Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histopathological and Immunohistochemistry Evaluations
2.3. HPV DNA Detection
2.4. HPV DNA Genotyping
2.5. P16 Immunostaining
2.6. Statistical Analysis
3. Results
3.1. Patient Age Characterization
3.2. Histopathological Characterization of Pre-Neoplastic and Neoplastic Cervical Lesions
3.3. HPV-Positive Status
3.4. Immunoreactive Scores (IRS) of βA-Activin Were Impaired in Pre-Neoplastic and Neoplastic Cervical Lesions
3.5. Immunoreactive Scores (IRS) of Follistatin Are Impaired in Pre-Neoplastic and Neoplastic Cervical Lesions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Cervical-Cancer (accessed on 25 May 2022).
- Groves, I.J.; Coleman, N. Pathogenesis of Human Papillomavirus-Associated Mucosal Disease: Mucosal HPV Pathogenesis. J. Pathol. 2015, 235, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Howitt, B.E.; Nucci, M.R. Uterine Mesenchymal Lesions. In Gynecologic and Obstetric Pathology, Volume 2; Zheng, W., Fadare, O., Quick, C.M., Shen, D., Guo, D., Eds.; Springer: Singapore, 2019; pp. 1–52. ISBN 9789811330186. [Google Scholar]
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef]
- Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV Entry into Cells. Mutat. Res. /Rev. Mutat. Res. 2017, 772, 13–22. [Google Scholar] [CrossRef]
- Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef] [PubMed]
- Ikenberg, H. Laboratory Diagnosis of Human Papillomavirus Infection. In Current Problems in Dermatology; Ramírez-Fort, M.K., Khan, F., Rady, P.L., Tyring, S.K., Eds.; S. Karger AG: Basel, Switzerland, 2014; Volume 45, pp. 166–174. ISBN 978-3-318-02526-2. [Google Scholar]
- Graham, S.V. The Human Papillomavirus Replication Cycle, and Its Links to Cancer Progression: A Comprehensive Review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef]
- Tsakogiannis, D.; Nikolaidis, M.; Zagouri, F.; Zografos, E.; Kottaridi, C.; Kyriakopoulou, Z.; Tzioga, L.; Markoulatos, P.; Amoutzias, G.D.; Bletsa, G. Mutation Profile of HPV16 L1 and L2 Genes in Different Geographic Areas. Viruses 2022, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Aarthy, M.; Kumar, D.; Giri, R.; Singh, S.K. E7 Oncoprotein of Human Papillomavirus: Structural Dynamics and Inhibitor Screening Study. Gene 2018, 658, 159–177. [Google Scholar] [CrossRef]
- Olmedo-Nieva, L.; Muñoz-Bello, J.; Contreras-Paredes, A.; Lizano, M. The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis. Viruses 2018, 10, 45. [Google Scholar] [CrossRef]
- Herfs, M.; Yamamoto, Y.; Laury, A.; Wang, X.; Nucci, M.R.; McLaughlin-Drubin, M.E.; Münger, K.; Feldman, S.; McKeon, F.D.; Xian, W.; et al. A Discrete Population of Squamocolumnar Junction Cells Implicated in the Pathogenesis of Cervical Cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 10516–10521. [Google Scholar] [CrossRef]
- Wang, J.W.; Roden, R.B.S. L2, the Minor Capsid Protein of Papillomavirus. Virology 2013, 445, 175–186. [Google Scholar] [CrossRef]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Horvath, C.A.; Boulet, G.A.; Renoux, V.M.; Delvenne, P.O.; Bogers, J.-P.J. Mechanisms of Cell Entry by Human Papillomaviruses: An Overview. Virol. J. 2010, 7, 11. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human Papillomavirus and Cervical Cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- WHO. The WHO Classification of Tumours of the Female Reproductive Organs Presented in This Book Reflects the Views of a Work; WHO: Geneva, Switzerland, 2014.
- Chan, C.K.; Aimagambetova, G.; Ukybassova, T.; Kongrtay, K.; Azizan, A. Human Papillomavirus Infection and Cervical Cancer: Epidemiology, Screening, and Vaccination—Review of Current Perspectives. J. Oncol. 2019, 2019, 3257939. [Google Scholar] [CrossRef] [PubMed]
- Organisation Mondiale de La Santé, Centre International de Recherche sur le Cancer (Ed.) Female Genital Tumours, 5th ed; World Health Organization Classification of Tumours; International Agency for Research on Cancer: Lyon, France, 2020; ISBN 978-92-832-4504-9.
- Kurman, R.J.; International Agency for Research on Cancer, World Health Organization (Eds.) WHO Classification of Tumours of Female Reproductive Organs, 4th ed.; World Health Organization Classification of Tumours; International Agency for Research on Cancer: Lyon, France, 2014; ISBN 978-92-832-2435-8.
- Sellors, J.W.; Sankaranarayanan, R. Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginners’ Manual; Intern. Agency for Research Cancer: Lyon, France, 2003; ISBN 978-92-832-0412-1. [Google Scholar]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Bloise, E.; Ciarmela, P.; Dela Cruz, C.; Luisi, S.; Petraglia, F.; Reis, F.M. Activin A in Mammalian Physiology. Physiol. Rev. 2019, 99, 739–780. [Google Scholar] [CrossRef] [PubMed]
- Ervolino De Oliveira, C.; Dourado, M.; Sawazaki-Calone, Í.; Costa De Medeiros, M.; Rossa Júnior, C.; De Karla Cervigne, N.; Esquiche León, J.; Lambert, D.; Salo, T.; Graner, E.; et al. Activin A Triggers Angiogenesis via Regulation of VEGFA and Its Overexpression Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma. Int. J. Oncol. 2020, 57, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Ando, H. Activin. In Handbook of Hormones; Elsevier: Amsterdam, The Netherlands, 2021; pp. 559–562. ISBN 978-0-12-820649-2. [Google Scholar]
- Macias, M.J.; Martin-Malpartida, P.; Massagué, J. Structural Determinants of Smad Function in TGF-β Signaling. Trends Biochem. Sci. 2015, 40, 296–308. [Google Scholar] [CrossRef]
- Takei, Y.; Ando, H.; Tsutsui, K.; Nihon Hikaku Naibunpi Gakkai (Eds.) Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, 1st ed.; Elsevier/AP, Academic Press is an imprint of Elsevier: Oxford, UK, 2016; ISBN 978-0-12-801028-0. [Google Scholar]
- Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S. The Structure of the Follistatin:Activin Complex Reveals Antagonism of Both Type I and Type II Receptor Binding. Dev. Cell 2005, 9, 535–543. [Google Scholar] [CrossRef]
- Makanji, Y.; Zhu, J.; Mishra, R.; Holmquist, C.; Wong, W.P.S.; Schwartz, N.B.; Mayo, K.E.; Woodruff, T.K. Inhibin at 90: From Discovery to Clinical Application, a Historical Review. Endocr. Rev. 2014, 35, 747–794. [Google Scholar] [CrossRef]
- Walton, K.L.; Makanji, Y.; Harrison, C.A. New Insights into the Mechanisms of Activin Action and Inhibition. Mol. Cell. Endocrinol. 2012, 359, 2–12. [Google Scholar] [CrossRef]
- Maeshima, A.; Miya, M.; Mishima, K.; Yamashita, S.; Kojima, I.; Nojima, Y. Activin A: Autocrine Regulator of Kidney Development and Repair. Endocr. J. 2008, 55, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rodgarkia-Dara, C.; Vejda, S.; Erlach, N.; Losert, A.; Bursch, W.; Berger, W.; Schulte-Hermann, R.; Grusch, M. The Activin Axis in Liver Biology and Disease. Mutat. Res. Rev. Mutat. Res. 2006, 613, 123–137. [Google Scholar] [CrossRef]
- Shi, L.; Resaul, J.; Owen, S.; Ye, L.; Jiang, W.G. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. CGP 2016, 13, 425–436. [Google Scholar] [CrossRef]
- Zhang, P.; Ruan, Y.; Xiao, J.; Chen, F.; Zhang, X. Association of Serum Follistatin Levels with Histological Types and Progression of Tumor in Human Lung Cancer. Cancer Cell Int. 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Zabkiewicz, C.; Resaul, J.; Hargest, R.; Jiang, W.G.; Ye, L. Increased Expression of Follistatin in Breast Cancer Reduces Invasiveness and Clinically Correlates with Better Survival. Cancer Genom. Proteom. 2017, 14, 241–251. [Google Scholar] [CrossRef]
- Appiah Adu-Gyamfi, E.; Tanam Djankpa, F.; Nelson, W.; Czika, A.; Kumar Sah, S.; Lamptey, J.; Ding, Y.-B.; Wang, Y.-X. Activin and Inhibin Signaling: From Regulation of Physiology to Involvement in the Pathology of the Female Reproductive System. Cytokine 2020, 133, 155105. [Google Scholar] [CrossRef] [PubMed]
- Jückstock, J.; Brüning, A.; Blankenstein, T.; Kunze, S.; Shabani, N.; Bergauer, F.; Mylonas, I. Immunolabeling of the Inhibin-ΒA and -ΒB Subunit in Normal and Malignant Human Cervical Tissue and Cervical Cancer Cell Lines. Int. J. Gynecol. Cancer 2010, 20, 1117–1124. [Google Scholar] [CrossRef]
- Couto, H.L.; Dela Cruz, C.; Buzelin, M.A.; Toppa, N.H.; Wainstein, A.J.; Reis, F.M. Follistatin Expression in Human Invasive Breast Tumors: Pathologic and Clinical Associations. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 108–112. [Google Scholar] [CrossRef]
- Bloise, E.; Cassali, G.D.; Ferreira, M.C.; Ciarmela, P.; Petraglia, F.; Reis, F.M. Activin-Related Proteins in Bovine Mammary Gland: Localization and Differential Expression during Gestational Development and Differentiation. J. Dairy Sci. 2010, 93, 4592–4601. [Google Scholar] [CrossRef]
- Richart, R.M. Natural history of cervical intraepithelial neoplasia. Clin. Obstet. Gynecol. 1967, 10, 748–784. [Google Scholar] [CrossRef]
- Kurman, R.J. Blaustein’s Pathology of the Female Genital Tract; Springer: New York, NY, USA, 2019; ISBN 978-3-319-46333-9. [Google Scholar]
- Moritani, S. Adenocarcinoma and Its Precursor of the Uterine Cervix: Current Concept. In Pathology of Female Cancers; Moriya, T., Ed.; Springer: Singapore, 2018; pp. 15–25. ISBN 978-981-10-8605-2. [Google Scholar]
- Clement, P.B.; Young, R.H. Atlas of Gynecologic Surgical Pathology, Expert consult, 3rd ed.; Saunders Elsevier: London, UK, 2014; ISBN 978-0-323-18882-1. [Google Scholar]
- Burges, A.; Shabani, N.; Brüning, A.; Mylonas, I. Inhibin-BetaA and -BetaB Subunits in Normal and Malignant Glandular Epithelium of Uterine Cervix and HeLa Cervical Cancer Cell Line. Arch. Gynecol. Obstet. 2011, 284, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Fedchenko, N.; Reifenrath, J. Different Approaches for Interpretation and Reporting of Immunohistochemistry Analysis Results in the Bone Tissue—A Review. Diagn. Pathol. 2014, 9, 221. [Google Scholar] [CrossRef]
- Shimizu, H.; Burns, J.C. Extraction of Nucleic Acids: Sample Preparation from Paraffin-Embedded Tissues. In PCR Strategies; Elsevier: Amsterdam, The Netherlands, 1995; pp. 32–38. ISBN 978-0-12-372182-2. [Google Scholar]
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef]
- Molijn, A.; Kleter, B.; Quint, W.; Doorn, L.-J. van Molecular Diagnosis of Human Papillomavirus (HPV) Infections. J. Clin. Virol. 2005, 32, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Jiang, G.; Cruz, Y.; Chang, C.J.; Ho, G.Y.; Klein, R.S.; Burk, R.D. PCR Detection of Human Papillomavirus: Comparison between MY09/MY11 and GP5+/GP6+ Primer Systems. J. Clin. Microbiol. 1997, 35, 1304–1310. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Hashimoto, N.; Tsutae, W.; Seino, K.; Ebina, Y.; Tokino, T.; Sato, N.; Kikuchi, K. Detection of Human Papillomavirus DNA by PCR/Microfluorometry for Screening of Cervical Cancer. Clin. Chim. Acta 2002, 318, 41–49. [Google Scholar] [CrossRef]
- Sotlar, K.; Diemer, D.; Dethleffs, A.; Hack, Y.; Stubner, A.; Vollmer, N.; Menton, S.; Menton, M.; Dietz, K.; Wallwiener, D.; et al. Detection and Typing of Human Papillomavirus by E6 Nested Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3176–3184. [Google Scholar] [CrossRef]
- O’Neill, C.J.; McCluggage, W.G. P16 Expression in the Female Genital Tract and Its Value in Diagnosis. Adv. Anat. Pathol. 2006, 13, 8–15. [Google Scholar] [CrossRef]
- AleksioskaPapestiev, I.; Chibisheva, V.; Micevska, M.; Dimitrov, G. Prevalence of Specific Types of Human Papilloma Virus in Cervical Intraepithelial Lesions and Cervical Cancer in Macedonian Women. Med. Arch. 2018, 72, 26. [Google Scholar] [CrossRef]
- Alemany, L.; Sanjosé, S.; Tous, S.; Quint, W.; Vallejos, C.; Shin, H.; Bravo, L.E.; Alonso, P.; Lima, M.A.; Guimerà, N.; et al. Time Trends of Human Papillomavirus Types in Invasive Cervical Cancer, from 1940 to 2007. Int. J. Cancer 2014, 135, 88–95. [Google Scholar] [CrossRef]
- Läsche, M.; Gallwas, J.; Gründker, C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. IJMS 2022, 23, 5050. [Google Scholar] [CrossRef]
- Stuebs, F.A.; Gass, P.; Dietl, A.K.; Schulmeyer, C.E.; Adler, W.; Geppert, C.; Hartmann, A.; Knöll, A.; Beckmann, M.W.; Koch, M.C. Human Papilloma Virus Genotype Distribution in Women with Premalignant or Malignant Lesions of the Uterine Cervix. Arch. Gynecol. Obstet. 2021, 304, 751–758. [Google Scholar] [CrossRef]
- So, K.A.; Lee, I.H.; Lee, K.H.; Hong, S.R.; Kim, Y.J.; Seo, H.H.; Kim, T.J. Human Papillomavirus Genotype-Specific Risk in Cervical Carcinogenesis. J. Gynecol. Oncol. 2019, 30, e52. [Google Scholar] [CrossRef]
- Bzhalava, D.; Guan, P.; Franceschi, S.; Dillner, J.; Clifford, G. A Systematic Review of the Prevalence of Mucosal and Cutaneous Human Papillomavirus Types. Virology 2013, 445, 224–231. [Google Scholar] [CrossRef]
- Alvarez-Aldana, A.; Martínez, J.W.; Sepúlveda-Arias, J.C. Comparison of Five Protocols to Extract DNA from Paraffin-Embedded Tissues for the Detection of Human Papillomavirus. Pathol. Res. Pract. 2015, 211, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Seiler, C.; Sharpe, A.; Barrett, J.C.; Harrington, E.A.; Jones, E.V.; Marshall, G.B. Nucleic Acid Extraction from Formalin-Fixed Paraffin-Embedded Cancer Cell Line Samples: A Trade off between Quantity and Quality? BMC Clin. Pathol. 2016, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, T.; Zhang, Y.; Liu, Y. Analysis of Influencing Factors of Viral Load in Patients with High-Risk Human Papillomavirus. Virol. J. 2021, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Tsakogiannis, D.; Gartzonika, C.; Levidiotou-Stefanou, S.; Markoulatos, P. Molecular Approaches for HPV Genotyping and HPV-DNA Physical Status. Expert Rev. Mol. Med. 2017, 19, e1. [Google Scholar] [CrossRef]
- Colpani, V.; Soares Falcetta, F.; Bacelo Bidinotto, A.; Kops, N.L.; Falavigna, M.; Serpa Hammes, L.; Schwartz Benzaken, A.; Kalume Maranhão, A.G.; Domingues, C.M.A.S.; Wendland, E.M. Prevalence of Human Papillomavirus (HPV) in Brazil: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0229154. [Google Scholar] [CrossRef] [PubMed]
- Dalgo Aguilar, P.; Loján González, C.; Córdova Rodríguez, A.; Acurio Páez, K.; Arévalo, A.P.; Bobokova, J. Prevalence of High-Risk Genotypes of Human Papillomavirus: Women Diagnosed with Premalignant and Malignant Pap Smear Tests in Southern Ecuador. Infect. Dis. Obstet. Gynecol. 2017, 2017, 8572065. [Google Scholar] [CrossRef]
- Gori, S.; Battagello, J.; Gustinucci, D.; Campari, C.; Zorzi, M.; Frayle, H.; Passamonti, B.; Sartori, G.; Bulletti, S.; Fodero, C.; et al. Clinical Relevance of Partial HPV16/18 Genotyping in Stratifying HPV-positive Women Attending Routine Cervical Cancer Screening: A Population-based Cohort Study. BJOG: Int. J. Obstet. Gynaecol. 2021, 128, 1353–1362. [Google Scholar] [CrossRef]
- Pimple, S.; Mishra, G. Cancer Cervix: Epidemiology and Disease Burden. Cytojournal 2022, 19, 21. [Google Scholar] [CrossRef]
- Ciarmela, P.; Wiater, E.; Vale, W. Activin-A in Myometrium: Characterization of the Actions on Myometrial Cells. Endocrinology 2008, 149, 2506–2516. [Google Scholar] [CrossRef] [PubMed]
- Kaitu’u-Lino, T.J.; Phillips, D.J.; Morison, N.B.; Salamonsen, L.A. A New Role for Activin in Endometrial Repair after Menses. Endocrinology 2009, 150, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, F. Expression and Secretion of Inhibin and Activin in Normal and Neoplastic Uterine Tissues. High Levels of Serum Activin A in Women with Endometrial and Cervical Carcinoma. J. Clin. Endocrinol. Metab. 1998, 83, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Morianos, I.; Papadopoulou, G.; Semitekolou, M.; Xanthou, G. Activin-A in the Regulation of Immunity in Health and Disease. J. Autoimmun. 2019, 104, 102314. [Google Scholar] [CrossRef]
- Tsuchida, K.; Nakatani, M.; Hitachi, K.; Uezumi, A.; Sunada, Y.; Ageta, H.; Inokuchi, K. Activin Signaling as an Emerging Target for Therapeutic Interventions. Cell Commun. Signal. 2009, 7, 15. [Google Scholar] [CrossRef]
- Kaneda, H.; Arao, T.; Matsumoto, K.; De Velasco, M.A.; Tamura, D.; Aomatsu, K.; Kudo, K.; Sakai, K.; Nagai, T.; Fujita, Y.; et al. Activin A Inhibits Vascular Endothelial Cell Growth and Suppresses Tumour Angiogenesis in Gastric Cancer. Br. J. Cancer 2011, 105, 1210–1217. [Google Scholar] [CrossRef]
- Panopoulou, E.; Murphy, C.; Rasmussen, H.; Bagli, E.; Rofstad, E.K.; Fotsis, T. Activin A Suppresses Neuroblastoma Xenograft Tumor Growth via Antimitotic and Antiangiogenic Mechanisms. Cancer Res. 2005, 65, 1877–1886. [Google Scholar] [CrossRef]
- Phillips, D.J.; Jones, K.L.; Scheerlinck, J.-P.Y.; Hedger, M.P.; de Kretser, D.M. Evidence for Activin A and Follistatin Involvement in the Systemic Inflammatory Response. Mol. Cell. Endocrinol. 2001, 180, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ciarmela, P.; Bloise, E.; Gray, P.C.; Carrarelli, P.; Islam, M.S.; De Pascalis, F.; Severi, F.M.; Vale, W.; Castellucci, M.; Petraglia, F. Activin-A and Myostatin Response and Steroid Regulation in Human Myometrium: Disruption of Their Signalling in Uterine Fibroid. J. Clin. Endocrinol. Metab. 2011, 96, 755–765. [Google Scholar] [CrossRef]
- Su, G.H.; Bansal, R.; Murphy, K.M.; Montgomery, E.; Yeo, C.J.; Hruban, R.H.; Kern, S.E. ACVR1B ( ALK4, Activin Receptor Type 1B) Gene Mutations in Pancreatic Carcinoma. Proc. Natl. Acad. Sci. USA 2001, 98, 3254–3257. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Tian, H.; Li, Y.; Lian, R.; Li, W.; Wu, S.; Zhang, H.-Z.; Wu, J.; Liu, L.; Song, J.; et al. CCT6A Suppresses SMAD2 and Promotes Prometastatic TGF-β Signaling. J. Clin. Investig. 2017, 127, 1725–1740. [Google Scholar] [CrossRef]
- Seachrist, D.D.; Keri, R.A. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019, 160, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Loomans, H.; Andl, C. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers 2014, 7, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Wijayarathna, R.; de Kretser, D.M. Activins in Reproductive Biology and Beyond. Hum. Reprod. Update 2016, 22, 342–357. [Google Scholar] [CrossRef]
- Ogino, H.; Yano, S.; Kakiuchi, S.; Muguruma, H.; Ikuta, K.; Hanibuchi, M.; Uehara, H.; Tsuchida, K.; Sugino, H.; Sone, S. Follistatin Suppresses the Production of Experimental Multiple-Organ Metastasis by Small Cell Lung Cancer Cells in Natural Killer Cell–Depleted SCID Mice. Clin. Cancer Res. 2008, 14, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Sepporta, M.V.; Tumminello, F.M.; Flandina, C.; Crescimanno, M.; Giammanco, M.; La Guardia, M.; di Majo, D.; Leto, G. Follistatin as potential therapeutic target in prostate cancer. Target. Oncol. 2013, 8, 215–223. [Google Scholar] [CrossRef] [PubMed]
Control (n = 15) | CIN1 (n = 38) | CIN2 (n = 37) | CIN3 (n = 39) | SCC (n = 33) | Total (n = 162) | ||
---|---|---|---|---|---|---|---|
Age | |||||||
Mean ± SEM | 36.9 ± 17.02 | 30.8 ± 10.38 | 37.6 ± 15.15 | 37.9 ± 10.6 | 50.3 ± 15.55 | 39.0 ± 15.47 | |
Minimum | 17 | 19 | 17 | 19 | 20 | 17 | |
Maximum | 65 | 68 | 81 | 51 | 90 | 90 |
Control (n = 15) | CIN1 (n = 30) | CIN2 (n = 33) | CIN3 (n = 36) | SCC (n = 32) | Total (n = 146) | |
---|---|---|---|---|---|---|
HPV | Number of HPV (+) specimens within each group | |||||
(∼ % of positive specimens within each group | ||||||
Positive | 0 | 14 | 17 | 27 | 29 | 87 |
(0%) | (46.7%) | (51.5%) | (75%) | (90.6%) | (59.6%) | |
Negative | 15 | 16 | 16 | 9 | 3 | 59 |
(100%) | (53.3%) | (48.5%) | (25%) | (9.4%) | (40.4%) | |
Total | 15 | 30 | 33 | 36 | 32 | 146 |
(10.3%) | (20.5%) | (22.6%) | (24.7%) | (21.9%) | (100%) |
Groups | CIN 1 (n = 30) | CIN 2 (n = 33) | CIN 3 (n = 36) | SCC (n = 32) | Total (n = 131) |
---|---|---|---|---|---|
HR-HPV type | Number of + specimens for each HPV genotype within each group | ||||
∼ % of positivity (compared to the n within each column) | |||||
HPV 16 | 3 | 10 | 19 | 22 | 54 |
10.0% | 30.3% | 52.8% | 68.8% | 41.2% | |
HPV 18 | 5 | 1 | 10 | 5 | 21 |
16.7% | 3% | 27.8% | 15.6% | 16.0% | |
HPV 31 | 8 | - | 1 | 5 | 14 |
26.7% | - | 2.8% | 15.6% | 10.7% | |
HPV 33 | 3 | - | - | - | 3 |
10.0% | - | - | - | 2.3% | |
HPV 35 | 2 | 1 | - | 2 | 5 |
6.7% | 3% | - | 6.3% | 3.8% | |
HPV 45 | 5 | 3 | 2 | 2 | 12 |
16.7% | 9.1% | 5.6% | 6.3% | 9.2% | |
HPV 52 | 3 | 4 | - | 4 | 11 |
10.0% | 12.1% | - | 12.5% | 8.4% | |
HPV 58 | 1 | - | - | - | 1 |
3.3% | - | - | - | 0.8% |
CIN1 (n = 30) | CIN2 (n = 33) | CIN3 (n = 36) | SCC (n = 32) | Total (n = 131) | ||
---|---|---|---|---|---|---|
HPV Positivity | HPV DNA | 14 | 17 | 27 | 29 | 87 |
HPV DNA Genotyping | 6 | 2 | 3 | 3 | 14 | |
p16 | 6 | 11 | 4 | - | 21 | |
Total (∼%) | 26 (87%) | 30 (91%) | 34 (94%) | 32 (100%) | 122 (93%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payano, V.J.H.; Lopes, L.V.d.A.; Peixoto, L.R.; Silva, K.A.d.; Ortiga-Carvalho, T.M.; Tafuri, A.; Vago, A.R.; Bloise, E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses 2023, 15, 1031. https://doi.org/10.3390/v15051031
Payano VJH, Lopes LVdA, Peixoto LR, Silva KAd, Ortiga-Carvalho TM, Tafuri A, Vago AR, Bloise E. Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses. 2023; 15(5):1031. https://doi.org/10.3390/v15051031
Chicago/Turabian StylePayano, Victor Jesus Huaringa, Lara Verônica de Araújo Lopes, Larissa Rodrigues Peixoto, Keila Alves da Silva, Tania Maria Ortiga-Carvalho, Alexandre Tafuri, Annamaria Ravara Vago, and Enrrico Bloise. 2023. "Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions" Viruses 15, no. 5: 1031. https://doi.org/10.3390/v15051031
APA StylePayano, V. J. H., Lopes, L. V. d. A., Peixoto, L. R., Silva, K. A. d., Ortiga-Carvalho, T. M., Tafuri, A., Vago, A. R., & Bloise, E. (2023). Immunostaining of βA-Activin and Follistatin Is Decreased in HPV(+) Cervical Pre-Neoplastic and Neoplastic Lesions. Viruses, 15(5), 1031. https://doi.org/10.3390/v15051031