Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Cell Staining and Treatment
2.3. Plasmids
2.4. Production of Replication-Deficient Viral Particles
2.5. Infection
2.6. Infectious Virus Particle Titer Determination
2.7. Primer Design
2.8. Reverse Transcriptase Droplet Digital PCR (RT-ddPCR)
2.9. Single-Cell Droplet Digital PCR
2.10. Statistical Analysis
3. Results
3.1. Quantification of SFV Virus Particles by ddPCR and Its Correlation with Infectious Units
3.2. Different Primers Show Similar Results
3.3. Quantification of a Mixture of Two Types of Virus Particles: SFV/DS-Red and SFV/CFP
3.4. Infected Cell ddPCR
- Ncells is the total number of cells used for infection;
- DilutionSFV/DS-Red is the dilution of the virus particles used for infection;
- β-actin+ is the number of β-actin positive droplets;
- VSFV/DS-Red is the volume of SFV/DS-Red used for infection (mL).
- Ncells is the total number of cells used for infection;
- DilutionSFV/DS-Red is the dilution of the virus particles used for infection;
- cβ-actin is the QuantaSoft Analysis Pro quantified concentration of β-actin (copies/μL);
- VSFV/DS-Red is the volume of SFV/DS-Red used for infection (mL).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heider, S.; Metzner, C. Quantitative Real-Time Single Particle Analysis of Virions. Virology 2014, 462, 199. [Google Scholar] [CrossRef] [PubMed]
- Sidstedt, M.; Rådström, P.; Hedman, J. PCR Inhibition in QPCR, DPCR and MPS—Mechanisms and Solutions. Anal. Bioanal. Chem. 2020, 412, 2009–2023. [Google Scholar] [CrossRef] [PubMed]
- Baer, A.; Kehn-Hall, K. Viral Concentration Determination through Plaque Assays: Using Traditional and Novel Overlay Systems. J. Vis. Exp. 2014, 93, e52065. [Google Scholar]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83, 8604. [Google Scholar] [CrossRef]
- Quan, P.L.; Sauzade, M.; Brouzes, E. DPCR: A Technology Review. Sensors 2018, 18, 1271. [Google Scholar] [CrossRef]
- Weli, S.C.; Bernhardt, L.V.; Qviller, L.; Myrmel, M.; Lillehaug, A. Development and Evaluation of a Method for Concentration and Detection of Salmonid Alphavirus from Seawater. J. Virol. Methods 2021, 287, 113990. [Google Scholar] [CrossRef]
- Dobnik, D.; Kogovšek, P.; Jakomin, T.; Košir, N.; Žnidarič, M.T.; Leskovec, M.; Kaminsky, S.M.; Mostrom, J.; Lee, H.; Ravnikar, M. Accurate Quantification and Characterization of Adeno-Associated Viral Vectors. Front. Microbiol. 2019, 10, 1570. [Google Scholar] [CrossRef]
- Prantner, A.; Maar, D. Genome Concentration, Characterization, and Integrity Analysis of Recombinant Adeno-Associated Viral Vectors Using Droplet Digital PCR. PLoS ONE 2023, 18, e0280242. [Google Scholar] [CrossRef]
- Gudra, D.; Dejus, S.; Bartkevics, V.; Roga, A.; Kalnina, I.; Strods, M.; Rayan, A.; Kokina, K.; Zajakina, A.; Dumpis, U.; et al. Detection of SARS-CoV-2 RNA in Wastewater and Importance of Population Size Assessment in Smaller Cities: An Exploratory Case Study from Two Municipalities in Latvia. Sci. Total Environ. 2022, 823, 153775. [Google Scholar] [CrossRef]
- Igarashi, Y.; Uchiyama, T.; Minegishi, T.; Takahashi, S.; Watanabe, N.; Kawai, T.; Yamada, M.; Ariga, T.; Onodera, M. Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy. Mol. Ther. Methods Clin. Dev. 2017, 6, 8. [Google Scholar] [CrossRef]
- Sato, T.; Ito, Y.; Samura, O.; Aoki, H.; Uchiyama, T.; Okamoto, A.; Hata, K. Direct Assessment of Single-Cell DNA Using Crudely Purified Live Cells: A Proof of Concept for Noninvasive Prenatal Definitive Diagnosis. J. Mol. Diagnostics 2020, 22, 132–140. [Google Scholar] [CrossRef]
- Zajakina, A.; Spunde, K.; Lundstrom, K. Application of Alphaviral Vectors for Immunomodulation in Cancer Therapy. Curr. Pharm. Des. 2017, 23, 4906–4932. [Google Scholar] [CrossRef]
- Lundstrom, K. Alphaviruses in Cancer Therapy. Front. Mol. Biosci. 2022, 9, 864781. [Google Scholar] [CrossRef]
- Spunde, K.; Korotkaja, K.; Zajakina, A. Recombinant Viral Vectors for Therapeutic Programming of Tumour Microenvironment: Advantages and Limitations. Biomedicines 2022, 10, 2142. [Google Scholar] [CrossRef]
- Trofimova, O.; Korotkaja, K.; Skrastina, D.; Jansons, J.; Spunde, K.; Isaguliants, M.; Zajakina, A.; Tripp, R.A. Alphavirus-Driven Interferon Gamma (IFNg) Expression Inhibits Tumor Growth in Orthotopic 4T1 Breast Cancer Model. Vaccines 2021, 9, 1247. [Google Scholar] [CrossRef]
- Kurena, B.; Müller, E.; Christopoulos, P.F.; Johnsen, I.B.; Stankovic, B.; Øynebråten, I.; Corthay, A.; Zajakina, A. Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ. Front. Immunol 2017, 8, 1667. [Google Scholar] [CrossRef]
- Skudra, A.; Revalde, G.; Zajakina, A.; Mezule, L.; Spunde, K.; Juhna, T.; Rancane, K. UV Inactivation of Semliki Forest Virus and E. Coli Bacteria by Alternative Light Sources. J. Photochem. Photobiol. 2022, 10, 100120. [Google Scholar] [CrossRef]
- Irbe, I.; Filipova, I.; Skute, M.; Zajakina, A.; Spunde, K.; Juhna, T. Characterization of Novel Biopolymer Blend Mycocel from Plant Cellulose and Fungal Fibers. Polymers 2021, 13, 1086. [Google Scholar] [CrossRef]
- Zajakina, A.; Vasilevska, J.; Zhulenkovs, D.; Skrastina, D.; Spaks, A.; Plotniece, A.; Kozlovska, T. High Efficiency of Alphaviral Gene Transfer in Combination with 5-Fluorouracil in a Mouse Mammary Tumor Model. BMC Cancer 2014, 14, 460. [Google Scholar] [CrossRef]
- Liljeström, P.; Garoff, H. A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon. Bio/Technology 1991, 9, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Vasilevska, J.; Skrastina, D.; Spunde, K.; Garoff, H.; Kozlovska, T.; Zajakina, A. Semliki Forest Virus Biodistribution in Tumor-Free and 4T1 Mammary Tumor-Bearing Mice: A Comparison of Transgene Delivery by Recombinant Virus Particles and Naked RNA Replicon. Cancer Gene Ther. 2012, 19, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Hutornojs, V.; Niedre-Otomere, B.; Kozlovska, T.; Zajakina, A. Comparison of Ultracentrifugation Methods for Concentration of Recombinant Alphaviruses: Sucrose and Iodixanol Cushions. Environ. Exp. Biol. 2012, 10, 117–123. [Google Scholar]
- Vasilevska, J.; De Souza, G.A.; Stensland, M.; Skrastina, D.; Zhulenvovs, D.; Paplausks, R.; Kurena, B.; Kozlovska, T.; Zajakina, A. Comparative Protein Profiling of B16 Mouse Melanoma Cells Susceptible and Non-Susceptible to Alphavirus Infection: Effect of the Tumor Microenvironment. Cancer Biol. Ther. 2016, 17, 1035–1050. [Google Scholar] [CrossRef]
- Lourenç Correia Moreira, B.; Aparecida Pereira, L.; Lappas Gimenez, A.P.; Minor Fernandes Inagaki, J.; Raboni, S.M. Development and Validation of a Real-Time RT-PCR Assay for the Quantification of Rabies Virus as Quality Control of Inactivated Rabies Vaccines. J. Virol. Methods 2019, 270, 46–51. [Google Scholar] [CrossRef]
- Rowlands, V.; Rutkowski, A.J.; Meuser, E.; Carr, H.; Harrington, E.A.; Carl Barrett, J. Optimisation of Robust Singleplex and Multiplex Droplet Digital PCR Assays for High Confidence Mutation Detection in Circulating Tumour DNA. Sci. Rep. 2019, 9, 12620. [Google Scholar] [CrossRef]
- Parker, J.N.; Meleth, S.; Hughes, K.B.; Gillespie, G.Y.; Whitley, R.J.; Markert, J.M. Enhanced Inhibition of Syngeneic Murine Tumors by Combinatorial Therapy with Genetically Engineered HSV-1 Expressing CCL2 and IL-12. Cancer Gene Ther. 2005, 12, 359–368. [Google Scholar] [CrossRef]
- Du, T.; Shi, G.; Li, Y.M.; Zhang, J.F.; Tian, H.W.; Wei, Y.Q.; Deng, H.; Yu, D.C. Tumor-Specific Oncolytic Adenoviruses Expressing Granulocyte Macrophage Colony-Stimulating Factor or Anti-CTLA4 Antibody for the Treatment of Cancers. Cancer Gene Ther. 2014, 21, 340–348. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Cai, L.; Duan, H.; Li, Y.; Yang, J.; Wang, Y.; Liu, B.; Dong, S.; Fang, Z.; et al. A Novel Cocktail Therapy Based on Quintuplet Combination of Oncolytic Herpes Simplex Virus-2 Vectors Armed with Interleukin-12, Interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 Results in Enhanced Antitumor Efficacy. Virol. J. 2022, 19, 74. [Google Scholar] [CrossRef]
- Stamps, A.C.; Terret, J.A.; Adam, P.J. Application of in Situ Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) Tissue Microarrays. J. Nanobiotechnol. 2003, 1, 3. [Google Scholar] [CrossRef]
- El-Hefnawy, T.; Raja, S.; Kelly, L.; Bigbee, W.L.; Kirkwood, J.M.; Luketich, J.D.; Godfrey, T.E. Characterization of Amplifiable, Circulating RNA in Plasma and Its Potential as a Tool for Cancer Diagnostics. Clin. Chem. 2004, 50, 564–573. [Google Scholar] [CrossRef]
- Park, N.J.; Li, Y.; Yu, T.; Brinkman, B.M.N.; Wong, D.T. Characterization of RNA in Saliva. Clin. Chem. 2006, 52, 988–994. [Google Scholar] [CrossRef]
- Niu, Q.; Ma, L.; Zhu, S.; Li, L.; Zheng, Q.; Hou, J.; Lian, H.; Wu, L.; Yan, X. Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angew. Chem. Int. Ed. Engl. 2021, 60, 9351. [Google Scholar] [CrossRef]
- Hollý, J.; Fogelová, M.; Jakubcová, L.; Tomčíková, K.; Vozárová, M.; Varečková, E.; Kostolanský, F. Comparison of Infectious Influenza A Virus Quantification Methods Employing Immuno-Staining. J. Virol. Methods 2017, 247, 107–113. [Google Scholar] [CrossRef]
- Turkki, V.; Alppila, E.; Ylä-Herttuala, S.; Lesch, H.P. Experimental Evaluation of an Interferometric Light Microscopy Particle Counter for Titering and Characterization of Virus Preparations. Viruses 2021, 13, 939. [Google Scholar] [CrossRef]
- Guo, M.; Deng, L.; Liang, H.; Du, Y.; Gao, W.; Tian, N.; Bi, Y.; Li, J.; Ma, T.; Zhang, Y.; et al. Development and Preliminary Application of a Droplet Digital PCR Assay for Quantifying the Oncolytic Herpes Simplex Virus Type 1 in the Clinical-Grade Production. Viruses 2023, 15, 178. [Google Scholar] [CrossRef]
- Mendonça, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral Vector Vaccine Platforms in the SARS-CoV-2 Pandemic. npj Vaccines 2021, 6, 97. [Google Scholar] [CrossRef]
- Puglia, A.L.P.; Rezende, A.G.; Jorge, S.A.C.; Wagner, R.; Pereira, C.A.; Astray, R.M. Quantitative RT-PCR for Titration of Replication-Defective Recombinant Semliki Forest Virus. J. Virol. Methods 2013, 193, 647–652. [Google Scholar] [CrossRef]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet Digital PCR of Viral DNA/RNA, Current Progress, Challenges, and Future Perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef]
- Wolter, M.; Felsberg, J.; Malzkorn, B.; Kaulich, K.; Reifenberger, G. Droplet Digital PCR-Based Analyses for Robust, Rapid, and Sensitive Molecular Diagnostics of Gliomas. Acta Neuropathol. Commun. 2020, 10, 42. [Google Scholar] [CrossRef]
- Yucha, R.W.; Hobbs, K.S.; Hanhauser, E.; Hogan, L.E.; Nieves, W.; Ozen, M.O.; Inci, F.; York, V.; Gibson, E.A.; Thanh, C.; et al. High-Throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay. EBioMedicine 2017, 20, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.; Dhummakupt, A.; Siems, L.; Singh, D.; Le Duff, Y.; Uprety, P.; Jennings, C.; Szewczyk, J.; Chen, Y.; Nastouli, E.; et al. Clinical Validation of a Quantitative HIV-1 DNA Droplet Digital PCR Assay: Applications for Detecting Occult HIV-1 Infection and Monitoring Cell-Associated HIV-1 Dynamics across Different Subtypes in HIV-1 Prevention and Cure Trials. J. Clin. Virol. 2021, 139, 104822. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Inigo, E.; Bartolomé, J.; Ortiz-Movilla, N.; Platero, C.; López-Alcorocho, J.M.; Pardo, M.; Castillo, I.; Carreño, V. Hepatitis C Virus (HCV) and Hepatitis B Virus (HBV) Can Coinfect the Same Hepatocyte in the Liver of Patients with Chronic HCV and Occult HBV Infection. J. Virol. 2005, 79, 15578–15581. [Google Scholar] [CrossRef] [PubMed]
Plasmid Map | ||||
---|---|---|---|---|
No | Primer Set | Forward Primer | Probe | Reverse Primer |
Primers and probes targeting the nsP1 gene of the SFV1 vector | ||||
1. | SFV_1204 | 5′-CAC AGC GAA ACA CTA ACA CG-3′ | 5′-6-Fam-CTG CTT CCG ATT GTG GCC GTC-BHQ-1-3′ | 5′-CAG CAG CAA GTA AGT GAC C-3′ |
5′-Hex-CTG CTT CCG ATT GTG GCC GTC-BHQ-1-3′ | ||||
Primers and probes targeting the nsP4 gene of the SFV1 vector | ||||
2. | SFV_6004 | 5′-ATA GTT GCT TGG ACA GAG CG-3′ | 5′-6-Fam-CTA CAG AAC GTG CTA GCG GC-BHQ-1-3′ | 5′-AGT CCA TGG TGG GTA GTT CT-3′ |
Primers and probes targeting the DS-Red gene | ||||
3. | DS-Red_7603 | 5′-GCT CCA AGG TGT ACG TGA AG-3′ | 5′-6-Fam-CCC GCC GAC ATC CCC GAC TAC-BHQ-1-3′ | 5′-CCT TGT AGA TGA AGG AGC CG-3′ |
5′-Hex-CCC GCC GAC ATC CCC GAC TAC-BHQ-1-3′ | ||||
4. | DS-Red_7816 | 5′-AAG AAG ACT ATG GGC TGG G-3′ | 5′-6-Fam-TAC CCC CGC GAC GGC GTG C-BHQ-1-3′ | 5′-AGC TTG GAG TCC ACG TAG TAG-3′ |
Primers and probes targeting the CFP gene | ||||
5. | CFP_8011 | 5′-CTG CTG CCC GAC AAC CAC-3′ | 5′-Hex-CCA GTC CGC CCT GAG CAA AGA CC-BHQ-1-3′ | 5′-TCA CGA ACT CCA GCA GGA C-3′ |
Primers and probes targeting β-actin | ||||
6. | β-actin | 5′-AGC ACC ATG AAG ATC AAG ATC ATT-3′ | 5′-6-Fam-CAC TGT CCA CCT TCC AGC AGA-BHQ-1-3′ | 5′-CGG ACT CAT CGT ACT CCT GCT T-3′ |
Advantages | Limitations |
---|---|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotkaja, K.; Zajakina, A. Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification. Viruses 2023, 15, 1060. https://doi.org/10.3390/v15051060
Korotkaja K, Zajakina A. Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification. Viruses. 2023; 15(5):1060. https://doi.org/10.3390/v15051060
Chicago/Turabian StyleKorotkaja, Ksenija, and Anna Zajakina. 2023. "Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification" Viruses 15, no. 5: 1060. https://doi.org/10.3390/v15051060
APA StyleKorotkaja, K., & Zajakina, A. (2023). Recombinant Virus Quantification Using Single-Cell Droplet Digital PCR: A Method for Infectious Titer Quantification. Viruses, 15(5), 1060. https://doi.org/10.3390/v15051060