Traditional Approaches and Emerging Biotechnologies in Grapevine Virology
Abstract
:1. General Perspectives on Viral Diseases in Grapevine
2. Conventional Strategies for Controlling Viral Diseases in Grapevine
3. Future Perspectives on Traditional Plant Breeding and Heritable Virus Resistance in Grapevine
4. Early Activation of Antiviral Defense by Transgenic and Non-Transgenic Approaches
5. New Breeding Technologies (NBTs) to Induce Virus Resistance in Grapevine
6. Grapevine Viruses—From Targets to Tools: The Employment of Viral Vectors in Emerging Biotechnologies
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martelli, G. Infectious Diseases and Certification of Grapevine. Options Mediterr. Ser. B 1997, 29, 47–64. [Google Scholar]
- Martelli, G. Where Grapevine Virology Is Heading To. In Proceedings of the 19th Congress of ICVG 2018, Santiago, Chile, 9–12 April 2018; pp. 10–15. [Google Scholar]
- EFSA Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jacques, M.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; et al. List of Non-EU Viruses and Viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J. 2019, 17, e05501. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.P. An Overview on Grapevine Viruses, Viroids, and the Diseases They Cause. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 31–46. ISBN 978-3-319-57704-3. [Google Scholar]
- Martelli, G.P. Graft-Transmissible Diseases of Grapevines: Handbook for Detection and Diagnosis; Food & Agriculture Org.: Rome, Italy, 1993; ISBN 92-5-103245-9. [Google Scholar]
- Andret-Link, P.; Laporte, C.; Valat, L.; Ritzenthaler, C.; Demangeat, G.; Vigne, E.; Laval, V.; Pfeiffer, P.; Stussi-Garaud, C.; Fuchs, M. Grapevine Fanleaf Virus: Still a Major Threat to the Grapevine Industry. J. Plant Pathol. 2004, 86, 183–195. [Google Scholar]
- Boscia, D.; Greif, C.; Gugerli, P.; Martelli, G.; Walter, B.; Gonsalves, D. Nomenclature of Grapevine Leafroll-Associated Putative Closteroviruses. Vitis 1995, 34, 171–175. [Google Scholar]
- Song, Y.; Hanner, R.H.; Meng, B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021, 13, 593. [Google Scholar] [CrossRef]
- Pimentel, D.; McNair, S.; Janecka, J.; Wightman, J.; Simmonds, C.; O’connell, C.; Wong, E.; Russel, L.; Zern, J.; Aquino, T. Economic and Environmental Threats of Alien Plant, Animal, and Microbe Invasions. Agric. Ecosyst. Environ. 2001, 84, 1–20. [Google Scholar] [CrossRef]
- Cieniewicz, E.J.; Qiu, W.; Saldarelli, P.; Fuchs, M. Believing Is Seeing: Lessons from Emerging Viruses in Grapevine. J. Plant Pathol. 2020, 102, 619–632. [Google Scholar] [CrossRef]
- Tarquini, G.; Ermacora, P.; Martini, M.; Firrao, G. The Conundrum of the Connection of Grapevine Pinot Gris Virus with the Grapevine Leaf Mottling and Deformation Syndrome. Plant Pathol. 2023, 72, 209–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Singh, K.; Kaur, R.; Qiu, W. Association of a Novel DNA Virus with the Grapevine Vein-Clearing and Vine Decline Syndrome. Phytopathology 2011, 101, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Sudarshana, M.R.; Perry, K.L.; Fuchs, M.F. Grapevine Red Blotch-Associated Virus, an Emerging Threat to the Grapevine Industry. Phytopathology 2015, 105, 1026–1032. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M. Grapevine Viruses: A Multitude of Diverse Species with Simple but Overall Poorly Adopted Management Solutions in the Vineyard. J. Plant Pathol. 2020, 102, 643–653. [Google Scholar] [CrossRef]
- Fraile, A.; García-Arenal, F. Environment and Evolution Modulate Plant Virus Pathogenesis. Curr. Opin. Virol. 2016, 17, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Maliogka, V.I.; Martelli, G.P.; Fuchs, M.; Katis, N.I. Control of Viruses Infecting Grapevine. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2015; Volume 91, pp. 175–227. ISBN 978-0-12-802762-2. [Google Scholar]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In Vitro Thermotherapy-Based Methods for Plant Virus Eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laimer, M.; Barba, M. Elimination of Systemic Pathogens by Thermotherapy, Tissue Culture, or in Vitro Micrografting. Virus Virus-Like Dis. Pome Stone Fruits 2011, 65, 389–393. [Google Scholar]
- Bettoni, J.C.; Marković, Z.; Bi, W.; Volk, G.M.; Matsumoto, T.; Wang, Q.-C. Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. Plants 2021, 10, 2190. [Google Scholar] [CrossRef]
- Wang, Q.; Cuellar, W.J.; Rajamäki, M.-L.; Hirata, Y.; Valkonen, J.P.T. Combined Thermotherapy and Cryotherapy for Efficient Virus Eradication: Relation of Virus Distribution, Subcellular Changes, Cell Survival and Viral RNA Degradation in Shoot Tips. Mol. Plant Pathol. 2008, 9, 237–250. [Google Scholar] [CrossRef]
- Skiada, F.G.; Maliogka, V.; Katis, N.; Eleftheriou, E. Elimination of Grapevine Rupestris Stem Pitting-Associated Virus (GRSPaV) from Two Vitis Vinifera Cultivars by In Vitro Chemotherapy. Eur. J. Plant Pathol. 2013, 135, 407–414. [Google Scholar] [CrossRef]
- Panattoni, A.; Luvisi, A.; Triolo, E. Review. Elimination of Viruses in Plants: Twenty Years of Progress. Span. J. Agric. Res. 2013, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Miljanić, V.; Rusjan, D.; Škvarč, A.; Chatelet, P.; Štajner, N. Elimination of Eight Viruses and Two Viroids from Preclonal Candidates of Six Grapevine Varieties (Vitis Vinifera L.) through In Vivo Thermotherapy and In Vitro Meristem Tip Micrografting. Plants 2022, 11, 1064. [Google Scholar] [CrossRef]
- Maliogka, V.; Skiada, F.; Eleftheriou, E.; Katis, N. Elimination of a New Ampelovirus (GLRaV-Pr) and Grapevine Rupestris Stem Pitting Associated Virus (GRSPaV) from Two Vitis Vinifera Cultivars Combining In Vitro Thermotherapy with Shoot Tip Culture. Sci. Hortic. 2009, 123, 280–282. [Google Scholar] [CrossRef]
- Nuzzo, F.; Moine, A.; Nerva, L.; Pagliarani, C.; Perrone, I.; Boccacci, P.; Gribaudo, I.; Chitarra, W.; Gambino, G. Grapevine Virome and Production of Healthy Plants by Somatic Embryogenesis. Microb. Biotechnol. 2022, 15, 1357–1373. [Google Scholar] [CrossRef] [PubMed]
- Panattoni, A.; Triolo, E. Susceptibility of Grapevine Viruses to Thermotherapy on In Vitro Collection of Kober 5BB. Sci. Hortic. 2010, 125, 63–67. [Google Scholar] [CrossRef]
- Baránek, M.; Raddová, J.; Krizan, B.; Pidra, M. Genetic Changes in Grapevine Genomes after Stress Induced by in Vitro Cultivation, Thermotherapy and Virus Infection, as Revealed by AFLP. Genet. Mol. Biol. 2009, 32, 834–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baránek, M.; Čechová, J.; Raddová, J.; Holleinová, V.; Ondrušíková, E.; Pidra, M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis Vinifera) Stressed by in Vitro Cultivation and Thermotherapy. PLoS ONE 2015, 10, e0126638. [Google Scholar] [CrossRef] [PubMed]
- Turcsan, M.; Demian, E.; Varga, T.; Jaksa-Czotter, N.; Szegedi, E.; Olah, R.; Varallyay, E. HTS-Based Monitoring of the Efficiency of Somatic Embryogenesis and Meristem Cultures Used for Virus Elimination in Grapevine. Plants 2020, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Perazzolli, M.; Gramaje, D.; Zyprian, E.M.; Cantu, D. Editorial: Recent Advances on Grapevine-Microbe Interactions: From Signal Perception to Resistance Response. Front. Plant Sci. 2020, 11, 1164. [Google Scholar] [CrossRef]
- Bell, V.A.; Lester, P.J.; Pietersen, G.; Hall, A.J. The Management and Financial Implications of Variable Responses to Grapevine Leafroll Disease. J. Plant Pathol. 2021, 103, 5–15. [Google Scholar] [CrossRef]
- Ricketts, K.D.; Gómez, M.I.; Fuchs, M.F.; Martinson, T.E.; Smith, R.J.; Cooper, M.L.; Moyer, M.M.; Wise, A. Mitigating the Economic Impact of Grapevine Red Blotch: Optimizing Disease Management Strategies in US Vineyards. Am. J. Enol. Vitic. 2017, 68, 127–135. [Google Scholar] [CrossRef]
- Ejdys, J.; Szpilko, D. European Green Deal—Research Directions. a Systematic Literature Review. Ekon. I Sr. 2022, 81, 8–38. [Google Scholar] [CrossRef]
- Dry, I.; Riaz, S.; Fuchs, M.; Sosnowski, M.; Thomas, M. Scion Breeding for Resistance to Biotic Stresses. Grape Genome 2019, 15, 319–347. [Google Scholar]
- Oliver, J.E.; Fuchs, M. Tolerance and Resistance to Viruses and Their Vectors in Vitis Sp.: A Virologist’s Perspective of the Literature. Am. J. Enol. Vitic. 2011, 62, 438–451. [Google Scholar] [CrossRef] [Green Version]
- Jaillon, O.; Aury, J.-M.; Noel, B.; Policriti, A.; Clepet, C.; Cassagrande, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467. [Google Scholar]
- Maestri, S.; Gambino, G.; Lopatriello, G.; Minio, A.; Perrone, I.; Cosentino, E.; Giovannone, B.; Marcolungo, L.; Alfano, M.; Rombauts, S. ‘Nebbiolo’Genome Assembly Allows Surveying the Occurrence and Functional Implications of Genomic Structural Variations in Grapevines (Vitis Vinifera L.). BMC Genom. 2022, 23, 1–15. [Google Scholar] [CrossRef]
- Calderón, L.; Mauri, N.; Muñoz, C.; Carbonell-Bejerano, P.; Bree, L.; Bergamin, D.; Sola, C.; Gomez-Talquenca, S.; Royo, C.; Ibáñez, J. Whole Genome Resequencing and Custom Genotyping Unveil Clonal Lineages in ‘Malbec’Grapevines (Vitis Vinifera L.). Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Gambino, G.; Dal Molin, A.; Boccacci, P.; Minio, A.; Chitarra, W.; Avanzato, C.G.; Tononi, P.; Perrone, I.; Raimondi, S.; Schneider, A. Whole-Genome Sequencing and SNV Genotyping of ‘Nebbiolo’(Vitis Vinifera L.) Clones. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Balderas, R.; Minio, A.; Morales-Cruz, A.; Vondras, A.M.; Cantu, D. Strategies for Sequencing and Assembling Grapevine Genomes. In The Grape Genome; Springer: Berlin/Heidelberg, Germany, 2019; pp. 77–88. [Google Scholar]
- Velasco, R.; Zharkikh, A.; Troggio, M.; Cartwright, D.A.; Cestaro, A.; Pruss, D.; Pindo, M.; FitzGerald, L.M.; Vezzulli, S.; Reid, J. A High-Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE 2007, 2, e1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vezzulli, S.; Gramaje, D.; Tello, J.; Gambino, G.; Bettinelli, P.; Pirrello, C.; Schwandner, A.; Barba, P.; Angelini, E.; Anfora, G.; et al. Genomic Designing for Biotic Stress Resistant Grapevine. In Genomic Designing for Biotic Stress Resistant Fruit Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 87–255. ISBN 978-3-030-91802-6. [Google Scholar]
- Djennane, S.; Prado, E.; Dumas, V.; Demangeat, G.; Gersch, S.; Alais, A.; Gertz, C.; Beuve, M.; Lemaire, O.; Merdinoglu, D. A Single Resistance Factor to Solve Vineyard Degeneration Due to Grapevine Fanleaf Virus. Commun. Biol. 2021, 4, 637. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fu, Y.; Jiang, D.; Li, G.; Xie, J.; Cheng, J.; Peng, Y.; Ghabrial, S.A.; Yi, X. Widespread Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes. J. Virol. 2010, 84, 11876–11887. [Google Scholar] [CrossRef] [Green Version]
- Lefeuvre, P.; Harkins, G.W.; Lett, J.-M.; Briddon, R.W.; Chase, M.W.; Moury, B.; Martin, D.P. Evolutionary Time-Scale of the Begomoviruses: Evidence from Integrated Sequences in the Nicotiana Genome. PLoS ONE 2011, 6, e19193. [Google Scholar] [CrossRef]
- Mette, M.F.; Kanno, T.; Aufsatz, W.; Jakowitsch, J.; van der Winden, J.; Matzke, M.A.; Matzke, A.J.M. Endogenous Viral Sequences and Their Potential Contribution to Heritable Virus Resistance in Plants. EMBO J. 2002, 21, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Tanne, E.; Sela, I. Occurrence of a DNA Sequence of a Non-Retro RNA Virus in a Host Plant Genome and Its Expression: Evidence for Recombination between Viral and Host RNAs. Virology 2005, 332, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsch, C.; Beuve, M.; Dolja, V.V.; Wirth, M.; Pelsy, F.; Herrbach, E.; Lemaire, O. Retention of the Virus-Derived Sequences in the Nuclear Genome of Grapevine as a Potential Pathway to Virus Resistance. Biol. Direct. 2009, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Hamby, R.; Sanchez, J.N.; Cai, Q.; Yan, Q.; Jin, H. RNAs—A New Frontier in Crop Protection. Curr. Opin. Biotechnol. 2021, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gomollon, S.; Baulcombe, D.C. Roles of RNA Silencing in Viral and Non-Viral Plant Immunity and in the Crosstalk between Disease Resistance Systems. Nat. Rev. Mol. Cell Biol. 2022, 23, 645–662. [Google Scholar] [CrossRef]
- Li, F.; Wang, A. RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol. 2019, 27, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001, 17, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A New Era for Mild Strain Cross-Protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef] [Green Version]
- Ziebell, H.; Carr, J.P. Cross-Protection: A Century of Mystery. Adv. Virus Res. 2010, 76, 211–264. [Google Scholar]
- Komar, V.; Vigne, E.; Demangeat, G.; Lemaire, O.; Fuchs, M. Cross-Protection as Control Strategy against Grapevine Fanleaf Virus in Naturally Infected Vineyards. Plant Dis. 2008, 92, 1689–1694. [Google Scholar] [CrossRef] [Green Version]
- Rosa, C.; Kuo, Y.-W.; Wuriyanghan, H.; Falk, B.W. RNA Interference Mechanisms and Applications in Plant Pathology. Annu. Rev. Phytopathol. 2018, 56, 581–610. [Google Scholar] [CrossRef]
- Le Gall, O.; Torregrosa, L.; Danglot, Y.; Candresse, T.; Bouquet, A. Agrobacterium-Mediated Genetic Transformation of Grapevine Somatic Embryos and Regeneration of Transgenic Plants Expressing the Coat Protein of Grapevine Chrome Mosaic Nepovirus (GCMV). Plant Sci. 1994, 102, 161–170. [Google Scholar] [CrossRef]
- Krastanova, S.; Perrin, M.; Barbier, P.; Demangeat, G.; Cornuet, P.; Bardonnet, N.; Otten, L.; Pinck, L.; Walter, B. Transformation of Grapevine Rootstocks with the Coat Protein Gene of Grapevine Fanleaf Nepovirus. Plant Cell Rep. 1995, 14, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Gribaudo, I.; Leopold, S.; Schartl, A.; Laimer, M. Molecular Characterization of Grapevine Plants Transformed with GFLV Resistance Genes: I. Plant Cell Rep. 2005, 24, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Maghuly, F.; Leopold, S.; da Câmara Machado, A.; Borroto Fernandez, E.; Ali Khan, M.; Gambino, G.; Gribaudo, I.; Schartl, A.; Laimer, M. Molecular Characterization of Grapevine Plants Transformed with GFLV Resistance Genes: II. Plant Cell Rep. 2006, 25, 546–553. [Google Scholar] [CrossRef]
- Gambino, G.; Perrone, I.; Carra, A.; Chitarra, W.; Boccacci, P.; Torello Marinoni, D.; Barberis, M.; Maghuly, F.; Laimer, M.; Gribaudo, I. Transgene Silencing in Grapevines Transformed with GFLV Resistance Genes: Analysis of Variable Expression of Transgene, SiRNAs Production and Cytosine Methylation. Transgenic Res. 2010, 19, 17–27. [Google Scholar] [CrossRef]
- Digiaro, M.; Elbeaino, T.; Martelli, G. Grapevine Fanleaf Virus and Other Old World Nepoviruses. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 47–82. [Google Scholar]
- Fuchs, M.; Lemaire, O. Novel Approaches for Viral Disease Management. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 599–621. [Google Scholar]
- Dal Bosco, D.; Sinski, I.; Ritschel, P.S.; Camargo, U.A.; Fajardo, T.V.M.; Harakava, R.; Quecini, V. Expression of Disease Resistance in Genetically Modified Grapevines Correlates with the Contents of Viral Sequences in the T-DNA and Global Genome Methylation. Transgenic Res. 2018, 27, 379–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, P. Virus Resistance and Gene Silencing: Killing the Messenger. Trends Plant Sci. 1999, 4, 452–457. [Google Scholar] [CrossRef]
- Wang, M.; Jin, H. Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trends Microbiol. 2017, 25, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Tenllado, F. RNA Interference as a New Biotechnological Tool for the Control of Virus Diseases in Plants. Virus Res. 2004, 102, 85–96. [Google Scholar] [CrossRef]
- Dalakouras, A.; Wassenegger, M.; Dadami, E.; Ganopoulos, I.; Pappas, M.L.; Papadopoulou, K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiol. 2020, 182, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Haile, Z.M.; Gebremichael, D.E.; Capriotti, L.; Molesini, B.; Negrini, F.; Collina, M.; Sabbadini, S.; Mezzetti, B.; Baraldi, E. Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara Viticola on Grapevine. Front. Plant Sci. 2021, 12, 667539. [Google Scholar] [CrossRef] [PubMed]
- Marcianò, D.; Ricciardi, V.; Marone Fassolo, E.; Passera, A.; Bianco, P.A.; Failla, O.; Casati, P.; Maddalena, G.; De Lorenzis, G.; Toffolatti, S.L. RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. Front. Plant Sci. 2021, 12, 667319. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Ryu, C.-M. Plant Perceptions of Extracellular DNA and RNA. Mol. Plant 2016, 9, 956–958. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-S.; Gu, K.-X.; Duan, X.-X.; Xiao, X.-M.; Hou, Y.-P.; Duan, Y.-B.; Wang, J.-X.; Yu, N.; Zhou, M.-G. Secondary Amplification of SiRNA Machinery Limits the Application of Spray-Induced Gene Silencing: Secondary SiRNA Amplification Limits SIGS. Mol. Plant Pathol. 2018, 19, 2543–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubrovina, A.S.; Kiselev, K.V. Exogenous RNAs for Gene Regulation and Plant Resistance. IJMS 2019, 20, 2282. [Google Scholar] [CrossRef] [Green Version]
- Christiaens, O.; Petek, M.; Smagghe, G.; Taning, C.N.T. The Use of Nanocarriers to Improve the Efficiency of RNAi-Based Pesticides in Agriculture. In Nanopesticides; Springer: Berlin/Heidelberg, Germany, 2020; pp. 49–68. [Google Scholar]
- Das, P.R.; Sherif, S.M. Application of Exogenous DsRNAs-Induced RNAi in Agriculture: Challenges and Triumphs. Front. Plant Sci. 2020, 11, 946. [Google Scholar] [CrossRef]
- Nuzzo, F.; Gambino, G.; Perrone, I. Unlocking Grapevine in Vitro Regeneration: Issues and Perspectives for Genetic Improvement and Functional Genomic Studies. Plant Physiol. Biochem. 2022, 193, 99–109. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Malnoy, M.; Lecourieux, D.; Deluc, L.; Ouaked- Lecourieux, F.; Thomas, M.R.; Torregrosa, L.J.-M. The State-of-the-Art of Grapevine Biotechnology and New Breeding Technologies (NBTS). OENO One 2019, 53, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Horvath, P.; Barrangou, R. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-Homologous DNA End Joining and Alternative Pathways to Double-Strand Break Repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Scully, R.; Panday, A.; Elango, R.; Willis, N.A. DNA Double-Strand Break Repair-Pathway Choice in Somatic Mammalian Cells. Nat. Rev. Mol. Cell Biol. 2019, 20, 698–714. [Google Scholar] [CrossRef]
- Tsai, S.Q.; Joung, J.K. Defining and Improving the Genome-Wide Specificities of CRISPR–Cas9 Nucleases. Nat. Rev. Genet. 2016, 17, 300–312. [Google Scholar] [CrossRef]
- Jiao, B.; Hao, X.; Liu, Z.; Liu, M.; Wang, J.; Liu, L.; Liu, N.; Song, R.; Zhang, J.; Fang, Y.; et al. Engineering CRISPR Immune Systems Conferring GLRaV-3 Resistance in Grapevine. Hortic. Res. 2022, 9, uhab023. [Google Scholar] [CrossRef]
- Zaidi, S.S.-A.; Mukhtar, M.S.; Mansoor, S. Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends Biotechnol. 2018, 36, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Sanfaçon, H. Plant Translation Factors and Virus Resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastet, A.; Lederer, B.; Giovinazzo, N.; Arnoux, X.; German-Retana, S.; Reinbold, C.; Brault, V.; Garcia, D.; Djennane, S.; Gersch, S.; et al. Trans-Species Synthetic Gene Design Allows Resistance Pyramiding and Broad-Spectrum Engineering of Virus Resistance in Plants. Plant Biotechnol. J. 2018, 16, 1569–1581. [Google Scholar] [CrossRef]
- Hashimoto, M.; Neriya, Y.; Yamaji, Y.; Namba, S. Recessive Resistance to Plant Viruses: Potential Resistance Genes beyond Translation Initiation Factors. Front. Microbiol. 2016, 7, 1695. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, S.; Kumar, R.; Kumar, V.; Won, S.Y.; Shukla, P. Engineering Disease Resistant Plants through CRISPR-Cas9 Technology. GM Crops Food 2021, 12, 125–144. [Google Scholar] [CrossRef] [PubMed]
- Lucioli, A.; Tavazza, R.; Baima, S.; Fatyol, K.; Burgyan, J.; Tavazza, M. CRISPR-Cas9 Targeting of the EIF4E1 Gene Extends the Potato Virus Y Resistance Spectrum of the Solanum Tuberosum L. Cv. Desirée. Front. Microbiol. 2022, 13, 873930. [Google Scholar] [CrossRef] [PubMed]
- Callot, C.; Gallois, J.-L. Pyramiding Resistances Based on Translation Initiation Factors in Arabidopsis Is Impaired by Male Gametophyte Lethality. Plant Signal. Behav. 2014, 9, e27940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tu, M.; Wang, Y.; Yin, W.; Zhang, Y.; Wu, H.; Gu, Y.; Li, Z.; Xi, Z.; Wang, X. Whole-Genome Sequencing Reveals Rare off-Target Mutations in CRISPR/Cas9-Edited Grapevine. Hortic. Res. 2021, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Ren, C.; Zhong, G.-Y.; Yang, L.; Li, S.; Liang, Z. Identification of Genomic Sites for CRISPR/Cas9-Based Genome Editing in the Vitis Vinifera Genome. BMC Plant Biol. 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Stürchler, A.; Anjanappa, R.B.; Zaidi, S.S.-A.; Hirsch-Hoffmann, M.; Gruissem, W.; Vanderschuren, H. Linking CRISPR-Cas9 Interference in Cassava to the Evolution of Editing-Resistant Geminiviruses. Genome Biol. 2019, 20, 80. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Ali, S.; Tashkandi, M.; Zaidi, S.S.-A.; Mahfouz, M.M. CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion. Sci. Rep. 2016, 6, 26912. [Google Scholar] [CrossRef] [Green Version]
- Dawson, W.O. A Personal History of Virus-Based Vector Construction. In Plant Viral Vectors, Current Topics in Microbiology and Immunology; Palmer, K., Gleba, Y., Eds.; Springer: Berlin, Heidelberg, 2014; pp. 1–18. ISBN 978-3-642-40829-8. [Google Scholar]
- Marillonnet, S.; Giritch, A.; Gils, M.; Kandzia, R.; Klimyuk, V.; Gleba, Y. In Planta Engineering of Viral RNA Replicons: Efficient Assembly by Recombination of DNA Modules Delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 2004, 101, 6852–6857. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-P.; Peremyslov, V.V.; Medina, V.; Dolja, V.V. Tandem Leader Proteases of Grapevine Leafroll-Associated Virus-2: Host-Specific Functions in the Infection Cycle. Virology 2009, 383, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Donson, J.; Kearney, C.M.; Hilf, M.E.; Dawson, W.O. Systemic Expression of a Bacterial Gene by a Tobacco Mosaic Virus-Based Vector. Proc. Natl. Acad. Sci. USA 1991, 88, 7204–7208. [Google Scholar] [CrossRef] [Green Version]
- Dolja, V.V.; Meng, B. Biotechnology Applications of Grapevine Viruses. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 643–658. ISBN 978-3-319-57704-3. [Google Scholar]
- Kurth, E.G.; Peremyslov, V.V.; Prokhnevsky, A.I.; Kasschau, K.D.; Miller, M.; Carrington, J.C.; Dolja, V.V. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine. J. Virol. 2012, 86, 6002–6009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muruganantham, M.; Moskovitz, Y.; Haviv, S.; Horesh, T.; Fenigstein, A.; du Preez, J.; Stephan, D.; Burger, J.T.; Mawassi, M. Grapevine Virus A-Mediated Gene Silencing in Nicotiana Benthamiana and Vitis Vinifera. J. Virol. Methods 2009, 155, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Haviv, S.; Galiakparov, N.; Goszczynski, D.E.; Batuman, O.; Czosnek, H.; Mawassi, M. Engineering the Genome of Grapevine Virus A into a Vector for Expression of Proteins in Herbaceous Plants. J. Virol. Methods 2006, 132, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.-M.; Anand, A.; Kang, L.; Mysore, K.S. Agrodrench: A Novel and Effective Agroinoculation Method for Virus-Induced Gene Silencing in Roots and Diverse Solanaceous Species. Plant J. 2004, 40, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Venkataraman, S.; Li, C.; Wang, W.; Dayan-Glick, C.; Mawassi, M. Construction and Biological Activities of the First Infectious CDNA Clones of the Genus Foveavirus. Virology 2013, 435, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Galitielli, D. Grapevine Algerian Latent Virus, a Newly Recognized Tombusvirus. Phytoparasitica 1989, 17, 61–62. [Google Scholar]
- Fujinaga, M.; Ogiso, H.; Wakabayashi, H.; Morikawa, T.; Natsuaki, T. First Report of a Grapevine Algerian Latent Virus Disease on Statice Plants (Limonium Sinuatum) in Japan. J. Gen. Plant Pathol. 2009, 75, 157–159. [Google Scholar] [CrossRef]
- Ohki, T.; Uematsu, S.; Nakayama, Y.; Lesemann, D.-E.; Honda, Y.; Tsuda, S.; Fujisawa, I. Characterization of Grapevine Algerian Latent Virus Isolated from Nipplefruit (Solanum Mammosum) in Japan. J. Gen. Plant Pathol. 2006, 72, 119–122. [Google Scholar] [CrossRef]
- Mehle, N.; Ravnikar, M. Plant Viruses in Aqueous Environment—Survival, Water Mediated Transmission and Detection. Water Res. 2012, 46, 4902–4917. [Google Scholar] [CrossRef]
- Lovato, A.; Faoro, F.; Gambino, G.; Maffi, D.; Bracale, M.; Polverari, A.; Santi, L. Construction of a Synthetic Infectious CDNA Clone of Grapevine Algerian Latent Virus (GALV-Nf) and Its Biological Activity in Nicotiana Benthamianaand Grapevine Plants. Virol. J. 2014, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Choi, H.; Kim, S.; Cho, W.K.; Kim, K.-H. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus. Plant Pathol. J. 2016, 32, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, E.E.; Chamness, J.C.; Voytas, D.F. Viruses as Vectors for the Delivery of Gene Editing Reagents Burleigh Dodds Series In Agricultural Science Viruses as Vectors for the Delivery of Gene-Editing Reagents; Burleigh Dodds Science Publishing: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Fiallo-Olivé, E.; Lett, J.-M.; Martin, D.P.; Roumagnac, P.; Varsani, A.; Zerbini, F.M.; Navas-Castillo, J. ICTV Virus Taxonomy Profile: Geminiviridae 2021: This Article Is Part of the ICTV Virus Taxonomy Profiles Collection. J. Gen. Virol. 2021, 102. [Google Scholar] [CrossRef] [PubMed]
- Baltes, N.J.; Gil-Humanes, J.; Cermak, T.; Atkins, P.A.; Voytas, D.F. DNA Replicons for Plant Genome Engineering. Plant Cell 2014, 26, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Xu, L.; Sun, H.; Yue, Q.; Zhai, H.; Yao, Y. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal. Front. Plant Sci. 2017, 8, 1811. [Google Scholar] [CrossRef] [PubMed]
- Olivares, F.; Loyola, R.; Olmedo, B.; de los Miccono, M.Á.; Aguirre, C.; Vergara, R.; Riquelme, D.; Madrid, G.; Plantat, P.; Mora, R.; et al. CRISPR/Cas9 Targeted Editing of Genes Associated with Fungal Susceptibility in Vitis Vinifera L. Cv. Thompson Seedless Using Geminivirus-Derived Replicons. Front. Plant Sci. 2021, 12, 791030. [Google Scholar] [CrossRef]
- Carrillo-Tripp, J.; Shimada-Beltrán, H.; Rivera-Bustamante, R. Use of Geminiviral Vectors for Functional Genomics. Curr. Opin. Plant Biol. 2006, 9, 209–215. [Google Scholar] [CrossRef]
- Jones, R.A.C. Plant Virus Emergence and Evolution: Origins, New Encounter Scenarios, Factors Driving Emergence, Effects of Changing World Conditions, and Prospects for Control. Virus Res. 2009, 141, 113–130. [Google Scholar] [CrossRef]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging Infectious Diseases of Plants: Pathogen Pollution, Climate Change and Agrotechnology Drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Hasiów-Jaroszewska, B.; Boezen, D.; Zwart, M.P. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021, 13, 1939. [Google Scholar] [CrossRef]
- Martinelli, L.; Candioli, E.; Costa, D.; Minafra, A. Stable Insertion and Expression of the Movement Protein Gene of Grapevine Virus A (GVA) in Grape (Vitis Rupestris S.). Vitis 2002, 41, 189–193. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarquini, G.; Dall’Ara, M.; Ermacora, P.; Ratti, C. Traditional Approaches and Emerging Biotechnologies in Grapevine Virology. Viruses 2023, 15, 826. https://doi.org/10.3390/v15040826
Tarquini G, Dall’Ara M, Ermacora P, Ratti C. Traditional Approaches and Emerging Biotechnologies in Grapevine Virology. Viruses. 2023; 15(4):826. https://doi.org/10.3390/v15040826
Chicago/Turabian StyleTarquini, Giulia, Mattia Dall’Ara, Paolo Ermacora, and Claudio Ratti. 2023. "Traditional Approaches and Emerging Biotechnologies in Grapevine Virology" Viruses 15, no. 4: 826. https://doi.org/10.3390/v15040826
APA StyleTarquini, G., Dall’Ara, M., Ermacora, P., & Ratti, C. (2023). Traditional Approaches and Emerging Biotechnologies in Grapevine Virology. Viruses, 15(4), 826. https://doi.org/10.3390/v15040826