Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequences Data and 3D Structures
2.2. In Silico Prediction of Linear B-Cell Epitopes
2.3. Prediction of Antigenicity
2.4. Peptide Synthesis
2.5. Patients and Samples
2.6. Antibody Assays
2.7. Conservancy Analysis of the Selected Epitopes across SARS-CoV-2 Variants and Other Human Coronaviruses
2.8. In Silico Conservancy Analysis of Amino Acid Residues Recognized by Antibodies
2.9. Statistical Analysis
3. Results
3.1. Prediction of Serological Targets: Linear B-Cell Epitopes in N Protein
3.2. Profile of Convalescent COVID-19 Donors
3.3. Evaluation of Natural Immunogenicity of Predicted B-Cell Epitopes
3.4. Analysis of Epitope Conservation across SARS-CoV-2 Variants and Lineages
3.5. Analysis of Epitope Conservation across Other Human Coronaviruses
3.6. Evaluation of Antibody Cross-Reaction against SARS-CoV-2 Variants and Other Coronaviruses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- W.H.O. Coronavirus Disease 2019 (COVID-19)-Situation Report 51, W.H.O: Geneva, Switzerland, 2020.
- W.H.O. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 20 February 2023).
- Kumar, S.; Kumari, K.; Azad, G.K. Immunoinformatics Study of SARS-CoV-2 Nucleocapsid Phosphoprotein Identifies Promising Epitopes with Mutational Implications. Mosc. Univ. Biol. Sci. Bull. 2022, 77, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Pagani, I.; Ghezzi, S.; Alberti, S.; Poli, G.; Vicenzi, E. Origin and evolution of SARS-CoV-2. Eur. Phys. J. Plus 2023, 138, 157. [Google Scholar] [CrossRef]
- CDC. What Is Genomic Surveillance? Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/genomic-surveillance.html (accessed on 24 February 2023).
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef]
- NCBI. SARS-CoV-2 Variants Overview. Available online: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/sars-cov-2 (accessed on 2 February 2023).
- Liu, Y.; Lam, T.T.Y.; Lai, F.Y.L.; Krajden, M.; Drews, S.J.; Hatchette, T.F.; Fraaij, P.L.A.; van Kampen, J.J.A.; Badarch, D.; Nymadawa, P.; et al. Comparative seasonalities of influenza A, B and ‘common cold’ coronaviruses-setting the scene for SARS-CoV-2 infections and possible unexpected host immune interactions. J. Infect. 2020, 81, e62–e64. [Google Scholar] [CrossRef] [PubMed]
- Miyara, M.; Saichi, M.; Sterlin, D.; Anna, F.; Marot, S.; Mathian, A.; Atif, M.; Quentric, P.; Mohr, A.; Claer, L.; et al. Pre-COVID-19 Immunity to Common Cold Human Coronaviruses Induces a Recall-Type IgG Response to SARS-CoV-2 Antigens Without Cross-Neutralisation. Front. Immunol. 2022, 13, 790334. [Google Scholar] [CrossRef]
- Petrosillo, N. SARS-CoV-2, “common cold” coronaviruses’ cross-reactivity and “herd immunity”: The razor of Ockham (1285-1347)? Infect. Dis. Rep. 2020, 12, 8647. [Google Scholar] [CrossRef]
- Schmidt, K.G.; Nganou-Makamdop, K.; Tenbusch, M.; El Kenz, B.; Maier, C.; Lapuente, D.; Uberla, K.; Spriewald, B.; Bergmann, S.; Harrer, E.G.; et al. SARS-CoV-2-Seronegative Subjects Target CTL Epitopes in the SARS-CoV-2 Nucleoprotein Cross-Reactive to Common Cold Coronaviruses. Front. Immunol. 2021, 12, 627568. [Google Scholar] [CrossRef] [PubMed]
- Stocks, B.B.; Thibeault, M.P.; L’Abbe, D.; Stuible, M.; Durocher, Y.; Melanson, J.E. Production and Characterization of a SARS-CoV-2 Nucleocapsid Protein Reference Material. ACS Meas. Sci. Au 2022, 2, 620–628. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Martini, F.; Maritati, M.; Caselli, E.; Gallenga, C.E.; Guarino, M.; De Giorgio, R.; Mazziotta, C.; Tramarin, M.L.; Badiale, G.; et al. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022, 10, 1193. [Google Scholar] [CrossRef]
- Solanki, R.; Shankar, A.; Modi, U.; Patel, S. New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. Mater. Today. Chem. 2023, 29, 101478. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, J.; Liu, X.E.; Wang, L.; Li, T.; Zhou, Y.H.; Zhuang, H. Detection of the nucleocapsid protein of severe acute respiratory syndrome coronavirus in serum: Comparison with results of other viral markers. J. Virol. Methods 2005, 130, 45–50. [Google Scholar] [CrossRef]
- Rayati Damavandi, A.; Dowran, R.; Al Sharif, S.; Kashanchi, F.; Jafari, R. Molecular variants of SARS-CoV-2: Antigenic properties and current vaccine efficacy. Med. Microbiol. Immunol. 2022, 211, 79–103. [Google Scholar] [CrossRef]
- Mohammadie, Z.E.; Akhlaghi, S.; Samaeinasab, S.; Shaterzadeh-Bojd, S.; Jamialahmadi, T.; Sahebkar, A. Clinical performance of rapid antigen tests in comparison to RT-PCR for SARS-COV-2 diagnosis in Omicron variant: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2428. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004, 32, W526–W531. [Google Scholar] [CrossRef] [Green Version]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, J.E.; Lund, O.; Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 1985, 55, 836–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salod, Z.; Mahomed, O. Protocol for a scoping review of potential vaccine candidates predicted by VaxiJen for different viral pathogens between 2017-2021. Syst. Rev. 2022, 11, 284. [Google Scholar] [CrossRef]
- Salod, Z.; Mahomed, O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines 2022, 10, 1785. [Google Scholar] [CrossRef] [PubMed]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Luu, T.; Pham, S.; Deshpande, S. Automated multiple peptide synthesis: Improvements in obtaining quality peptides. Int. J. Pept. Protein Res. 1996, 47, 91–97. [Google Scholar] [CrossRef]
- Gausepohl, H.; Boulin, C.; Kraft, M.; Frank, R.W. Automated multiple peptide synthesis. Pept. Res. 1992, 5, 315–320. [Google Scholar]
- Longley, R.J.; Reyes-Sandoval, A.; Montoya-Diaz, E.; Dunachie, S.; Kumpitak, C.; Nguitragool, W.; Mueller, I.; Sattabongkot, J. Acquisition and Longevity of Antibodies to Plasmodium vivax Preerythrocytic Antigens in Western Thailand. Clin. Vaccine Immunol. 2016, 23, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-da-Silva, R.N.; Soares, I.F.; Lopez-Camacho, C.; Martins da Silva, J.H.; Perce-da-Silva, D.S.; Teva, A.; Ramos Franco, A.M.; Pinheiro, F.G.; Chaves, L.B.; Pratt-Riccio, L.R.; et al. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front. Immunol. 2017, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-da-Silva, R.N.; Martins da Silva, J.H.; Singh, B.; Jiang, J.; Meyer, E.V.; Santos, F.; Banic, D.M.; Moreno, A.; Galinski, M.R.; Oliveira-Ferreira, J.; et al. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9. PLoS ONE 2016, 11, e0146951. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Gangavarapu, K.; Latif, A.A.; Mullen, J.; Alkuzweny, M.; Hufbauer, E.; Tsueng, G.; Haag, E.; Zeller, M.; Aceves, C.; et al. Outbreak.info genomic reports: Scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat. Methods 2023. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data-from vision to reality. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2017, 22, 30494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S. The WHO’s chief scientist on a year of loss and learning. Nature 2020, 588, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Shan, D.; Johnson, J.M.; Fernandes, S.C.; Suib, H.; Hwang, S.; Wuelfing, D.; Mendes, M.; Holdridge, M.; Burke, E.M.; Beauregard, K.; et al. N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat. Commun. 2021, 12, 1931. [Google Scholar] [CrossRef]
- Chura-Chambi, R.M.; Prieto-da-Silva, A.R.B.; Di Lela, M.M.; Oliveira, J.E.; Abreu, P.E.A.; Meireles, L.R.; de Andrade Junior, H.F.; Morganti, L. High level SARS-CoV-2 nucleocapsid refolding using mild condition for inclusion bodies solubilization: Application of high pressure at pH 9.0. PLoS ONE 2022, 17, e0262591. [Google Scholar] [CrossRef] [PubMed]
- Osterman, A.; Badell, I.; Basara, E.; Stern, M.; Kriesel, F.; Eletreby, M.; Oztan, G.N.; Huber, M.; Autenrieth, H.; Knabe, R.; et al. Impaired detection of omicron by SARS-CoV-2 rapid antigen tests. Med. Microbiol. Immunol. 2022, 211, 105–117. [Google Scholar] [CrossRef]
- Bayart, J.L.; Degosserie, J.; Favresse, J.; Gillot, C.; Didembourg, M.; Djokoto, H.P.; Verbelen, V.; Roussel, G.; Maschietto, C.; Mullier, F.; et al. Analytical Sensitivity of Six SARS-CoV-2 Rapid Antigen Tests for Omicron versus Delta Variant. Viruses 2022, 14, 654. [Google Scholar] [CrossRef]
- Cocherie, T.; Bastide, M.; Sakhi, S.; Zafilaza, K.; Flandre, P.; Leducq, V.; Jary, A.; Burrel, S.; Louet, M.; Calvez, V.; et al. Decreased Sensitivity of Rapid Antigen Test Is Associated with a Lower Viral Load of Omicron than Delta SARS-CoV-2 Variant. Microbiol. Spectr. 2022, 10, e0192222. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Baruah, V.; Bose, S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol. 2020, 92, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020, 248, 117477. [Google Scholar] [CrossRef]
- Lucchese, G. Epitopes for a 2019-nCoV vaccine. Cell. Mol. Immunol. 2020, 17, 539–540. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Sharma, A.R.; Patra, P.; Ghosh, P.; Sharma, G.; Patra, B.C.; Lee, S.S.; Chakraborty, C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J. Med. Virol. 2020, 92, 618–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, R.R.; Agrelli, A.; Santos-Silva, C.A.; Silva, N.; Assuncao, B.R.; Brandao, L.; Benko-Iseppon, A.M.; Crovella, S. Immunoinformatic approach to assess SARS-CoV-2 protein S epitopes recognised by the most frequent MHC-I alleles in the Brazilian population. J. Clin. Pathol. 2021, 74, 528–532. [Google Scholar] [CrossRef]
- Oliveira, S.C.; de Magalhaes, M.T.Q.; Homan, E.J. Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. Front. Immunol. 2020, 11, 587615. [Google Scholar] [CrossRef]
- de Oliveira, R.C.; Fernandes, J.; de Sampaio Lemos, E.R.; de Paiva Conte, F.; Rodrigues-da-Silva, R.N. The Serological Cross-Detection of Bat-Borne Hantaviruses: A Valid Strategy or Taking Chances? Viruses 2021, 13, 1188. [Google Scholar] [CrossRef]
- Conte, F.P.; Tinoco, B.C.; Santos Chaves, T.; Oliveira, R.C.; Figueira Mansur, J.; Mohana-Borges, R.; Lemos, E.R.S.; Neves, P.; Rodrigues-da-Silva, R.N. Identification and validation of specific B-cell epitopes of hantaviruses associated to hemorrhagic fever and renal syndrome. PLoS Negl. Trop. Dis. 2019, 13, e0007915. [Google Scholar] [CrossRef] [Green Version]
- Ataides, L.S.; de Moraes Maia, F.; Conte, F.P.; Isaac, L.; Barbosa, A.S.; da Costa Lima-Junior, J.; Avelar, K.E.S.; Rodrigues-da-Silva, R.N. Sph2((176-191)) and Sph2((446-459)): Identification of B-Cell Linear Epitopes in Sphingomyelinase 2 (Sph2), Naturally Recognized by Patients Infected by Pathogenic Leptospires. Vaccines 2023, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Fontes, S.D.S.; Maia, F.M.; Ataides, L.S.; Conte, F.P.; Lima-Junior, J.D.C.; Rozental, T.; da Silva Assis, M.R.; Junior, A.A.P.; Fernandes, J.; de Lemos, E.R.S.; et al. Identification of Immunogenic Linear B-Cell Epitopes in C. burnetii Outer Membrane Proteins Using Immunoinformatics Approaches Reveals Potential Targets of Persistent Infections. Pathogens 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Baptista, B.O.; Souza, A.B.L.; Oliveira, L.S.; Souza, H.; Barros, J.P.; Queiroz, L.T.; Souza, R.M.; Amoah, L.E.; Singh, S.K.; Theisen, M.; et al. B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines 2023, 11, 446. [Google Scholar] [CrossRef]
- Campos, M.P.; Figueiredo, F.B.; Morgado, F.N.; Renzetti, A.; de Souza, S.M.M.; Pereira, S.A.; Rodrigues-Da-Silva, R.N.; Lima-Junior, J.D.C.; De Luca, P.M. Leishmania infantum Virulence Factor A2 Protein: Linear B-Cell Epitope Mapping and Identification of Three Main Linear B-Cell Epitopes in Vaccinated and Naturally Infected Dogs. Front. Immunol. 2018, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 2020, 22, 188–194. [Google Scholar] [CrossRef]
- Rakib, A.; Sami, S.A.; Islam, M.A.; Ahmed, S.; Faiz, F.B.; Khanam, B.H.; Marma, K.K.S.; Rahman, M.; Uddin, M.M.N.; Nainu, F.; et al. Epitope-Based Immunoinformatics Approach on Nucleocapsid Protein of Severe Acute Respiratory Syndrome-Coronavirus-2. Molecules 2020, 25, 5088. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Zhang, X.; Hou, X.; Liang, T.; Wang, D.; Teng, F.; Dai, J.; Duan, H.; Guo, S.; et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent. Sci. 2020, 6, 2238–2249. [Google Scholar] [CrossRef] [PubMed]
- Leuzinger, K.; Osthoff, M.; Drager, S.; Pargger, H.; Siegemund, M.; Bassetti, S.; Bingisser, R.; Nickel, C.H.; Tschudin-Sutter, S.; Khanna, N.; et al. Comparing Immunoassays for SARS-CoV-2 Antibody Detection in Patients with and without Laboratory-Confirmed SARS-CoV-2 Infection. J. Clin. Microbiol. 2021, 59, e0138121. [Google Scholar] [CrossRef]
- Li, D.; Li, J. Immunologic Testing for SARS-CoV-2 Infection from the Antigen Perspective. J. Clin. Microbiol. 2021, 59, e02160-20. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Guo, W.; Min, Y.; Zhong, K.; Zhang, X.; Xing, X.; Tong, Y.; Pan, Y.; Hong, W.; Cai, W.; et al. Patient-derived monoclonal antibodies to SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal domains cross-react with their counterparts of SARS-CoV, but not other human betacoronaviruses. Front. Immunol. 2023, 14, 1093709. [Google Scholar] [CrossRef]
- Maghsood, F.; Ghorbani, A.; Yadegari, H.; Golsaz-Shirazi, F.; Amiri, M.M.; Shokri, F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev. Med. Virol. 2023, e2431. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Jeremiah, S.S.; Miyakawa, K.; Saji, R.; Nishii, M.; Takeuchi, I.; Ryo, A. Whole Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus 2 May Cause False-Positive Results in Serological Assays. Clin. Infect. Dis. 2021, 72, 1291–1292. [Google Scholar] [CrossRef]
- Yu, F.; Le, M.Q.; Inoue, S.; Thai, H.T.; Hasebe, F.; Del Carmen Parquet, M.; Morita, K. Evaluation of inapparent nosocomial severe acute respiratory syndrome coronavirus infection in Vietnam by use of highly specific recombinant truncated nucleocapsid protein-based enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 2005, 12, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Okba, N.M.A.; Muller, M.A.; Li, W.; Wang, C.; GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020, 26, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Lambert-Niclot, S.; Cuffel, A.; Le Pape, S.; Vauloup-Fellous, C.; Morand-Joubert, L.; Roque-Afonso, A.M.; Le Goff, J.; Delaugerre, C. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J. Clin. Microbiol. 2020, 58, e00977-20. [Google Scholar] [CrossRef]
- Scohy, A.; Anantharajah, A.; Bodeus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2020, 129, 104455. [Google Scholar] [CrossRef] [PubMed]
- Kruttgen, A.; Cornelissen, C.G.; Dreher, M.; Hornef, M.W.; Imohl, M.; Kleines, M. Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. J. Virol. Methods 2021, 288, 114024. [Google Scholar] [CrossRef] [PubMed]
- Blairon, L.; Wilmet, A.; Beukinga, I.; Tre-Hardy, M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: Experiences of a general hospital. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2020, 129, 104472. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294 e1289. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Addetia, A.; Hannon, W.W.; Choudhary, M.C.; Dingens, A.S.; Li, J.Z.; Bloom, J.D. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 2021, 371, 850–854. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2372–2383. [Google Scholar] [CrossRef]
Epitope | Length | Sequence | Bepi Pred | ABC Pred | ESA | Ellipro | Vaxijen |
---|---|---|---|---|---|---|---|
N(4–24) | 21 | NGPQNQRNAPRITFGGPSDST | X | - | X | X | 0.3231 |
N(34–48) | 15 | GARSKQRRPQGLPNN | X | X | X | X | 0.5955 |
N(89–104) | 16 | RATRRIRGGDGKMKDL | X | X | X | X | 0.8755 |
N(115–127) | 13 | TGPEAGLPYGANK | X | - | - | X | 0.0561 |
N(185–197) | 13 | RSSSRSRNSSRNS | X | - | X | - | 10.062 |
N(254–264) | 11 | ASKKPRQKRTA | X | - | X | - | 0.2297 |
N(277–287) | 11 | RGPEQTQGNFG | X | - | X | X | 0.9248 |
N(323–331) | 9 | EVTPSGTWL | X | - | - | X | 0.4548 |
N(363–376) | 14 | FPPTEPKKDKKKKA | X | X | X | - | 0.4801 |
N(378–390) | 13 | ETQALPQRQKKQQ | X | X | X | X | 0.8924 |
N(405–417) | 13 | KQLQQSMSSADST | - | X | - | X | 0.4364 |
Characteristics | COVID-19 Convalescent Donors (n = 20) | Healthy Unexposed Donors (n = 20) |
---|---|---|
Age (years)—median (IQR) | 35.5 (30.75–40.25) | 31 (20–38) |
Gender | % (n) | |
Male | 40% (8) | 35% (7) |
Female | 60% (12) | 65% (13) |
Diagnostic | % (n) | |
RT-PCR | 60% (12) | N/A |
Serological test | 30% (6) | N/A |
RT-PCR and serological | 10% (2) | N/A |
Clinical aspects | median (IQR) or % (n) | |
Symptomatic period (days) | 12.5 (8–16) | N/A |
Mild illness | 80% (16) | N/A |
Asymptomatic case | 10% (2) | N/A |
Hospitalization case | 10% (2) | N/A |
Symptoms | % (n) | |
Fatigue | 70% (14) | N/A |
Fever | 60% (12) | N/A |
Headache | 60% (12) | N/A |
Cough | 55% (11) | N/A |
Diarrhea | 40% (8) | N/A |
Pharyngalgia | 30% (6) | N/A |
Coryza | 30% (6) | N/A |
Nausea | 30% (6) | N/A |
Dyspnea | 25% (5) | N/A |
Anosmia | 10% (2) | N/A |
Myalgia | 5% (1) | N/A |
Ageusia | 5% (1) | N/A |
SARS | MERS | 229E | NL63 | OC43 | HKU1 | |
---|---|---|---|---|---|---|
Epitope\Uniprot ID | P59595 | K9N4V7 | P15130 | Q6Q1R8 | P33469 | Q5MQC6 |
N(34–48) | 93.33% | 33.33% | 33.33% | 26.67% | 33.33% | 33.33% |
N(89–104) | 87.50% | 31.25% | 37.50% | 31.25% | 37.50% | 31.25% |
N(185–197) | 84.62% | 76.92% | 46.15% | 61.54% | 61.54% | 53.85% |
N(277–287) | 100% | 72.73% | 45.45% | 36.36% | 45.45% | 54.55% |
N(378–390) | 76.92% | 38.46% | 23.08% | 30.77% | 30.77% | 30.77% |
Organism | Antibody (PDB ID) | Residues Recognized by Antibodies | Aligned Residues in Other Human Coronaviruses | |||||
---|---|---|---|---|---|---|---|---|
SARS | MERS | 229E | NL63 | OC43 | HKU1 | |||
Lama glama | 7N0R | N75 | N76 | N66 | N47 | G45 | A89 | A88 |
T76 | T77 | A67 | K46 | K46 | P90 | F89 | ||
N77 | N78 | N68 | K47 | G47 | G91 | G90 | ||
D82 | D83 | Q73 | 53K | E51 | E96 | E95 | ||
N153 | N154 | N142 | E123 | K121 | S168 | T167 | ||
7R98 | D81 | D82 | A72 | N52 | D50 | T95 | S94 | |
G137 | G138 | G127 | G107 | G105 | Q152 | Q151 | ||
A138 | A139 | A128 | A108 | A106 | A153 | A152 | ||
N140 | N141 | D130 | T110 | T108 | V155 | T154 | ||
Homo sapiens | 7CR5 | Q70 | Q71 | Q61 | N42 | N40 | Q84 | Q83 |
Q160 | Q161 | Q149 | N160 | S128 | R175 | R174 | ||
L161 | L162 | F150 | Q131 | I129 | F176 | F175 | ||
P162 | P163 | A151 | K132 | A130 | P177 | P176 | ||
T166 | T167 | K155 | G136 | E134 | V181 | I180 | ||
K169 | K170 | K158 | V139 | V137 | Q184 | Q183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues-da-Silva, R.N.; Conte, F.P.; da Silva, G.; Carneiro-Alencar, A.L.; Gomes, P.R.; Kuriyama, S.N.; Neto, A.A.F.; Lima-Junior, J.C. Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants. Viruses 2023, 15, 923. https://doi.org/10.3390/v15040923
Rodrigues-da-Silva RN, Conte FP, da Silva G, Carneiro-Alencar AL, Gomes PR, Kuriyama SN, Neto AAF, Lima-Junior JC. Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants. Viruses. 2023; 15(4):923. https://doi.org/10.3390/v15040923
Chicago/Turabian StyleRodrigues-da-Silva, Rodrigo N., Fernando P. Conte, Gustavo da Silva, Ana L. Carneiro-Alencar, Paula R. Gomes, Sergio N. Kuriyama, Antonio A. F. Neto, and Josué C. Lima-Junior. 2023. "Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants" Viruses 15, no. 4: 923. https://doi.org/10.3390/v15040923
APA StyleRodrigues-da-Silva, R. N., Conte, F. P., da Silva, G., Carneiro-Alencar, A. L., Gomes, P. R., Kuriyama, S. N., Neto, A. A. F., & Lima-Junior, J. C. (2023). Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants. Viruses, 15(4), 923. https://doi.org/10.3390/v15040923