Virus-like Particle Vaccines and Platforms for Vaccine Development
Abstract
:1. Introduction
2. VLP Vaccines Derived from Human Viruses
Name of Virus | Structural Protein Used to Make VLPs | Source of Structural Protein (Capsid/Envelope) | Expression System | Immune Responses | References |
---|---|---|---|---|---|
Influenza A subtypes (H1N1 and H3N2) | Hemagglutinin (HA), matrix protein 1 (M1), and neuraminidase (NA) | Envelope | Mammalian cell lines (Chinese hamster ovary cells—CHO-K1, vero cells, human embryonic kidney—HEK 293T cells) | Mice immunized with the hybrid VLPs elicited antibody titers against A/Hong Kong (H3N2) strain that were similar to those of an approved inactivated vaccine (Vaxigrip) | [43] |
Spodoptera frugiperda (Sf)9 insect cells | Ferrets immunized with the VLPs were protected against Influenza virus A H3N2 | [50] | |||
Influenza A virus (H7N9) | HA, M1, NA | Sf9 insect cells | Hemagglutination inhibition antibody titers against H7N9 were from 1:80 to 1:173 | [51] | |
Influenza B/Shanghai/361/2002 | Hemagglutination inhibition antibody titer against the strain was 1:1280 | [50] | |||
Influenza viruses | Headless HA gene with an extracellular region of matrix protein 2 gene insertion (from human, avian, and swine influenza), nucleoprotein, and M1 from H5N1 | Envelope | Sf9 insect cells | Mice immunized with chimeric VLPs were protected against homologous (H5N1) and heterologous influenza viruses (H1N1, H3N2, or H7N7); infections were reduced by 4.6–6.7-fold. | [52] |
HPV | Major capsid protein (L1) | Capsid | Saccharomyces cerevisiae (S. cerevisiae) | Gardasil-9 vaccine contains VLPs from 9 HPV types; protects against HPV associated with 90% of cervical cancer and 90% of genital warts | [53] |
Trichoplusia ni insect cells | Cervarix vaccine contains VLPs from HPV16 and HPV18; protects against these two HPV types (associated with ~70% of cervical cancer); it also cross-protects against other HPV types | [54,55] | |||
HPV (type 6 and 11) | L1 | Capsid | E. coli | Neutralizing antibody titers (100–1000 in monkeys) against HPV6 and HPV11 were similar to those of Gardasil-4 | [56] |
HBV | HBV small surface antigen (HBsAgS) | Envelope | Yeast cells [S. cerevisiae, Pichia pastoris (P. pastoris), Hansenula polymorpha] | Immune responses cross-protect against different serotypes and last up to 30 years (Engerix-B, Recombivax HB vaccines) | [20,21,22,23] |
HBsAgS and middle protein | Mammalian cells (CHO) | 94% of vaccines seroconvert and 84% were seroprotected (GenHevac B vaccine) | [57] | ||
HEV | Capsid protein | Capsid | E. coli | Hecolin vaccine (HEV 239) has efficacy of 97–100%. It cross-protect against other genotypes. Immunity lasts for at least 4.5 years. | [38,39,40,41,42] |
Human immunodeficiency virus (HIV) type 1 (HIV 1) | Envelope and Gag | Envelope and capsid | HEK 293T cells | Immunization with the VLPs, without any adjuvant, elicited neutralizing antibodies and cytotoxic T-cell responses in mice. | [58] |
Glycoprotein (gp) 120 | Envelope | Sf9 insect cells | Sera derived from mice immunized with VLPs neutralized (at 1:10–1:80) homologous and heterologous isolates of HIV | [59,60,61] | |
Human noroviruses (genotype GI.1 and consensus GII.4) Human norovirus (consensus GII.4) | Virus protein (VP)1 | Capsid | Sf9 insect cells | Seven days post-immunization, IgA and IgG antibody secreting cells in humans increased by more than 4-fold for genotype GI.1 and consensus GII.4 viruses | [62] |
VP1 | Capsid | P. pastoris | Sera and fecal antibodies derived from mice immunized with VLPs block binding of VLPs to receptors | [63] | |
Parvovirus B19 | VP1, VP2 | Capsid | S. cerevisiae | VLPs elicited high antibody responses (>4 logs) in a mouse model for sickle cell disease; responses persisted for >80 days. | [64] |
VP1, VP2 | Capsid | Sf9 insect cells | Geometric mean neutralizing antibody titers in humans ranged from 6.45–20.29; reactogenicity was reported in a lot (up to 73%) of participants | [65] | |
** Chikungunya virus (CHIKV) | Capsid (envelope) 1, E2, E3, 6K | Capsid and Envelope | P. pastoris | Passive transfer of antibody to neonatal mice offered protection from CHIKV infection | [66,67,68,69] |
HEK 293T cells | IgG from monkey immunized VLPs protected mice from dying following lethal infection with CHIKV | ||||
SF21 cells | Mice vaccinated with VLPs were protected from viremia/arthritis following infection with CHIKV | ||||
Coxsackievirus A16 (CA16) | VP1, VP3, and VP0 (VP2 and VP4) | Capsid | S. cerevisiae | Passive transfer of anti-CA16 VLP sera to neonatal mice protected mice against lethal CA16 challenge | [70] |
Enterovirus 71 (EV71) | VP0, VP1, VP3 | Capsid | S. cerevisiae | 90–100% of neonatal mice infected with a mixture of EV71 VLP-derived sera and EV71 were protected from infection (i.e., did not die) | [71,72] |
Nipah virus | -Glycoprotein, Matrix protein, Fusion protein | Envelope | HEK 293T cells | All ferrets immunized with Nipah virus VLPs survived infection with Nipah virus compared to control animals (40–75%) | [73] |
Rotavirus | VP2, VP6, VP7 | Capsid | Transgenic tobacco plants | Mice orally immunized with VLPs (made up of VP2/6/7) elicited serum IgG and fecal IgA antibodies; serum antibody levels were comparable to those of an attenuated rotavirus vaccine. | [74] |
SARS-CoV-2 | Spike | Envelope | Nicotiana benthamiana tobacco plant | Neutralizing antibody titers in immunized individuals were greater than those in individuals recovering from COVID-19. | [75] |
Dengue virus 2 | Envelope protein and 5′ pre-membrane signal peptide | Envelope | P. pastoris | AG129 mice immunized with VLPs elicited neutralizing antibodies (titers > 1200) that protected them against lethal challenge with homologous dengue virus 2. | [76] |
Zika virus | Envelope protein and pre-membrane | Envelope | HEK 293T cells | 100% of AG129 mice immunized with 10 μg of VLPs survived infection with Zika virus compared to control mice (no survival) after day 21. | [44] |
Japanese encephalitis virus (JEV) | Envelope protein and pre-membrane | Envelope | Lepidoptera mosquito cells | Vaccinated mice elicited a balanced immune response (Th1/Th2) and neutralized both JEV genotypes I and III (neutralizing antibody titers 10–320). | [77] |
Ebola virus | Glycoprotein (GP) and matrix protein | Envelope | HEK 293T cells | 30% of mice immunized with VLPs (without adjuvant) survived following challenge with a mouse-adapted Ebola virus strain; 100% of mice survived infection when they were immunized with the VLPs in the presence of GLA-SE or GLA-AF adjuvants. | [45] |
Ebola virus Sudan strain | GP and matrix protein | Envelope | Sf9 insect cells | Sera from horses immunized with VLPs blocked infection with HIV pseudovirus expressing Ebola Sudan glycoproteins | [78] |
3. VLP Candidate Vaccines Derived from Veterinary Viruses
Name of Virus | Structural Protein Used to Make VLPs | Source of Structural Protein (Capsid/Envelope) | Expression System | Immune Responses | References |
---|---|---|---|---|---|
PCV-2 | Capsid protein | Capsid | Nicotiana benthamiana | Mice immunized with PCV VLPs elicited antibodies 42 days after immunization. Antibody levels were higher than those elicited by a commercial subunit vaccine (Ingelvac CircoFLEX®). | [86] |
Porcine parvovirus (PPV) | VP2 | Capsid | E. coli | Vaccinated mice and pigs generated neutralized antibodies; antibodies significantly reduced PPV content in the spleen of pigs 14 days after PPV challenge. | [96] |
Rabbit hemorrhagic disease virus (RHDV) | VP60 from two genotypes (RHDV GI.1- and RHDV GI.2) | Capsid | Tricholusia ni insect pupae | Hybrid VLPs elicited antibodies that protected rabbits against lethal challenge with the 2 RHDV genotypes, (RHDV. GI.1 and GI.2). Immunization with 40 µg offered 100% protection compared to immunization with 20 µg (80% protection). | [97] |
Bluetongue virus | VP2, VP3, VP5 and VP7 from serotype 8 | Capsid | Nicotiana benthamiana | Sheep immunized with VLPs had the same efficacy of protection as the live-attenuated commercial vaccine; no clinical signs of disease were observed. | [87] |
AHSV | VP2, VP3, VP5, and VP7 from serotype 5 | Capsid | Nicotiana benthamiana | Sera from guinea pigs immunized with VLPs neutralized serotypes 5 and 8 (to a lesser degree). No cross-neutralization of serotype 4. | [98,99] |
VP2, VP3, VP5 and VP7 from serotype 1; VP2, VP5, from serotype 7; VP2, from serotype 6; VP5 from serotype 3 | Capsid | Nicotiana benthamian | Single, double, and triple chimeric VLPs were developed; anti-VP7 specific responses were detected in foals immunized with triple chimeric VLP (AHSV-6/AHSV-3/AHSV-1). However, single AHSV-6 VLPs elicited a weak neutralizing humoral immune response against homologous AHSV virus. Low neutralization levels were also observed with a control live-attenuated AHSV-6 vaccine. | [88] | |
Goose hemorrhagic polyomavirus (GHPV) | VP1 with or without VP2 | Capsid | Sf9 insect cells and S. cerevisiae | The VLPs expressed by yeast were of smaller size. VLPs (as a diagnostic antigen) detected GHPV-specific antibodies in up to 85.7% of geese sera with hemorrhagic nephritis and enteritis. | [100] |
Canine influenza virus (CIV) H3N2 | M1 and hemagglutinin proteins | Envelope | Sf9 insect cells | Dogs vaccinated with the VLPs and later challenged with CIV H3N2 did not show clinical signs of respiratory disease, unlike control dogs. | [101] |
Influenza A virus | HA protein from (A/chicken/South Africa/N2826/2016 (H6N2)) and M2 protein from strain A/New Caledonia/20/1999 (H1N1) | Envelope | Nicotiana benthamiana | A total of 100% of chickens immunized with the mosaic VLPs did not shed virus via the respiratory tract (at day 21) following a challenge with strain A/chicken/South Africa/H44954/2016 (H6N2): 58% of chickens immunized with a commercial inactivated H6N2 vaccine shed virus, as opposed to 36% unimmunized. | [89] |
Influenza A virus | Hemagglutinin antigen from H5N1, H7N3 and H9N2 viruses. neuraminidase 1 antigen from influenza H5N1 and gag protein from a retrovirus | Envelope | Sf9 insect cells | Chickens immunized with mosaic VLPs and later challenged with H5N2 and H7N3 viruses survived while all control unimmunized birds died. | [90] |
Rabies virus | Glycoprotein | Envelope | HEK 293 | Antibody titers were >4 log10 and were similar to those of two licensed inactivated rabies vaccines (for humans and animals). A 0.3 μg dose elicited similar antibody titers. Elicited antibodies neutralized a pseudotyped lentivirus (expressing rabies virus G protein). | [17,102] |
Foot-and-mouth disease virus | VP1 from serotype O and VP2, VP3, and VP4 from serotype A | Capsid | Sf9 insect cells | Guinea pigs immunized with the mosaic VLPs elicited both humoral and cellular immune responses; the protective efficacy of the mosaic VLPs against serotype O virus was 80% compared to 0% in the control group. | [103] |
Infectious bursal disease virus (IBDV) | VP2 protein | Capsid | P. pastoris | All chickens immunized with IBDV VLPs survived after challenge with the virus; 10% of chickens immunized with a commercial inactivated vaccine died; 80% of control chickens died. | [91] |
RGNNV | Capsid protein | Capsid | Nicotiana tabacum cv. Xanthi | Cumulative mortality (within 14 days) in fish vaccinated with RGNNV-VLPs was 3.3% compared with 10% and 60–66.7% mortality in fish immunized with commercial inactivated vaccine and control plant extract, respectively. | [92] |
S. cerevisiae | Mice immunized with the VLPs elicited saturated IgG antibody titers (5.8 log10). | [104] | |||
Piscine myocarditis virus | ORF1 | Capsid | Nicotiana benthamiana | VLPs elicited an innate immune response in fish, which was associated with reduced viral replication in the heart, spleen, and kidney of salmon, and reduced inflammatory lesions in cardiomyocytes. | [105] |
Atlantic cod nervous necrosis virus | Capsid protein | Capsid | Nicotiana benthamiana and tobacco BY-2 cells | VLPs significantly lowered the mortality in vaccinated groups compared to control group; vaccinated fish showed relatively higher percent survival (from 63.6 to 86.5%) compared to the control group (~20.8%). | [93] |
4. VLP Candidate Vaccines Derived from Plant and Bacterial Viruses
Name of Virus Used to Develop VLPs | Structural Antigen Used to Make VLPs | Capsid or Envelope Proteins | Foreign Antigen Displayed on VLP | Expression System | Immune Responses | References |
---|---|---|---|---|---|---|
** AMV | Capsid protein | Capsid | Pfs25 protein of Plasmodium falciparum | Nicotiana benthamiana tobacco plants | In a phase I study, VLPs were shown to be safe and tolerable; reactogenicity was also reported. IgG responses > 3 log10 were observed with a dose of 100 μg. | [110,111] |
Cowpea chlorotic mottle virus (CCMV) | Capsid protein | Capsid | Tetanus toxin epitope | E. coli | Round-shaped CCMVTT-VLPs drained more efficiently to secondary lymphoid organs than rod-shaped CCMVTT-VLPs. Additionally, round-shaped CCMVTT-VLPs increased IgG and IgA antibody levels by 100-fold compared to rod-shaped CCMVTT-VLPs. | [120] |
Capsid protein | Capsid | S9 peptide from group B streptococcal type III capsular polysaccharide | P. pastoris | Immunization with VLPs displaying S9 peptide elicited a Th1 response against the peptide. However, immunization with the peptide conjugated to keyhole limpet hemocyanin elicited a Th2 response. | [121] | |
PhMV | Capsid protein | Capsid | HER2-derived CH401 epitope | E. coli | VLPs elicited a strong immune response. Chimeric VLPs slowed the growth of DDHER2 tumor cells in mice and also delayed death by more than 15 days compared to control mice that were immunized with just the CH401 epitope. | [112,113] |
PVY | Capsid protein | Capsid | HBV preS1 epitope | E. coli | Chimeric VLPs elicited high-titer (1:8620) anti-HBV preS1 antibodies in mice without adjuvant. | [122] |
Cat allergen Feline domesticus (Fel d 1) | E. coli | All chimeric VLP vaccines elicited high antibody titers (up to 1:52,938) against Fel d 1 in mice. IgG1 was the dominant IgG subclass produced. | [114] | |||
Cucumber mosaic virus | Capsid protein | Capsid | T-cell epitope derived from the tetanus toxin, dimeric murine IL-17A of psoriasis, cat allergen feline domesticus 1 (Fel d 1), and Aβ1–6 of Alzheimer β-amyloid | E. coli | Chimeric VLPs elicited antibodies that protected/reduced psoriatic disease and cat allergy. Antibodies from mice immunized with VLPs displaying Aβ1–6 reacted with plaques of Aβ (in brain sections from Alzheimer’s patients). | [123] |
Papaya mosaic virus | Capsid protein | Capsid | HCV E2 epitope | E. coli | Chimeric VLPs elicited HCV E2 antibodies that lasted more than 4 months. A balanced T cell (Th1/Th2) immune response was observed. | [124] |
Tobacco mosaic virus | Capsid protein | Capsid | L2 epitopes from cottontail rabbit papillomavirus and rabbit oral papillomavirus | Nicotiana benthamiana or Nicotiana tabacum | Rabbits immunized with the chimeric VLPs were protected from developing papillomas. | [125] |
MaMV | Capsid protein | Capsid | M2e peptide from influenza virus A | E. coli | Mice immunized with the VLPs elicited antibodies that protected them from death following challenge with homologous mouse-adapted virus (H3N8 virus) or heterologous mouse-adapted virus (H1N1). Control mice died. | [115] |
5. Expert Review Commentary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Pumpens, P.; Pushko, P. Virus-like Particles: A Comprehensive Guide; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Pumpens, P.; Renhofa, R.; Dishlers, A.; Kozlovska, T.; Ose, V.; Pushko, P.; Tars, K.; Grens, E.; Bachmann, M.F. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016, 59, 74–110. [Google Scholar] [CrossRef] [PubMed]
- Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers 2016, 105, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wei, Y.Q.; Guo, H.C.; Sun, S.Q. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol. 2015, 99, 10415–10432. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Chackerian, B.; Durfee, M.R.; Schiller, J.T. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J. Immunol. 2008, 180, 5816–5825. [Google Scholar] [CrossRef]
- Yuseff, M.I.; Pierobon, P.; Reversat, A.; Lennon-Dumenil, A.M. How B cells capture, process and present antigens: A crucial role for cell polarity. Nat. Rev. Immunol. 2013, 13, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Zabel, F.; Kundig, T.M.; Bachmann, M.F. Virus-induced humoral immunity: On how B cell responses are initiated. Curr. Opin. Virol. 2013, 3, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, L.I.; Roose, K.; De Filette, M.; Schotsaert, M.; De Sloovere, J.; Roels, S.; Pollard, C.; Schepens, B.; Grooten, J.; Fiers, W.; et al. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A. PLoS ONE 2013, 8, e59081. [Google Scholar] [CrossRef]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef]
- Tumban, E.; Peabody, J.; Peabody, D.S.; Chackerian, B. A universal virus-like particle-based vaccine for human papillomavirus: Longevity of protection and role of endogenous and exogenous adjuvants. Vaccine 2013, 31, 4647–4654. [Google Scholar] [CrossRef]
- Lund, J.M.; Alexopoulou, L.; Sato, A.; Karow, M.; Adams, N.C.; Gale, N.W.; Iwasaki, A.; Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 2004, 101, 5598–5603. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, Y.M.; Zhang, P.; Xing, H.Z.; Zhao, S.; Song, Y.P.; Wan, D.M.; Yu, J.F. Targeting toll-like receptor 7/8 for immunotherapy: Recent advances and prospectives. Biomark. Res. 2022, 10, 89. [Google Scholar] [CrossRef]
- Diebold, S.S. Recognition of viral single-stranded RNA by Toll-like receptors. Adv. Drug Deliver. Rev. 2008, 60, 813–823. [Google Scholar] [CrossRef]
- Biologicals, N. Toll-like Receptors; updated ed.; Novus Biologicals, LLC: Littleton, CO, USA, 2014; p. 187. [Google Scholar]
- Tumban, E.; Peabody, J.; Tyler, M.; Peabody, D.S.; Chackerian, B. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PLoS ONE 2012, 7, e49751. [Google Scholar] [CrossRef] [PubMed]
- Fontana, D.; Kratje, R.; Etcheverrigaray, M.; Prieto, C. Rabies virus-like particles expressed in HEK293 cells. Vaccine 2014, 32, 2799–2804. [Google Scholar] [CrossRef]
- Moradi Vahdat, M.; Hemmati, F.; Ghorbani, A.; Rutkowska, D.; Afsharifar, A.; Eskandari, M.H.; Rezaei, N.; Niazi, A. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. Biotechnol. Rep. 2021, 29, e00605. [Google Scholar] [CrossRef]
- Ho, J.K.; Jeevan-Raj, B.; Netter, H.J. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020, 12, 126. [Google Scholar] [CrossRef]
- Hamada-Tsutsumi, S.; Iio, E.; Watanabe, T.; Murakami, S.; Isogawa, M.; Iijima, S.; Inoue, T.; Matsunami, K.; Tajiri, K.; Ozawa, T.; et al. Validation of cross-genotype neutralization by hepatitis B virus-specific monoclonal antibodies by in vitro and in vivo infection. PLoS ONE 2015, 10, e0118062. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Tanaka, Y. Cross-Protection of Hepatitis B Vaccination among Different Genotypes. Vaccines 2020, 8, 456. [Google Scholar] [CrossRef]
- Chroboczek, J.; Szurgot, I.; Szolajska, E. Virus-like particles as vaccine. Acta Biochim. Pol. 2014, 61, 531–539. [Google Scholar] [CrossRef]
- Gara, N.; Abdalla, A.; Rivera, E.; Zhao, X.; Werner, J.M.; Liang, T.J.; Hoofnagle, J.H.; Rehermann, B.; Ghany, M.G. Durability of antibody response against hepatitis B virus in healthcare workers vaccinated as adults. Clin. Infect. Dis. 2015, 60, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Koutsky, L.A.; Tay, E.H.; Garcia, P.; et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16-26 years. J. Infect. Dis. 2009, 199, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.F.; Brownlow, M.; Brown, M.; Kowalski, R.; Esser, M.T.; Ruiz, W.; Barr, E.; Brown, D.R.; Bryan, J.T. Antibodies from women immunized with Gardasil cross-neutralize HPV 45 pseudovirions. Hum. Vaccin. 2007, 3, 109–115. [Google Scholar] [CrossRef]
- Toft, L.; Storgaard, M.; Muller, M.; Sehr, P.; Bonde, J.; Tolstrup, M.; Ostergaard, L.; Sogaard, O.S. Comparison of the immunogenicity and reactogenicity of Cervarix and Gardasil human papillomavirus vaccines in HIV-infected adults: A randomized, double-blind clinical trial. J. Infect. Dis. 2014, 209, 1165–1173. [Google Scholar] [CrossRef]
- Wheeler, C.M.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Perez, G.; Brown, D.R.; Koutsky, L.A.; Tay, E.H.; Garcia, P.; et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J. Infect. Dis. 2009, 199, 936–944. [Google Scholar] [CrossRef]
- Zhai, L.; Tumban, E. Gardasil-9: A global survey of projected efficacy. Antivir. Res. 2016, 130, 101–109. [Google Scholar] [CrossRef]
- Kjaer, S.K.; Nygard, M.; Dillner, J.; Brooke Marshall, J.; Radley, D.; Li, M.; Munk, C.; Hansen, B.T.; Sigurdardottir, L.G.; Hortlund, M.; et al. A 12-Year Follow-up on the Long-Term Effectiveness of the Quadrivalent Human Papillomavirus Vaccine in 4 Nordic Countries. Clin. Infect. Dis. 2018, 66, 339–345. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sampson, J.N.; Schussler, J.; Porras, C.; Wagner, S.; Boland, J.; Cortes, B.; Lowy, D.R.; Schiller, J.T.; Schiffman, M.; et al. Durability of Cross-Protection by Different Schedules of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1030–1037. [Google Scholar] [CrossRef]
- Kjaer, S.K.; Nygard, M.; Sundstrom, K.; Dillner, J.; Tryggvadottir, L.; Munk, C.; Berger, S.; Enerly, E.; Hortlund, M.; Agustsson, A.I.; et al. Final analysis of a 14-year long-term follow-up study of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in women from four nordic countries. Eclinicalmedicine 2020, 23, 100401. [Google Scholar] [CrossRef]
- Huh, W.K.; Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; de Andrade, R.P.; Ault, K.A.; Bartholomew, D.; Cestero, R.M.; Fedrizzi, E.N.; Hirschberg, A.L.; et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16–26 years: A randomised, double-blind trial. Lancet 2017, 390, 2143–2159. [Google Scholar] [CrossRef] [PubMed]
- A Phase III Clinical Trial of a 11-Valent Recombinant Human Papillomavirus Vaccine (Hansenulapolymorpha) in Chinese Women Aged 9–45 Years. Available online: https://ClinicalTrials.gov/show/NCT05262010 (accessed on 8 June 2022).
- A Phase I Safty and Immunogenicity Study of SCT1000 in Healthy Women Aged 18 to 45 Years. Available online: https://ClinicalTrials.gov/show/NCT04921111 (accessed on 17 September 2021).
- Zaman, K.; Dudman, S.; Stene-Johansen, K.; Qadri, F.; Yunus, M.; Sandbu, S.; Gurley, E.S.; Overbo, J.; Julin, C.H.; Dembinski, J.L.; et al. HEV study protocol: Design of a cluster-randomised, blinded trial to assess the safety, immunogenicity and effectiveness of the hepatitis E vaccine HEV 239 (Hecolin) in women of childbearing age in rural Bangladesh. BMJ Open 2020, 10, e033702. [Google Scholar] [CrossRef]
- NIAID Safety Study of Hepatitis E Vaccine (HEV239). Available online: https://clinicaltrials.gov/ct2/show/NCT03827395 (accessed on 24 September 2021).
- Zhu, F.C.; Zhang, J.; Zhang, X.F.; Zhou, C.; Wang, Z.Z.; Huang, S.J.; Wang, H.; Yang, C.L.; Jiang, H.M.; Cai, J.P.; et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 376, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Y.; Chen, Z.P.; Wang, S.Y.; Pan, H.R.; Wang, Z.F.; Zhang, Q.F.; Shen, L.Z.; Zheng, X.P.; Yan, C.F.; Lu, M.; et al. Safety and immunogenicity of hepatitis E vaccine in elderly people older than 65 years. Vaccine 2019, 37, 4581–4586. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.F.; Huang, S.J.; Wu, T.; Hu, Y.M.; Wang, Z.Z.; Wang, H.; Jiang, H.M.; Wang, Y.J.; Yan, Q.; et al. Long-term efficacy of a hepatitis E vaccine. N. Engl. J. Med. 2015, 372, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Zhang, J.; Li, Y.M.; Ou, S.H.; Huang, G.Y.; He, Z.Q.; Ge, S.X.; Xian, Y.L.; Pang, S.Q.; Ng, M.H.; et al. A bacterially expressed particulate hepatitis E vaccine: Antigenicity, immunogenicity and protectivity on primates. Vaccine 2005, 23, 2893–2901. [Google Scholar] [CrossRef]
- Wen, J.; Behloul, N.; Dai, X.; Dong, C.; Liang, J.; Zhang, M.; Shi, C.; Meng, J. Immunogenicity difference between two hepatitis E vaccines derived from genotype 1 and 4. Antivir. Res. 2016, 128, 36–42. [Google Scholar] [CrossRef]
- Buffin, S.; Peubez, I.; Barrière, F.; Nicolaï, M.-C.; Tapia, T.; Dhir, V.; Forma, E.; Sève, N.; Legastelois, I. Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019, 37, 6857–6867. [Google Scholar] [CrossRef]
- Vang, L.; Morello, C.S.; Mendy, J.; Thompson, D.; Manayani, D.; Guenther, B.; Julander, J.; Sanford, D.; Jain, A.; Patel, A. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl. Trop. Dis. 2021, 15, e0009195. [Google Scholar] [CrossRef]
- Sunay, M.M.; Martins, K.A.; Steffens, J.T.; Gregory, M.; Vantongeren, S.A.; Van Hoeven, N.; Garnes, P.G.; Bavari, S. Glucopyranosyl lipid adjuvant enhances immune response to Ebola virus-like particle vaccine in mice. Vaccine 2019, 37, 3902–3910. [Google Scholar] [CrossRef]
- Kotiw, M.; Johnson, M.; Pandey, M.; Fry, S.; Hazell, S.L.; Netter, H.J.; Good, M.F.; Olive, C. Immunological response to parenteral vaccination with recombinant hepatitis B virus surface antigen virus-like particles expressing Helicobacter pylori KatA epitopes in a murine H. pylori challenge model. Clin. Vaccine Immunol. 2012, 19, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Czarnota, A.; Offersgaard, A.; Pihl, A.F.; Prentoe, J.; Bukh, J.; Gottwein, J.M.; Bieńkowska-Szewczyk, K.; Grzyb, K. Specific antibodies induced by immunization with hepatitis B virus-like particles carrying hepatitis C virus envelope glycoprotein 2 epitopes show differential neutralization efficiency. Vaccines 2020, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, V.; Arora, U.; Shukla, R.; Poddar, A.; Shanmugam, R.K.; White, L.J.; Mattocks, M.M.; Raut, R.; Perween, A.; Tyagi, P. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl. Trop. Dis. 2018, 12, e0006191. [Google Scholar] [CrossRef]
- Chu, X.; Li, Y.; Long, Q.; Xia, Y.; Yao, Y.; Sun, W.; Huang, W.; Yang, X.; Liu, C.; Ma, Y. Chimeric HBcAg virus-like particles presenting a HPV 16 E7 epitope significantly suppressed tumor progression through preventive or therapeutic immunization in a TC-1-grafted mouse model. Int. J. Nanomed. 2016, 11, 2417. [Google Scholar]
- Ross, T.M.; Mahmood, K.; Crevar, C.J.; Schneider-Ohrum, K.; Heaton, P.M.; Bright, R.A. A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets. PLoS ONE 2009, 4, e6032. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-M.J.; Chien, C.-Y.; Liu, M.-T.; Fang, Z.-S.; Chang, S.-Y.; Juang, R.-H.; Chang, S.-C.; Chen, H.-W. Multi-antigen avian influenza a (H7N9) virus-like particles: Particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ren, Z.; Wang, H.; Zhao, Y.; Wilker, P.R.; Yu, Z.; Sun, W.; Wang, T.; Feng, N.; Li, Y. Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses. Int. Immunopharmacol. 2018, 63, 119–128. [Google Scholar] [CrossRef]
- Merck GARDASIL9 (Human Papillomavirus 9-Valent Vaccine, Recombinant). Available online: https://www.fda.gov/media/90064/download (accessed on 1 April 2023).
- Wheeler, C.M.; Castellsagué, X.; Garland, S.M.; Szarewski, A.; Paavonen, J.; Naud, P.; Salmerón, J.; Chow, S.-N.; Apter, D.; Kitchener, H. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012, 13, 100–110. [Google Scholar] [CrossRef]
- GSK CERVARIX [Human Papillomavirus Bivalent (Types 16 and 18) Vaccine, Recombinant]. Available online: https://www.fda.gov/media/78013/download (accessed on 31 December 2009).
- Pan, H.; Li, Z.; Wang, J.; Song, S.; Wang, D.; Wei, M.; Gu, Y.; Zhang, J.; Li, S.; Xia, N. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: Characterization, antigenicity and immunogenicity. Vaccine 2017, 35, 3222–3231. [Google Scholar] [CrossRef]
- Jungers, P.; Chauveau, P.; Couroucé, A.-M.; Devillier, P.; Excler, J.L.; Bailleux, F.; Saliou, P. Immunogenicity of the recombinant GenHevac B Pasteur vaccine against hepatitis B in chronic uremic patients. J. Infect. Dis. 1994, 169, 399–402. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhao, D.; Meng, X.; Zhao, X.; Yu, X.; Kong, W. Design and immunogenicity assessment of HIV-1 virus-like particles as a candidate vaccine. Sci. China Life Sci. 2011, 54, 1042–1047. [Google Scholar] [CrossRef]
- Buonaguro, L.; Racioppi, L.; Tornesello, M.; Arra, C.; Visciano, M.; Biryahwaho, B.; Sempala, S.; Giraldo, G.; Buonaguro, F. Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. Antivir. Res. 2002, 54, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, L.; Visciano, M.; Tornesello, M.; Tagliamonte, M.; Biryahwaho, B.; Buonaguro, F. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J. Virol. 2005, 79, 7059–7067. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Patel, G.B.; Hu, S.; Chen, W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum. Vaccines Immunother. 2016, 12, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Ramani, S.; Neill, F.H.; Ferreira, J.; Treanor, J.J.; Frey, S.E.; Topham, D.J.; Goodwin, R.R.; Borkowski, A.; Baehner, F.; Mendelman, P.M. B-cell responses to intramuscular administration of a bivalent virus-like particle human norovirus vaccine. Clin. Vaccine Immunol. 2017, 24, e00571-16. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Farkas, T.; Jiang, X. Norovirus capsid protein expressed in yeast forms virus-like particles and stimulates systemic and mucosal immunity in mice following an oral administration of raw yeast extracts. J. Med. Virol. 2007, 79, 74–83. [Google Scholar] [CrossRef]
- Penkert, R.R.; Young, N.S.; Surman, S.L.; Sealy, R.E.; Rosch, J.; Dormitzer, P.R.; Settembre, E.C.; Chandramouli, S.; Wong, S.; Hankins, J.S. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine 2017, 35, 3615–3620. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Sahly, H.M.E.; Keitel, W.A.; Wolff, M.; Simone, G.; Segawa, C.; Wong, S.; Shelly, D.; Young, N.S.; Dempsey, W. Safety and immunogenicity of a candidate parvovirus B19 vaccine. Vaccine 2011, 29, 7357–7363. [Google Scholar] [CrossRef]
- Saraswat, S.; Athmaram, T.; Parida, M.; Agarwal, A.; Saha, A.; Dash, P.K. Expression and characterization of yeast derived chikungunya virus like particles (CHIK-VLPs) and its evaluation as a potential vaccine candidate. PLoS Negl. Trop. Dis. 2016, 10, e0004782. [Google Scholar] [CrossRef]
- Akahata, W.; Yang, Z.-Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.-P.; Lewis, M.G.; Higgs, S.; Rossmann, M.G.; Rao, S. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 2010, 16, 334–338. [Google Scholar] [CrossRef]
- Metz, S.W.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl. Trop. Dis. 2013, 7, e2124. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.J.; Dowd, K.A.; Mendoza, F.H.; Saunders, J.G.; Sitar, S.; Plummer, S.H.; Yamshchikov, G.; Sarwar, U.N.; Hu, Z.; Enama, M.E.; et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: A phase 1 dose-escalation trial. Lancet 2014, 384, 2046–2052. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.-Y.; Han, J.-F.; Deng, Y.-Q.; Li, Y.-X.; Zhu, S.-Y.; He, Y.-L.; Qin, E.-D.; Chen, R.; Qin, C.-F. Virus-like particles produced in Saccharomyces cerevisiae elicit protective immunity against Coxsackievirus A16 in mice. Appl. Microbiol. Biotechnol. 2013, 97, 10445–10452. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zhao, M.; Liu, W.; Pang, L.; Sun, X.; Cen, S.; Yang, B.B.; Huang, Y.; Sheng, W. EV71 virus-like particles produced by co-expression of capsid proteins in yeast cells elicit humoral protective response against EV71 lethal challenge. BMC Res. Notes 2016, 9, 42. [Google Scholar] [CrossRef]
- Li, H.-Y.; Han, J.-F.; Qin, C.-F.; Chen, R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine 2013, 31, 3281–3287. [Google Scholar] [CrossRef] [PubMed]
- Walpita, P.; Cong, Y.; Jahrling, P.B.; Rojas, O.; Postnikova, E.; Yu, S.; Johns, L.; Holbrook, M. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. Npj Vaccines 2017, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; Yang, H.; Qian, Y.; Zhang, Y.; Fang, R.; Chen, X. Immunogenicity and virus-like particle formation of rotavirus capsid proteins produced in transgenic plants. Sci. China Life Sci. 2011, 54, 82–89. [Google Scholar] [CrossRef]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.-Y.; Couture, M.; D’Aoust, M.-A.; Dhaliwall, J.; Finkle, C. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078. [Google Scholar] [CrossRef]
- Mani, S.; Tripathi, L.; Raut, R.; Tyagi, P.; Arora, U.; Barman, T.; Sood, R.; Galav, A.; Wahala, W.; de Silva, A. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS ONE 2013, 8, e64595. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Chiao, D.-J.; Hsu, Y.-L.; Lin, C.-C.; Wu, H.-L.; Shu, P.-Y.; Chang, S.-F.; Chang, J.-H.; Kuo, S.-C. Mosquito cell-derived Japanese encephalitis virus-like particles induce specific humoral and cellular immune responses in mice. Viruses 2020, 12, 336. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, S.; Zhang, Y.; Mo, R.; Yan, F.; Wang, H.; Wong, G.; Chi, H.; Wang, T.; Feng, N. A chimeric Sudan virus-like particle vaccine candidate produced by a recombinant baculovirus system induces specific immune responses in mice and horses. Viruses 2020, 12, 64. [Google Scholar] [CrossRef]
- Brown, C.S.; Welling-Wester, S.; Feijlbrief, M.; Van Lent, J.W.; Spaan, W.J. Chimeric parvovirus B19 capsids for the presentation of foreign epitopes. Virology 1994, 198, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Schellenbacher, C.; Kwak, K.; Fink, D.; Shafti-Keramat, S.; Huber, B.; Jindra, C.; Faust, H.; Dillner, J.; Roden, R.B.; Kirnbauer, R. Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses. J. Investig. Dermatol. 2013, 133, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- Varsani, A.; Williamson, A.-L.; De Villiers, D.; Becker, I.; Christensen, N.D.; Rybicki, E.P. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J. Virol. 2003, 77, 8386–8393. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Ochi, H.; Matsumoto, T.; Yoshikawa, H.; Kanda, T. Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J. Med. Virol. 2008, 80, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Fan, R.; Sun, S.; Fan, P.; Su, W.; Zhou, Y.; Gao, F.; Xu, F.; Kong, W.; Jiang, C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015, 33, 6596–6603. [Google Scholar] [CrossRef]
- Tan, M.; Xia, M.; Huang, P.; Wang, L.; Zhong, W.; McNeal, M.; Wei, C.; Jiang, X. Norovirus P particle as a platform for antigen presentation. Procedia Vaccinol. 2011, 4, 19–26. [Google Scholar] [CrossRef]
- Di Bonito, P.; Grasso, F.; Mochi, S.; Petrone, L.; Fanales-Belasio, E.; Mei, A.; Cesolini, A.; Laconi, G.; Conrad, H.; Bernhard, H. Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009, 395, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Gunter, C.J.; Regnard, G.L.; Rybicki, E.P.; Hitzeroth, I.I. Immunogenicity of plant-produced porcine circovirus-like particles in mice. Plant Biotechnol. J. 2019, 17, 1751–1759. [Google Scholar] [CrossRef]
- Thuenemann, E.C.; Meyers, A.E.; Verwey, J.; Rybicki, E.P.; Lomonossoff, G.P. A method for rapid production of heteromultimeric protein complexes in plants: Assembly of protective bluetongue virus-like particles. Plant Biotechnol. J. 2013, 11, 839–846. [Google Scholar] [CrossRef]
- Rutkowska, D.A.; Mokoena, N.B.; Tsekoa, T.L.; Dibakwane, V.S.; O’Kennedy, M.M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 2019, 15, 432. [Google Scholar] [CrossRef]
- Smith, T.; O’Kennedy, M.M.; Wandrag, D.B.R.; Adeyemi, M.; Abolnik, C. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus. Plant Biotechnol. J. 2020, 18, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Pushko, P.; Tretyakova, I.; Hidajat, R.; Zsak, A.; Chrzastek, K.; Tumpey, T.M.; Kapczynski, D.R. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology 2017, 501, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Pan, Q.; Lu, Z.; Li, K.; Gao, H.; Qi, X.; Gao, Y.; Wang, X. An optimized, highly efficient, self-assembled, subvirus-like particle of infectious bursal disease virus (IBDV). Vaccine 2016, 34, 3508–3514. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine against Fish Disease. Front. Plant Sci. 2021, 12, 717952. [Google Scholar] [CrossRef]
- Marsian, J.; Hurdiss, D.L.; Ranson, N.A.; Ritala, A.; Paley, R.; Cano, I.; Lomonossoff, G.P. Plant-made nervous necrosis virus-like particles protect fish against disease. Front. Plant Sci. 2019, 10, 880. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, X.; Gai, W.; Wong, G.; Wang, H.; Jin, H.; Feng, N.; Zhao, Y.; Zhang, W.; Li, N. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antivir. Res. 2017, 140, 55–61. [Google Scholar] [CrossRef]
- Xu, X.; Ding, Z.; Li, J.; Liang, J.; Bu, Z.; Ding, J.; Yang, Y.; Lang, X.; Wang, X.; Yin, R. Newcastle disease virus-like particles containing the Brucella BCSP31 protein induce dendritic cell activation and protect mice against virulent Brucella challenge. Vet. Microbiol. 2019, 229, 39–47. [Google Scholar] [CrossRef]
- Ji, P.; Liu, Y.; Chen, Y.; Wang, A.; Jiang, D.; Zhao, B.; Wang, J.; Chai, S.; Zhou, E.; Zhang, G. Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs. Antivir. Res. 2017, 139, 146–152. [Google Scholar] [CrossRef]
- Dalton, K.P.; Alvarado, C.; Reytor, E.; del Carmen Nuñez, M.; Podadera, A.; Martínez-Alonso, D.; Alonso, J.M.M.; Nicieza, I.; Gómez-Sebastián, S.; Dalton, R.M. Chimeric VLPs Bearing VP60 from Two Serotypes of Rabbit Haemorrhagic Disease Virus Are Protective against Both Viruses. Vaccines 2021, 9, 1005. [Google Scholar] [CrossRef]
- Dennis, S.J.; Meyers, A.E.; Guthrie, A.J.; Hitzeroth, I.I.; Rybicki, E.P. Immunogenicity of plant-produced African horse sickness virus-like particles: Implications for a novel vaccine. Plant Biotechnol. J. 2018, 16, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Dennis, S.J.; O’kennedy, M.M.; Rutkowska, D.; Tsekoa, T.; Lourens, C.W.; Hitzeroth, I.I.; Meyers, A.E.; Rybicki, E.P. Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Vet. Res. 2018, 49, 105. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, A.; Gedvilaite, A.; Ulrich, R.; Lüschow, D.; Sasnauskas, K.; Müller, H.; Johne, R. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res. 2006, 120, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Bae, S.-W.; Park, J.-K.; Kwon, J.-H.; Yuk, S.-S.; Song, J.-M.; Kang, S.-M.; Kwon, Y.-K.; Kim, H.-Y.; Song, C.-S. Virus-like particle vaccine protects against H3N2 canine influenza virus in dog. Vaccine 2013, 31, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Fontana, D.; Kratje, R.; Etcheverrigaray, M.; Prieto, C. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine 2015, 33, 4238–4246. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Y.; Zhou, P.; Lu, Y.; Zhang, Q.; Xiao, S.; Dong, Z.; Pan, L.; Lv, J.; Zhang, Z. Chimeric virus-like particles elicit protective immunity against serotype O foot-and-mouth disease virus in guinea pigs. Appl. Microbiol. Biotechnol. 2017, 101, 4905–4914. [Google Scholar] [CrossRef]
- Choi, Y.R.; Kim, H.J.; Lee, J.Y.; Kang, H.A.; Kim, H.-J. Chromatographically-purified capsid proteins of red-spotted grouper nervous necrosis virus expressed in Saccharomyces cerevisiae form virus-like particles. Protein Expr. Purif. 2013, 89, 162–168. [Google Scholar] [CrossRef]
- Su, H.; van Eerde, A.; Steen, H.S.; Heldal, I.; Haugslien, S.; Ørpetveit, I.; Wüstner, S.C.; Inami, M.; Løvoll, M.; Rimstad, E. Establishment of a piscine myocarditis virus (PMCV) challenge model and testing of a plant-produced subunit vaccine candidate against cardiomyopathy syndrome (CMS) in Atlantic salmon Salmo salar. Aquaculture 2021, 541, 736806. [Google Scholar] [CrossRef]
- Pascual, E.; Mata, C.P.; Gómez-Blanco, J.; Moreno, N.; Bárcena, J.; Blanco, E.; Rodríguez-Frandsen, A.; Nieto, A.; Carrascosa, J.L.; Castón, J.R. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J. Virol. 2015, 89, 2563–2574. [Google Scholar] [CrossRef]
- Crisci, E.; Fraile, L.; Moreno, N.; Blanco, E.; Cabezon, R.; Costa, C.; Mussa, T.; Baratelli, M.; Martinez-Orellana, P.; Ganges, L.; et al. Chimeric calicivirus-like particles elicit specific immune responses in pigs. Vaccine 2012, 30, 2427–2439. [Google Scholar] [CrossRef]
- Shen, H.; Xue, C.; Lv, L.; Wang, W.; Liu, Q.; Liu, K.; Chen, X.; Zheng, J.; Li, X.; Cao, Y. Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease. Virus Res. 2013, 178, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Jin, Q.; Chen, X.; Yang, S.; Guo, J.; Xing, G.; Deng, R.; Wang, A.; Zhang, G. Nanovaccine confers dual protection against influenza A virus and porcine circovirus type 2. Int. J. Nanomed. 2019, 14, 7533. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Chichester, J.A.; Mett, V.; Jaje, J.; Tottey, S.; Manceva, S.; Casta, L.J.; Gibbs, S.K.; Musiychuk, K.; Shamloul, M. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS ONE 2013, 8, e79538. [Google Scholar] [CrossRef] [PubMed]
- Chichester, J.A.; Green, B.J.; Jones, R.M.; Shoji, Y.; Miura, K.; Long, C.A.; Lee, C.K.; Ockenhouse, C.F.; Morin, M.J.; Streatfield, S.J. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine 2018, 36, 5865–5871. [Google Scholar] [CrossRef]
- Sastri, M.; Kekuda, R.; Gopinath, K.; Kumar, C.R.; Jagath, J.; Savithri, H. Assembly of physalis mottle virus capsid protein in Escherichia coli and the role of amino and carboxy termini in the formation of the icosahedral particles. J. Mol. Biol. 1997, 272, 541–552. [Google Scholar] [CrossRef]
- Hu, H.; Steinmetz, N.F. Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers 2021, 13, 2909. [Google Scholar] [CrossRef]
- Ogrina, A.; Skrastina, D.; Balke, I.; Kalnciema, I.; Jansons, J.; Bachmann, M.F.; Zeltins, A. Comparison of Bacterial Expression Systems Based on Potato Virus Y-like Particles for Vaccine Generation. Vaccines 2022, 10, 485. [Google Scholar] [CrossRef]
- Leclerc, D.; Rivest, M.; Babin, C.; López-Macias, C.; Savard, P. A novel M2e based flu vaccine formulation for dogs. PLoS ONE 2013, 8, e77084. [Google Scholar] [CrossRef]
- Zhai, L.; Yadav, R.; Kunda, N.K.; Anderson, D.; Bruckner, E.; Miller, E.K.; Basu, R.; Muttil, P.; Tumban, E. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antivir. Res. 2019, 166, 56–65. [Google Scholar]
- Zhai, L.; Peabody, J.; Pang, Y.S.; Schiller, J.; Chackerian, B.; Tumban, E. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antivir. Res. 2017, 147, 116–123. [Google Scholar] [CrossRef]
- Tumban, E.; Peabody, J.; Peabody, D.S.; Chackerian, B. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS ONE 2011, 6, e23310. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jing, Z.; Wang, S.; Li, Q.; Xing, Y.; Shi, H.; Li, S.; Hong, Z. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials 2021, 271, 120726. [Google Scholar] [CrossRef] [PubMed]
- Zinkhan, S.; Ogrina, A.; Balke, I.; Reseviča, G.; Zeltins, A.; de Brot, S.; Lipp, C.; Chang, X.; Zha, L.; Vogel, M. The impact of size on particle drainage dynamics and antibody response. J. Control Release 2021, 331, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Pomwised, R.; Intamaso, U.; Teintze, M.; Young, M.; Pincus, S.H. Coupling peptide antigens to virus-like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines 2016, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Kalnciema, I.; Skrastina, D.; Ose, V.; Pumpens, P.; Zeltins, A. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Mol. Biotechnol. 2012, 52, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Zeltins, A.; West, J.; Zabel, F.; El Turabi, A.; Balke, I.; Haas, S.; Maudrich, M.; Storni, F.; Engeroff, P.; Jennings, G.T. Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. Npj Vaccines 2017, 2, 30. [Google Scholar] [CrossRef]
- Denis, J.; Majeau, N.; Acosta-Ramirez, E.; Savard, C.; Bedard, M.-C.; Simard, S.; Lecours, K.; Bolduc, M.; Pare, C.; Willems, B. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology 2007, 363, 59–68. [Google Scholar] [CrossRef]
- Palmer, K.E.; Benko, A.; Doucette, S.A.; Cameron, T.I.; Foster, T.; Hanley, K.M.; McCormick, A.A.; McCulloch, M.; Pogue, G.P.; Smith, M.L. Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine 2006, 24, 5516–5525. [Google Scholar] [CrossRef]
- Stander, J.; Chabeda, A.; Rybicki, E.P.; Meyers, A.E. A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. Front. Plant Sci. 2021, 12, 738619. [Google Scholar] [CrossRef]
- Maphis, N.M.; Peabody, J.; Crossey, E.; Jiang, S.; Jamaleddin Ahmad, F.A.; Alvarez, M.; Mansoor, S.K.; Yaney, A.; Yang, Y.; Sillerud, L.O. Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. Npj Vaccines 2019, 4, 26. [Google Scholar] [CrossRef]
- Weyer, C.T.; Grewar, J.D.; Burger, P.; Rossouw, E.; Lourens, C.; Joone, C.; le Grange, M.; Coetzee, P.; Venter, E.; Martin, D.P. African horse sickness caused by genome reassortment and reversion to virulence of live, attenuated vaccine viruses, South Africa, 2004–2014. Emerg. Infect. Dis. 2016, 22, 2087. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lee, T.-Y.; Lee, H.; Yang, J.-S.; Kim, K.-C.; Lee, J.-Y.; Kim, H.-J. Comparing the Immunogenicity and Protective Effects of Three MERS-CoV Inactivation Methods in Mice. Vaccines 2022, 10, 1843. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, M.M.; Tadey, L.; Mammana, L.; Quarleri, J.F.; Campos, R.H.; Flichman, D.M. Biological characterization of hepatitis B virus genotypes: Their role in viral replication and antigen expression. Front. Microbiol. 2021, 12, 758613. [Google Scholar] [CrossRef] [PubMed]
- Bruni, R.; Villano, U.; Equestre, M.; Chionne, P.; Madonna, E.; Trandeva-Bankova, D.; Peleva-Pishmisheva, M.; Tenev, T.; Cella, E.; Ciccozzi, M. Hepatitis E virus genotypes and subgenotypes causing acute hepatitis, Bulgaria, 2013–2015. PLoS ONE 2018, 13, e0198045. [Google Scholar] [CrossRef]
- FDA. In FDA: 1989. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/engerix-b (accessed on 10 March 2019).
- Huang, B.; Wang, W.; Li, R.; Wang, X.; Jiang, T.; Qi, X.; Gao, Y.; Tan, W.; Ruan, L. Influenza A virus nucleoprotein derived from Escherichia coli or recombinant vaccinia (Tiantan) virus elicits robust cross-protection in mice. Virol. J. 2012, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Camós, L.; Alonso, U.; Esteve-Codina, A.; Chang, C.-Y.; Martín-Mur, B.; Accensi, F.; Muñoz, M.; Navas, M.J.; Dabad, M.; Vidal, E. Cross-protection against African swine fever virus upon intranasal vaccination is associated with an adaptive-innate immune crosstalk. PLoS Pathog. 2022, 18, e1010931. [Google Scholar] [CrossRef]
- MacLachlan, J.H.; Cowie, B.C. Hepatitis B virus epidemiology. Cold Spring Harb. Perspect. Med. 2015, 5, a021410. [Google Scholar] [CrossRef]
- Wen, G.-P.; He, L.; Tang, Z.-M.; Wang, S.-L.; Zhang, X.; Chen, Y.-Z.; Lin, X.; Liu, C.; Chen, J.-X.; Ying, D. Quantitative evaluation of protective antibody response induced by hepatitis E vaccine in humans. Nat. Commun. 2020, 11, 3971. [Google Scholar] [CrossRef]
- Smith, D.B.; Simmonds, P. Classification and genomic diversity of enterically transmitted hepatitis viruses. Cold Spring Harb. Perspect. Med. 2018, 8, a031880. [Google Scholar] [CrossRef]
- Zost, S.J.; Parkhouse, K.; Gumina, M.E.; Kim, K.; Perez, S.D.; Wilson, P.C.; Treanor, J.J.; Sant, A.J.; Cobey, S.; Hensley, S.E. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl. Acad. Sci. USA 2017, 114, 12578–12583. [Google Scholar] [CrossRef]
- Chen, C.-W.; Saubi, N.; Kilpeläinen, A.; Joseph-Munné, J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines 2022, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.Z.; Chan, K.R. The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses 2020, 12, 520. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.E.; Andersen-Nissen, E.; Peterson, E.R.; Sato, A.; Hamilton, M.K.; Borgerding, J.; Krishnamurty, A.T.; Chang, J.T.; Adams, D.J.; Hensley, T.R.; et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8(+) T-cell responses but is attenuated by preexisting Ad5 immunity. Proc. Natl. Acad. Sci. USA 2012, 109, E3503–E3512. [Google Scholar] [CrossRef] [PubMed]
- Knuchel, M.C.; Marty, R.R.; Morin, T.N.; Ilter, O.; Zuniga, A.; Naim, H.Y. Relevance of a pre-existing measles immunity prior immunization with a recombinant measles virus vector. Hum. Vaccines Immunother. 2013, 9, 599–606. [Google Scholar] [CrossRef]
- Zarnitsyna, V.I.; Lavine, J.; Ellebedy, A.; Ahmed, R.; Antia, R. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza. PLoS Pathog. 2016, 12, e1005692. [Google Scholar] [CrossRef]
- Voysey, M.; Kelly, D.F.; Fanshawe, T.R.; Sadarangani, M.; O’Brien, K.L.; Perera, R.; Pollard, A.J. The Influence of Maternally Derived Antibody and Infant Age at Vaccination on Infant Vaccine Responses: An Individual Participant Meta-analysis. JAMA Pediatr. 2017, 171, 637–646. [Google Scholar] [CrossRef]
- Masat, E.; Pavani, G.; Mingozzi, F. Humoral immunity to AAV vectors in gene therapy: Challenges and potential solutions. Discov. Med. 2013, 15, 379–389. [Google Scholar]
- McCluskie, M.J.; Evans, D.M.; Zhang, N.; Benoit, M.; McElhiney, S.P.; Unnithan, M.; DeMarco, S.C.; Clay, B.; Huber, C.; Deora, A.; et al. The effect of preexisting anti-carrier immunity on subsequent responses to CRM197 or Qb-VLP conjugate vaccines. Immunopharmacol. Immunotoxicol. 2016, 38, 184–196. [Google Scholar] [CrossRef]
Name of Virus Used to Make VLPs | Structural Protein Used to Make VLPs | Capsid or Envelope Proteins | Foreign Antigen Displayed on VLP | Expression System | Immune Responses | References |
---|---|---|---|---|---|---|
Parvovirus B19 | VP2 | Capsid | Linear epitopes from human herpes simplex virus (HSV type 1) and mouse hepatitis virus (MHV)A59 | Sf insect cells | Mice immunized with the chimeric VLPs were partially protected against infection with HSV or MHV. | [79] |
* HPV | Major capsid protein | Capsid | HPV16 L2 (aa 17–36) | Sf9 insect cells | Sera from immunized mice neutralized or protected against infection with HPV pseudovirus types: 5/6/11/16/18//26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/70/73 | [80,81,82] |
HBV | HBsAgS | Envelope | 130-amino acid from the C-terminus of KatA of Helicobacter pylori | Human hematoma-7 cells | Bacterial load was reduced in mice vaccinated with chimeric VLPs by at least 50% | [46] |
HCV envelope glycoprotein 2 epitopes (HCV 412–425, 434–446, 502–520, and 523–535) | Leishmania tarentolae | Sera from mice immunized with VLPs displaying epitope 412–425 neutralized (80–100%) HCV genotypes 1a, 1b, 4a, and 5a | [47] | |||
Norovirus | Protrusion domain | Capsid | 10 different epitopes from four capsid proteins (VP1-VP4) of enterovirus A (EV71) | Rosetta competent cells (DE3 strain) | Mice immunized with VLPs displaying amino acid 176–190 from VP3 and amino acid 208–222 from VP1 (both from EV71) were completely protected from E71 infection. | [83] |
Rotavirus VP8 (159 amino acid from the capsid) | E. coli BL21 cells | Immunized mice reduced mouse rotavirus shedding by 89–99.2%. | [84] | |||
HIV-1 | VHIV-1 Nef mut | Envelope | HPV16 E7 protein | HEK 293 G protein-coupled receptor cells | Mice immunized with VLPs developed anti-E7 cytotoxic T-cell response and were protected from developing HPV-related tumors. | [85] |
HBV | HBcAg | Capsid | Peptide from HPV 16 E7 protein (amino acid 49–57) | E. coli | VLPs suppressed the development of tumors in a TC-1 grafted mice model. | [49] |
HBV | HBsAg | Envelope | Dengue virus envelope protein (specifically, domain III of dengue virus 1–4) | P. pastoris | Mosaic VLPs elicited neutralizing antibodies against dengue 1–4. Antibodies protected AG129 mice against lethal challenge with dengue virus 4 | [48] |
Name of Virus Used to Develop VLPs | Structural Antigen Used to Make VLPs | Capsid or Envelope Proteins | Foreign Antigen Displayed on VLP | Expression System | Immune Responses | References |
---|---|---|---|---|---|---|
Infectious bursal disease virus | VP2 precursor (466-residue) | Capsid | HA and M2 protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus | Trichoplusia ni (H5) insect cells | A total of 100% of mice immunized with chimeric VLPs were protected against lethal challenge with influenza virus; in control groups; 83% of mice died 7–9 days after infection. | [106] |
Rabbit hemorrhagic disease virus | VP60 | Capsid | T-helper epitope from 3A protein of foot-and-mouth disease virus | Trichoplusia ni (H5) insect cells | Vaccinated pigs generated specific IgA and IgG responses, had high IFN-γ-secreting cells and 3A-specific lymphoproliferative specific T cell responses. | [107] |
Influenza A virus | HA, NA, and M1 of H5N1 virus | Envelope | Ectodomain of Newcastle disease virus hemagglutinin-neuraminidase protein | Sf9 insect cells | Vaccinated chickens were completely protected against Newcastle disease F48E9 virus. | [108] |
Canine parvovirus | VP2 | Capsid | Receptor binding domain of MERS-CoV | Sf9 insect cells | Sera from mice immunized with VLPs neutralized a pseudo-MERS-CoV. A balanced T-cell (Th1 and Th2) response was elicited. | [94] |
Newcastle disease virus | M protein | Envelope | Brucella antigen BCSP31 | Sf9 insect cells | Mice immunized with VLPs elicited humoral and cellular immune responses in mice. Protection efficacy against a virulent strain of Brucella melitensis (strain 16M) was comparable to a commercial live-attenuated vaccine: Brucella melitensis strain M5. | [95] |
PCV-2 | Capsid protein | Capsid | Ectodomain of matrix protein 2 (M2e) of influenza A virus | E. coli | VLP-immunized mice were protected against challenge by A/swine/Zhucheng/90/2014 (H1N1) or A/swine/Henan/1/2010 (H3N2) strains. Control mice died from the challenge. Immunized mice were also protected against human [A/Puerto Rico/8/1934 (H1N1)] and avian [A/chicken/Guangzhou/GZ/2005 (H9N2)] influenza viruses. | [109] |
Name of Virus Used to Develop VLPs | Structural Antigen Used to Make VLPs | Capsid or Envelope Proteins | Foreign Antigen Displayed on VLP | Expression System | Immune Responses | References |
---|---|---|---|---|---|---|
Bacteriophage AP205 | Capsid protein | Capsid | West Nile virus envelope protein domain III (WNV EDIII) | Nicotiana benthamiana | Mice immunized with only 5 μg of chimeric VLPs elicited potent IgG responses (1:32,000) that were 4-fold higher compared to mice with immunization with only soluble WNV-EDIII protein. | [126] |
Bacteriophage MS2 | Capsid protein | Capsid | Concatemer of L2 peptides from two HPV types and a consensus sequence from different HPV types | E. coli | Mixed MS2-L2 VLPs protected mice against 11 oncogenic HPV pseudovirus types which are associated with around 95% of cervical cancer. Spray-freeze drying increased the thermostability of the VLPs (stored at room temperature for up to 60 days). | [116,117] |
Bacteriophage Qβ | Capsid protein | Capsid | Microtubule-associated protein tau peptide | E. coli | Mice immunized with chimeric VLPs had reduced levels of hyperphosphorylated pathological tau. | [127] |
Bacteriophage P22 | Capsid protein | Capsid | B and T epitopes (OVAB and OVAT peptide) of ovalbumin | E. coli | VLP-OVAT vaccine significantly inhibited tumor growth and lowered the proportion of myeloid-derived suppressor cells among tumor-infiltrating lymphocytes and splenocytes. | [119] |
Bacteriophage PP7 | Capsid protein | Capsid | L2 peptides from eight different HPV types | E. coli | Mice immunized with VLPs (individually or as a mixture) elicited high-titer anti-L2 IgG serum antibodies; immunized mice were protected from a high-dose challenge with HPV pseudoviruses (PsVs). | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheirvari, M.; Liu, H.; Tumban, E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023, 15, 1109. https://doi.org/10.3390/v15051109
Kheirvari M, Liu H, Tumban E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses. 2023; 15(5):1109. https://doi.org/10.3390/v15051109
Chicago/Turabian StyleKheirvari, Milad, Hong Liu, and Ebenezer Tumban. 2023. "Virus-like Particle Vaccines and Platforms for Vaccine Development" Viruses 15, no. 5: 1109. https://doi.org/10.3390/v15051109
APA StyleKheirvari, M., Liu, H., & Tumban, E. (2023). Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses, 15(5), 1109. https://doi.org/10.3390/v15051109