L.; et al. Reconstructing the evolutionary history of pandemic foot-and-mouth disease viruses: The impact of recombination within the emerging O/ME-SA/Ind-2001 lineage. Sci. Rep. 2018, 8, 14693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswal, J.K.; Ranjan, R.; Subramaniam, S.; Mohapatra, J.K.; Patidar, S.; Sharma, M.K.; Bertram, M.R.; Brito, B.; Rodriguez, L.L.; Pattnaik, B.; et al. Genetic and antigenic variation of foot-and-mouth disease virus during persistent infection in naturally infected cattle and Asian buffalo in India. PLoS ONE 2019, 14, e0214832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative Genomics of Foot-and-Mouth Disease Virus. J. Virol. 2005, 79, 6487–6504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shehawy, L.I.; Abu-Elnaga, H.I.; Rizk, S.A.; El-Kreem, A.S.A.; Mohamed, A.A.; Fawzy, H.G. Molecular differentiation and phylogenetic analysis of the Egyptian foot-and-mouth disease virus SAT2. Arch. Virol. 2013, 159, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Mouton, L.; Dekker, A.; Bleijenberg, M.; Blanchet, M.; Coco-Martin, J.; Hudelet, P.; Goutebroze, S. A foot-and-mouth disease SAT2 vaccine protects swine against experimental challenge with a homologous virus strain, irrespective of mild pathogenicity in this species. Vaccine 2018, 36, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Knight-Jones, T.J.D.; Robinson, L.; Charleston, B.; Rodriguez, L.L.; Gay, C.G.; Sumption, K.J.; Vosloo, W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 2-Epidemiology, Wildlife and Economics. Transbound. Emerg. Dis. 2016, 63, 14–29. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. (FAO) 2016. Available online: http://www.wrlfmd.org/wrlfmd (accessed on 10 January 2023).
- Diab, E.; Bazid, A.-H.I.; Fawzy, M.; El-Ashmawy, W.R.; Fayed, A.A.; El-Sayed, M.M. Foot-and-mouth disease outbreaks in Egypt during 2013-2014: Molecular characterization of serotypes A, O, and SAT2. Vet. World 2019, 12, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdazo-González, B.; Knowles, N.J.; Hammond, J.; King, D.P. Genome Sequences of SAT 2 Foot-and-Mouth Disease Viruses from Egypt and Palestinian Autonomous Territories (Gaza Strip). J. Virol. 2012, 86, 8901–8902. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.A.; Salem, S.A.H.; Habashi, A.R.; Arafa, A.A.; Aggour, M.G.A.; Salem, G.H.; Gaber, A.S.; Selem, O.; Abdelkader, S.H.; Knowles, N.J.; et al. Emergence of Foot-and-Mouth Disease Virus SAT 2 in Egypt During 2012. Transbound. Emerg. Dis. 2012, 59, 476–481. [Google Scholar] [CrossRef]
- Lockhart, C.; Sumption, K.; Pino, J.; Lubroth, J. Foot-and-mouth disease caused by serotype SAT2 in Egypt and Libya. Empres. Watch. 2012, 25, 1–7. [Google Scholar]
- Ayelet, G.; Soressa, M.; Sisay, T.; Belay, A.; Gelaye, E.; Jembere, S.; Skjerve, E.; Asmare, K. FMD virus isolates: The candidate strains for polyvalent vaccine development in Ethiopia. Acta Trop. 2013, 126, 244–248. [Google Scholar] [CrossRef]
- Kotecha, A.; Perez-Martin, E.; Harvey, Y.; Zhang, F.; Ilca, S.L.; Fry, E.E.; Jackson, B.; Maree, F.; Scott, K.; Hecksel, C.W.; et al. Chimeric O1K foot-and-mouth disease virus with SAT2 outer capsid as an FMD vaccine candidate. Sci. Rep. 2018, 8, 13654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, A.D.S. Molecular Epidemiology and Diagnosis of SAT-Type Foot-and-Mouth Disease in Southern Africa. Ph.D. Thesis, Faculty of Biological and Agricultural Sciences University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Vosloo, W.; Bastos, A.D.; Kirkbride, E.; Esterhuysen, J.J.; van Rensburg, D.J.; Bengis, R.G.; Keet, D.W.; Thomson, G.R. Persistent infection of African buffalo (Syncerus caffer) with SAT-type foot-and-mouth disease viruses: Rate of fixation of mutations, antigenic change and interspecies transmission. J. Gen. Virol. 1996, 77, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Ayelet, G.; Mahapatra, M.; Gelaye, E.; Egziabher, B.G.; Rufeal, T.; Sahle, M.; Ferris, N.P.; Wadsworth, J.; Hutchings, G.H.; Knowles, N.J. Genetic Characterization of Foot-and-Mouth Disease Viruses, Ethiopia, 1981–2007. Emerg. Infect. Dis. 2009, 15, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Habiela, M.; Ferris, N.P.; Hutchings, G.H.; Wadsworth, J.; Reid, S.M.; Madi, M.; Ebert, K.; Sumption, K.J.; Knowles, N.J.; King, D.P.; et al. Molecular Characterization of Foot-and-Mouth Disease Viruses Collected from Sudan. Transbound. Emerg. Dis. 2010, 57, 305–314. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; McCahon, D.; Saunders, K.; Newman, J.W.; Slade, W.R. Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Res. 1985, 3, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Mwiine, F.N.; Velazquez-Salinas, L.; Ahmed, Z.; Ochwo, S.; Munsey, A.; Kenney, M.; Lutwama, J.J.; Maree, F.F.; Lobel, L.; Perez, A.M.; et al. Serological and phylogenetic characterization of foot and mouth disease viruses from Uganda during cross-sectional surveillance study in cattle between 2014 and 2017. Transbound. Emerg. Dis. 2019, 66, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, M.; Upadhyaya, S.; Aviso, S.; Babu, A.; Hutchings, G.; Parida, S. Selection of vaccine strains for serotype O foot-and-mouth disease viruses (2007–2012) circulating in Southeast Asia, East Asia and Far East. Vaccine 2017, 35, 7147–7153. [Google Scholar] [CrossRef] [PubMed]
- Doel, T. FMD vaccines. Virus Res. 2003, 91, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Pulido, M.R.; Sobrino, F.; Borrego, B.; Sáiz, M. RNA immunization can protect mice against foot-and-mouth disease virus. Antivir. Res. 2010, 85, 556–558. [Google Scholar] [CrossRef]
- De Los Santos, T.; Segundo, F.D.-S.; Rodriguez, L.L. The need for improved vaccines against foot-and-mouth disease. Curr. Opin. Virol. 2018, 29, 16–25. [Google Scholar] [CrossRef]
- Scott, K.A.; Kotecha, A.; Seago, J.; Ren, J.; Fry, E.E.; Stuart, D.I.; Charleston, B.; Maree, F.F. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. J. Virol. 2017, 91, e02312-16. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Yu, S.; Wang, W.; Chen, W.; Wang, X.; Wu, K.; Li, X.; Fan, S.; Ding, H.; Yi, L.; et al. Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines 2022, 10, 1817. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Haydon, D.T.; Pearson, A.; Kitching, R.P. Failure of vaccination to prevent outbreaks of foot-and-mouth disease. Epidemiol. Infect. 1996, 116, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, N.; Pandey, R.K.; Prajapati, V.K. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci. Rep. 2017, 7, 8285. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.K.; Ojha, R.; Mishra, A.; Prajapati, V.K. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J. Cell. Biochem. 2018, 119, 7631–7642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Zhang, Y.; Yang, D.; Jiang, Z.; Wang, F.; Yu, L. Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles. J. Gen. Virol. 2019, 100, 187–198. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, Y.; Zhao, Y.; Wang, S.; Yu, T.; Du, F.; Yang, X.F.; Luo, E. Immunogenicity of a multi-epitope DNA vaccine against hantavirus. Hum. Vaccines Immunother. 2012, 8, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Cui, N.; Ma, X.; Wang, F.; Li, H.; Shen, Z.; Zhao, X. Evaluation of a chimeric multi-epitope-based DNA vaccine against subgroup J avian leukosis virus in chickens. Vaccine 2016, 34, 3751–3756. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Limas, W.A.; Sekar, K.; Tyo, K.E. Virus-like particles: The future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. 2013, 24, 1089–1093. [Google Scholar] [CrossRef]
- Grgacic, E.V.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef]
- Ludwig, C.; Wagner, R. Virus-like particles—Universal molecular toolboxes. Curr. Opin. Biotechnol. 2007, 18, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Reeve, R.; Borley, D.W.; Maree, F.F.; Upadhyaya, S.; Lukhwareni, A.; Esterhuysen, J.J.; Harvey, W.T.; Blignaut, B.; Fry, E.E.; Parida, S.; et al. Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS ONE 2016, 11, e0159360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forner, M.; Cañas-Arranz, R.; Defaus, S.; de León, P.; Rodríguez-Pulido, M.; Ganges, L.; Blanco, E.; Sobrino, F.; Andreu, D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines 2021, 9, 477. [Google Scholar] [CrossRef]
- Shahriari, A.; Habibi-Pirkoohi, M. Developing Vaccines against Foot-and-Mouth Disease: A Biotechnological Approach. Arch. Razi Inst. 2018, 73, 1–9. [Google Scholar] [CrossRef]
- Parry, N.R.; Ouldridge, E.J.; Barnett, P.V.; Clarke, B.E.; Francis, M.J.; Fox, J.D.; Rowlands, D.J.; Brown, F. Serological Prospects for Peptide Vaccines against Foot-and-Mouth Disease Virus. J. Gen. Virol. 1989, 70, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.J.; Hastings, G.Z.; Syred, A.D.; McGinn, B.; Brown, F.; Rowlands, D.J. Non-responsiveness to a foot-and-mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature 1987, 330, 168–170. [Google Scholar] [CrossRef]
- United Biomedical Products. Available online: https://www.unitedbiomedical.com/ (accessed on 16 January 2023).
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.; Doranz, B.J. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 2014, 143, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Koren, E.; De Groot, A.; Jawa, V.; Beck, K.; Boone, T.; Rivera, D.; Li, L.; Mytych, D.; Koscec, M.; Weeraratne, D.; et al. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin. Immunol. 2007, 124, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, A.A.A.S. Epitope Based Vaccine Designing—A mini review. J. Vaccines Immunol. 2020, 6, 36–41. [Google Scholar]
- Momtaz, S.; Rahman, A.; Sultana, M.; Hossain, M.A. Evolutionary Analysis and Prediction of Peptide Vaccine Candidates for Foot-and-Mouth-Disease Virus Types A and O in Bangladesh. Evol. Bioinform. 2014, 10, 187–196. [Google Scholar] [CrossRef]
- Yun, T.; Liu, G. Prediction of secondary structure and B cell epitope of structural protein of FMD virus. J. Chin. Vet. Sci. Technol. 2004, 34, 23–28. [Google Scholar]
- Garnier, J.; Osguthorpe, D.; Robson, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 1978, 120, 97–120. [Google Scholar] [CrossRef]
- Chou, P.Y. Prediction of the Secondary Structure of Protein Conformation; Plenum Press: New York, NY, USA, 1990; pp. 549–586. [Google Scholar]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Karplus, P.A.; Schulz, G.E. Prediction of chain flexibility in proteins. Sci. Nat. 1985, 72, 212–213. [Google Scholar] [CrossRef]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameson, B.; Wolf, H. The antigenic index: A novel algorithm for predicting antigenic determinants. Bioinformatics 1988, 4, 181–186. [Google Scholar] [CrossRef]
- Aggarwal, N.; Barnett, P.V. Antigenic sites of foot-and-mouth disease virus (FMDV): An analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species. J. Gen. Virol. 2002, 83 Pt 4, 775–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Qiu, T.; Dong, Q.; Xu, D.; Wang, X.; Zhang, Q.; Pan, J.; Liu, Q. Predicting the Antigenic Relationship of Foot-and-Mouth Disease Virus for Vaccine Selection Through a Computational Model. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 677–685. [Google Scholar] [CrossRef]
- Kitson, J.D.; McCahon, D.; Belsham, G.J. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: Evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 1990, 179, 26–34. [Google Scholar] [CrossRef]
- Crowther, J.R.; Farias, S.; Carpenter, W.C.; Samuel, A.R. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J. Gen. Virol. 1993, 74, 1547–1553. [Google Scholar] [CrossRef]
- Barnett, P.V.; Ouldridge, E.J.; Rowlands, D.J.; Brown, F.; Parry, N.R. Neutralizing Epitopes of Type O Foot-and-Mouth Disease Virus. I. Identification and Characterization of Three Functionally Independent, Conformational Sites. J. Gen. Virol. 1989, 70, 1483–1491. [Google Scholar] [CrossRef]
- Mateu, M.G.; Martinez, M.A.; Capucci, L.; Andreu, D.; Giralt, E.; Sobrino, F.; Brocchi, E.; Domingo, E. A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. J. Gen. Virol. 1990, 71, 629–637. [Google Scholar] [CrossRef]
- Lea, S.; Hernéndez, J.; Blakemore, W.; Brocchi, E.; Curry, S.; Domingo, E.; Fry, E.; Ghazaleh, R.; King, A.; Newman, J.; et al. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 1994, 2, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.A.; Woortmeijer, R.J.; Puijk, W.; Barteling, S.J. Antigenic sites on foot-and-mouth disease virus type A10. J. Virol. 1988, 62, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Saiz, J.C.; Gonzalez, M.J.; Borca, M.V.; Sobrino, F.; Moore, D.M. Identification of neutralizing antigenic sites on VP1 and VP2 of type A5 foot-and-mouth disease virus, defined by neutralization-resistant variants. J. Virol. 1991, 65, 2518–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grazioli, S.; Fallacara, F.; Brocchi, E. Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes. J. Gen. Virol. 2013, 94 Pt 3, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Gerner, W.; Carr, B.V.; Wiesmüller, K.-H.; Pfaff, E.; Saalmüller, A.; Charleston, B. Identification of a novel foot-and-mouth disease virus specific T-cell epitope with immunodominant characteristics in cattle with MHC serotype A31. Vet. Res. 2007, 38, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateu, M.G.; Hernández, J.; Martínez, M.A.; Feigelstock, D.; Lea, S.; Pérez, J.J.; Giralt, E.; Stuart, D.; Palma, E.L.; Domingo, E. Antigenic heterogeneity of a foot-and-mouth disease virus serotype in the field is mediated by very limited sequence variation at several antigenic sites. J. Virol. 1994, 68, 1407–1417. [Google Scholar] [CrossRef] [Green Version]
- Butchaiah, G.; Morgan, D. Neutralization antigenic sites on type Asia-1 foot-and-mouth disease virus defined by monoclonal antibody-resistant variants. Virus Res. 1997, 52, 183–194. [Google Scholar] [CrossRef]
- Borley, D.W.; Mahapatra, M.; Paton, D.J.; Esnouf, R.M.; Stuart, D.; Fry, E. Evaluation and Use of In-Silico Structure-Based Epitope Prediction with Foot-and-Mouth Disease Virus. PLoS ONE 2013, 8, e61122. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Zhang, Y.-G.; Wang, Y.-L.; Pan, L.; Fang, Y.-Z.; Jiang, S.-T.; Lü, J.-L.; Zhou, P. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet. Microbiol. 2010, 140, 25–33. [Google Scholar] [CrossRef]
- Malirat, V.; Neitzert, E.; Bergmann, I.E.; Maradei, E.; Beck, E. Detection of cattle exposed to foot-and-mouth disease virus by means of an indirect ELISA test using bioengineered nonstructural polyprotein 3ABC. Vet. Q. 1998, 20 (Suppl. S2), 24–26. [Google Scholar] [CrossRef]
- Yang, Z.J.; Lin, Y.; Li, J.G.; Yan, W.Y.; Xu, Q.X.; You, Y.J.; Zheng, Z.X. Recombinant vaccine containing both b cell and t cell epitopes induces guinea pig in immune responses against type O foot-and-mouth disease virus. J. Fudan Univ. 2000, 5, 564–568. [Google Scholar]
- Cui, B.; Liu, X.; Zhou, P.; Fang, Y.; Zhao, D.; Zhang, Y.; Wang, Y. Immunogenicity and protective efficacy of recombinant proteins consisting of multiple epitopes of foot-and-mouth disease virus fused with flagellin. Appl. Microbiol. Biotechnol. 2019, 103, 3367–3379. [Google Scholar] [CrossRef] [PubMed]
- Giavedoni, L.D.; Kaplan, G.; Marcovecchio, F.; Piccone, M.E.; Palma, E.L. Protection conferred by TrpE fusion proteins containing portions of the C-terminal region of capsid protein VP1 of foot-and-mouth disease virus. J. Gen. Virol. 1991, 72, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Y.Q.; Zhang, Z.; Li, L.; Yan, W.Y.; Jiang, W.J.; Xin, A.G.; Lei, C.X.; Zheng, Z.X. Immunogenicity of a recombinant fusion protein of tandem repeat epitopes of foot-and-mouth disease virus type Asia 1 for guinea pigs. Acta Virol. 2002, 46, 1–9. [Google Scholar] [PubMed]
- Zhang, Z.; Pan, L.; Ding, Y.; Zhou, P.; Lv, J.; Chen, H.; Fang, Y.; Liu, X.; Chang, H.; Zhang, J.; et al. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle. Appl. Microbiol. Biotechnol. 2014, 99, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.-J.; Wong, C.K.; Lin, T.; Lee, S.K.; Cong, G.-Z.; Sin, F.W.Y.; Du, J.-Z.; Gao, S.-D.; Liu, X.-T.; Cai, X.-P.; et al. Promising Multiple-Epitope Recombinant Vaccine against Foot-and-Mouth Disease Virus Type O in Swine. Clin. Vaccine Immunol. 2011, 18, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brehm, K.; Kumar, N.; Thulke, H.-H.; Haas, B. High potency vaccines induce protection against heterologous challenge with foot-and-mouth disease virus. Vaccine 2008, 26, 1681–1687. [Google Scholar] [CrossRef]
- Brown, F. Peptides as viral vaccines: Lessons from experiments with foot-and-mouth disease virus. World J. Microbiol. Biotechnol. 1991, 7, 110–114. [Google Scholar] [CrossRef]
- Michelle, M. The in silico Prediction of Foot-and-Mouth Disease Virus (FMDV) Epitopes on the South African Territories (SAT) 1, SAT2 and SAT3 Serotypes. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2015. [Google Scholar]
- Opperman, P.A.; Rotherham, L.S.; Esterhuysen, J.; Charleston, B.; Juleff, N.; Capozzo, A.V.; Theron, J.; Maree, F.F. Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses. J. Virol. 2014, 88, 8307–8318. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Shao, J.; Zhao, F.; Li, Y.; Lei, C.; Ma, F.; Chang, H.; Zhang, Y. Artificially designed hepatitis B virus core particles composed of multiple epitopes of type A and O foot-and-mouth disease virus as a bivalent vaccine candidate. J. Med. Virol. 2019, 91, 2142–2152. [Google Scholar] [CrossRef]
- Liu, W.; Yang, B.; Wang, M.; Liang, W.; Wang, H.; Yang, D.; Ma, W.; Zhou, G.; Yu, L. Identification of a conserved conformational epitope in the VP2 protein of foot-and-mouth disease virus. Arch. Virol. 2017, 162, 1877–1885. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Wang, C.; Lin, X. Screening of major epitopes of foot-and-mouth disease virus type SAT2 and their antigenicity analysis. Chin. J. Vet. 2010, 12, 1638–1641. [Google Scholar]
- Novotný, J.; Handschumacher, M.; Haber, E.; Bruccoleri, R.E.; Carlson, W.B.; Fanning, D.W.; Smith, J.A.; Rose, G.D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA 1986, 83, 226–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, J.R.; Rowe, C.A.; Butcher, R. Characterization of monoclonal antibodies against a type SAT 2 foot-and-mouth disease virus. Epidemiol. Infect. 1993, 111, 391–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collen, T.; Dimarchi, R.; Doel, T.R. A T cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle. J. Immunol. 1991, 146, 749–755. [Google Scholar] [CrossRef]
- Blanco, E.; Garcia-Briones, M.; Sanz-Parra, A.; Gomes, P.; de Oliveira, E.; Valero, M.L.; Andreu, D.; Ley, V.; Sobrino, F. Identification of T-Cell Epitopes in Nonstructural Proteins of Foot-and-Mouth Disease Virus. J. Virol. 2001, 75, 3164–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubillos, C.; de la Torre, B.G.; Bárcena, J.; Andreu, D.; Sobrino, F.; Blanco, E. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virol. J. 2012, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Jo, H.; Park, S.H.; Ko, M.-K.; Kim, S.-M.; Kim, B.; Park, J.-H. Advanced Foot-And-Mouth Disease Vaccine Platform for Stimulation of Simultaneous Cellular and Humoral Immune Responses. Vaccines 2020, 8, 254. [Google Scholar] [CrossRef]
- Fischer, D.; Rood, D.; Barrette, R.W.; Zuwallack, A.; Kramer, E.; Brown, F.; Silbart, L.K. Intranasal Immunization of Guinea Pigs with an Immunodominant Foot-and-Mouth Disease Virus Peptide Conjugate Induces Mucosal and Humoral Antibodies and Protection against Challenge. J. Virol. 2003, 77, 7486–7491. [Google Scholar] [CrossRef] [Green Version]
- Brown, F. Use of peptides for immunization againast foot-and-mouth disease. Vaccine 1988, 6, 180–182. [Google Scholar] [CrossRef]
- DiMarchi, R.; Brooke, G.; Gale, C.; Cracknell, V.; Doel, T.; Mowat, N. Protection of Cattle Against Foot-and-Mouth Disease by a Synthetic Peptide. Science 1986, 232, 639–641. [Google Scholar] [CrossRef]
- Morgan, D.O.; Moore, D.M. Protection of cattle and swine against foot-and-mouth disease, using biosynthetic peptide vaccines. Am. J. Vet. Res. 1990, 51, 40–45. [Google Scholar]
- Blanco, E.; Guerra, B.; de la Torre, B.G.; Defaus, S.; Dekker, A.; Andreu, D.; Sobrino, F. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide. Antivir. Res. 2016, 129, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y. Adjuvants for foot-and-mouth disease virus vaccines: Recent progress. Expert Rev. Vaccines 2014, 13, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.C.; Rodríguez, E.G. Vaccine adjuvants revisited. Vaccine 2007, 25, 3752–3762. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A., Jr. Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harb. Symp. Quant. Biol. 1989, 54 Pt 1, 1–13. [Google Scholar] [CrossRef]
- Yin, W.; Xuan, D.; Wang, H.; Zhou, M.; Deng, B.; Ma, F.; Lu, Y.; Zhang, J. Biodegradable Imiquimod-Loaded Mesoporous Organosilica as a Nanocarrier and Adjuvant for Enhanced and Prolonged Immunity against Foot-and-Mouth Disease Virus in Mice. ACS Appl. Bio Mater. 2022, 5, 3095–3106. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Y.; Yin, X.; He, Y.; Zhang, Q.; Chen, C. Layered double hydroxide nanoparticles as an adjuvant for inactivated foot-and-mouth disease vaccine in pigs. BMC Vet. Res. 2020, 16, 474. [Google Scholar] [CrossRef]
- Chiarella, P.; Massi, E.; De Robertis, M.; Signori, E.; Fazio, V.M. Adjuvants in vaccines and for immunisation: Current trends. Expert Opin. Biol. Ther. 2007, 7, 1551–1562. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Xu, H.; Zhang, Y.; Wan, M.; Liu, G.; Zhao, L.; Wang, L.; Yu, Y. CpG oligodeoxynucleotide and montanide ISA 206 adjuvant combination augments the immune responses of a recombinant FMDV vaccine in cattle. Vaccine 2011, 29, 7960–7965. [Google Scholar] [CrossRef]
- Alves, M.P.; Guzylack-Piriou, L.; Juillard, V.; Audonnet, J.-C.; Doel, T.; Dawson, H.; Golde, W.T.; Gerber, H.; Peduto, N.; McCullough, K.C.; et al. Innate Immune Defenses Induced by CpG Do Not Promote Vaccine-Induced Protection against Foot-and-Mouth Disease Virus in Pigs. Clin. Vaccine Immunol. 2009, 16, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Heegaard, P.M.H.; Dedieu, L.; Johnson, N.; Le Potier, M.-F.; Mockey, M.; Mutinelli, F.; Vahlenkamp, T.; Vascellari, M.; Sørensen, N.S. Adjuvants and delivery systems in veterinary vaccinology: Current state and future developments. Arch. Virol. 2010, 156, 183–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Aoshi, T. Adjuvants for Animal Vaccines. Viral Immunol. 2018, 31, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Seya, T. TLR3: Interferon induction by double-stranded RNA including poly(I:C). Adv. Drug Deliv. Rev. 2008, 60, 805–812. [Google Scholar] [CrossRef]
- Ueta, M.; Hamuro, J.; Kiyono, H.; Kinoshita, S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem. Biophys. Res. Commun. 2005, 331, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, S.; Verthelyi, D.; Klinman, D.M. Response of porcine peripheral blood mononuclear cells to CpG-containing oligodeoxynucleotides. Vet. Microbiol. 2001, 78, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Xin, H. Progress in the study of immuno-pharmacology of yupingfeng powder. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 1998, 18, 701–703. [Google Scholar]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73 (Suppl. S1), 1–6. [Google Scholar] [CrossRef]
- Song, M.; Chen, Y.; Du, H.; Zhang, S.; Wang, Y.; Zeng, L.; Yang, J.; Shi, J.; Wu, Y.; Wang, D.; et al. Raw rehmannia radix polysaccharide can effectively release peroxidative injury induced by duck hepatitis a virus. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Rajput, Z.I.; Hu, S. Improvement of a commercial foot-and-mouth disease vaccine by supplement of Quil A. Vaccine 2007, 25, 4795–4800. [Google Scholar] [CrossRef]
Serotypes | No. Topotypes | Topotypic Nomenclature | Subtypes | Lineage | Description of Geographic Location and Genetic Diversity |
---|---|---|---|---|---|
O | 11 | I Cathay, II Middle East–South Asia (ME–SA), III South East Asia (SEA), IV Europe-South America (Euro–SA), V Indonesia-1 (ISA-1), VI Indonesia-2 (ISA-2), VII East Africa (EA1), VIII East Africa (EA2), IX East Africa (EA3), X East Africa (EA4) and XI West Africa (WA) [12,13]. | - | Except for ISA-1 and ISA-2, which is found only in Indonesia, almost all of the other topotypes have been reported in different parts of the world [14]. | |
A | 3 | Africa, Asia, and Europe-South America (Euro–SA) [12]. | 10 (I to X) | Reported in all FMDV-infected areas around the world. | |
Asia 1 | 2 | Europe-South America (Euro-SA) [12]. | - | 22 | |
C | 3 | Europe–South America (Euro–SA) and Asia [12]. | - | Last observed in Kenya in 2004 [15]. It is an uncommon serotype and is not a serotype of concern. | |
SAT1 | 13 | I (North West Zimbabwe, NWZ), II (South East Zimbabwe, SEZ), III (Western Zimbawe, WZ), IV (East Africa, EA1), V, VI, VII (East Africa EA2), VIII (East Africa EA3), IX, X, XI, XII, and XIII [10,12,16] | Higher nucleotide and amino acid sequence diversity within each other than in the serotype. Intratypic variation is more common in SAT types than in European serotype O. | ||
SAT2 | 14 | I in South Africa, I and II in Zimbabwe, III in Botswana, IV and IX in Kenya, V in Ghana and Nigeria, VI in Gambia, VII in Central African Republic, VII in Saudi Arabia, VIII and X in Zaire, IV, XII, XIII, and XIV in Ethiopia, XI in Angola, XIII in Rwanda, X and XII in Uganda, XIII in Sudan. [10,12,16] | Apart from African territories, it is observed in countries south of the Sahara desert, and in the Northern African and Middle East region, such as Libya, Egypt, the Palestinian Autonomous Territories (PAT), and Bahrain [17]. | ||
SAT3 | 5 | I (South East Zimbabwe, SEZ), II (Western Zimbabwe, WZ), III (North West Zimbabwe, NW), IV and V (East Africa, EA) [10,12,16] | 25 | - | SAT3 has relatively less epidemiological coverage on the continent and rarely affects buffaloes. It is found in Uganda and Zimbabwe. |
Generations of FMDV Vaccines | Vaccine Types | Evolutionary Period | Major Scientific Techniques and Activities Undertaken | Reference |
---|---|---|---|---|
1st generation | Inactivated vaccines | 1930–1940 | Inactivation method—formaldehyde antigen; using slice of virus-infected cattle tongue. | [25] |
1950 | Inactivation method—formaldehyde antigen; in vitro culture of FMD virus in bovine tongue epithelium (for large-scale production). | [26] | ||
1970s | Antigen—FMD virus grown in monolayers of BHK cells; cell inactivation—binary ethyleneimine (BEI) and use of oil adjuvant; use of BHK cells for high virus yield and low cell density. | [24] | ||
~2000 | Inactivation method—formaldehyde, binary ethyleneimine (BEI), N acetylenimine, non-chemical methods (endonucleases and hydrostatic pressure). Antigen—attenuated FMD virus by de-optimization or gene deletion. | [32,33] | ||
Live attenuated vaccines | 1960s | Attenuation methods—conventional—cell culture—BHK 21 advantage—higher immunogenicity. Disadvantage—risk of reversion, thermo liable, limited duration, higher cost of production, DIVA. | [26,34,35] | |
~2000 | Attenuation method—novel method—de-optimization or gene deletion (deletion of full L-pro, deletion of SAP from L-pro, using closely related L-pro of other viruses). Advantage—more stable, less risk of reversion, high neutralizing antibody titers, NS proteins are potent T cell epitopes.Disadvantage—needs high-tech technology for preparation. | [36,37,38] | ||
Advantage—higher immunogenicity (confer humeral and cellular immunity). Shortcomings of the classical inactivation—short-lived immunity; formulated vaccines need adequate cold chain; risk of recombination with the wild strains; difficulties growing certain serotypes and subtypes well in cell culture for vaccine production; high cost; reversion of the pathogenicity; and DIVA. | [5,39] | |||
2nd generationgenetic engineering vaccine | Genetically engineered subunit vaccines | Advanced after 2000 | Method—using recombinant DNA technology and reverse genetics. Antigens—single linear or complex peptides, mostly structural and non-structural proteins (encoded to B and T cell epitopes). Multiple epitopes, 3D conformation epitopes, and utilization of dendritic cells. Expression of target proteins or peptides via bacteria, baculoviruses, mammalian cells, and transgenic plants. | [40,41,42] |
Synthetic peptide vaccine [43] | A synthetic polypeptide designed to resemble a natural epitope (synthetic peptide vaccine for FMD [44]. | |||
Advantage: relatively low-cost production, stability, and producibility on a large scale. Shortcoming: dependent on carrier proteins. | ||||
Recombinant vaccine | Advanced after 2000 | Method—recombining FMDV immunogenic viral structural proteins with other viral vectors (chimeric vaccine) Vectors; porcine or bovine parvovirus, canine or human adenovirus, herpes virus, fowl pox phages [45]. | [46,47,48] | |
3rd generation | DNA vaccine | This research type peaked after 2015 | Method—plasmid with promoter for the target gene (a gene of interest) expression. | |
Virus-like particles (VLPs) | More research of this kind encountered after 2015 | Method—transfer of the sequence of the FMDV capsid into a replication-defective human adenovirus type 5, baculovirus, plants, yeasts, other multiple viruses (chimera), and the recombinant expression via eukaryotic and prokaryotic cells. | [45,49,50,51,52,53,54] | |
Advantages: stimulate both T and B cells; do not hassle the immune system of the vaccinated animal; safe to use; easy to manufacture and produce; stable and do not require a cold-chain facility; can include marker genes with DIVA capability; can be modified quickly to include field strain sequences; and can contain multiple antigenic sites. Shortcomings: lower immunogenicity and requires advanced biotechnological platforms. | [55,56] |
Capsid Proteins | Serotypes | Structural Function | |||
---|---|---|---|---|---|
O | C | A | Asia 1 | ||
VP1 | 133–157 [114] 200–213 [115] 40–60 [116] | 138–150 [117], 195–206, 43–48 and 170 [118] | 140–160, 169 (A10) [119] 198 (A5) [120] | 142 [121] | cell epitopes |
VP2 | 70–78 [114] 131–134 [116] | 70–80 [118] | 72(A5), 79(A5) [120] | 67–79 [121] | |
VP3 | 56–58 [116] | 58–61 [118] | 58, 59, 218 [121] |
FMDV Serotype | Epitope Prediction Method | Description | References |
---|---|---|---|
SAT2 | Chicken single-chain antibody fragments | A single-chain variable fragment (scFv) phage display library on the chicken immunoglobulin genes applied to map neutralizing and putative epitopes in FMD SAT2. For this, three unique soluble binders to the SAT2 virion were selected from the Nkuku® chicken scFv phage-displayed library. The result indicated that only scFv2 was capable of neutralizing the ZIM/7/83 virus and the two others for putative binding sites to the virus. | [136] |
Monoclonal-antibody (MAb)-resistant mutants | This method was used for mapping antigenic sites on FMDV, and topotypically different strains of SAT2 FMDV used for identification of unique antibody-binding footprints on the capsid. The result shows antigenic epitope residues 71 to 72 of VP2 and other multiple epitopic sites on the capsid VP1 of an SAT2 FMDV. | [137] | |
In silico prediction | Carried out using freely accessible, web-based B cell epitope prediction servers. Efficiency and accuracy of these bioinformatic programs werwe evaluated in experimentally known epitopes of FMDV. Michelle et al. reported different novel epitopes on the SAT2 3D capsid structure of FMDV using in silico. | [125,136] |
Epitope Types | Structural Proteins and Epitope Sites | ||
---|---|---|---|
VP1 | VP2 | VP3 | |
B cell | 48–50 [137] 140–150 [62] 147–149 [142] 156, 158, 159 [136] | 71–72, 133–134 [137] 89–105 [139] | 55–88, 176–186, 208 [62] |
T cell | 21–40, 161-C terminal [143] 135–144, 150–160 [8] 210 [137] | 49–68, 113–132, 179–198 [62] | 130–134 [8] |
Type of Adjuvant | Main Component | Main Function |
---|---|---|
Aluminum salt adjuvant [160] | Aluminum hydroxide, aluminum phosphate, and alum | Aluminum adjuvant mainly induces humoral immune response and stimulates TH2 type response. |
Oil Emulsion [161] | Complete Freund’s adjuvant and incomplete Freund’s adjuvant et al. | Persistent release of immunogens from oil droplets and stimulation of local immune response. |
Poly I:C [162,163] | Poly I:C | Promotes the maturation and differentiation of T cells and DC cells in the body, and enhances the phagocytosis activity of macrophages and cytotoxic effect of NK cells. |
CpG-ODA adjuvant [164] | Oligo deoxy-nucletides | Promotes the proliferation and differentiation of B cells, NK cells, dendritic cells, and macrophages, and stimulates TH1 immune response by activating antigen-presenting cells to secrete a variety of cytokines such as IL-6. |
Chinese herbal adjuvant | Sugar, glycosides, and other effective ingredients | Chinese medicinal materials such as white fungus: At the same time, it can up-regulate the TH1/TH2 immune response [165]. Propolis adjuvant: By enhancing the role of macrophages, the body, in turn, promotes the immune response to antibodies [166]. Astragalus and other Chinese medicinal materials: Astragalus polysaccharide powder can stimulate the immune function of T and B lymphocytes [167]. Plant saponins (Quil A): Serum cytokine levels and T lymphocyte proliferation rate were significantly increased [168]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wubshet, A.K.; Wang, Y.; Heath, L.; Zhang, J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023, 15, 797. https://doi.org/10.3390/v15030797
Li Q, Wubshet AK, Wang Y, Heath L, Zhang J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses. 2023; 15(3):797. https://doi.org/10.3390/v15030797
Chicago/Turabian StyleLi, Qian, Ashenafi Kiros Wubshet, Yang Wang, Livio Heath, and Jie Zhang. 2023. "B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development" Viruses 15, no. 3: 797. https://doi.org/10.3390/v15030797
APA StyleLi, Q., Wubshet, A. K., Wang, Y., Heath, L., & Zhang, J. (2023). B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses, 15(3), 797. https://doi.org/10.3390/v15030797