Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation
Abstract
:1. Introduction
2. Material and Methods
2.1. Cells
2.2. Viruses
2.3. FMDV Cell Infections
2.4. Western Blotting
2.5. Animal Experiments
2.6. Mice Experiment
2.7. Swine Experiments
2.8. Detection of Virus in Sera and Nasal Swabs
2.9. Evaluation of Humoral Immune Response
2.10. Data Analyses
3. Results
3.1. Characterization of FMDV A24 and Asia1 with Synonymous Codon Pair Bias Deoptimization of the P1 Region in Porcine Cells
3.2. P1 Deoptimization of A24 and Asia1 Results in Attenuation of FMDV in Mice and Confers Protection against WT Homologous Challenge
3.3. Deoptimization of P1 Coding Region Results in Attenuation of FMDVA24 and Asia1 in Swine
3.4. Humoral Response in Swine Inoculated with P1Deopt Attenuated Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grubman, M.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, S.M.; Belsham, G.J. Foot-and-Mouth Disease: Past, Present and Future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight-Jones, T.J.D.; Rushton, J. The Economic Impacts of Foot and Mouth Disease—What Are They, How Big Are They and Where Do They Occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, J.; Cosivi, O. Elimination of Foot-and-Mouth Disease in South America: Lessons and Challenges. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 20120381. [Google Scholar] [CrossRef]
- Paton, D.J.; Di Nardo, A.; Knowles, N.J.; Wadsworth, J.; Pituco, E.M.; Cosivi, O.; Rivera, A.M.; Kassimi, L.B.; Brocchi, E.; de Clercq, K.; et al. The History of Foot-and-Mouth Disease Virus Serotype C: The First Known Extinct Serotype? Virus Evol. 2021, 7, veab009. [Google Scholar] [CrossRef]
- Knowles, N.J.; He, J.; Shang, Y.; Wadsworth, J.; Valdazo-González, B.; Onosato, H.; Fukai, K.; Morioka, K.; Yoshida, K.; Cho, I.S.; et al. Southeast Asian Foot-and-Mouth Disease Viruses in Eastern Asia. Emerg. Infect. Dis. 2012, 18, 499–501. [Google Scholar] [CrossRef]
- Parida, S. Vaccination against Foot-and-Mouth Disease Virus: Strategies and Effectiveness. Expert Rev. Vaccines 2009, 8, 347–365. [Google Scholar] [CrossRef]
- de los Santos, T.; Diaz-San Segundo, F.; Rodriguez, L.L. The Need for Improved Vaccines against Foot-and-Mouth Disease. Curr. Opin. Virol. 2018, 29, 16–25. [Google Scholar] [CrossRef]
- Minor, P.D. Live Attenuated Vaccines: Historical Successes and Current Challenges. Virology 2015, 479–480, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Yeh, M.T.; Bujaki, E.; Dolan, P.T.; Smith, M.; Wahid, R.; Konz, J.; Weiner, A.J.; Bandyopadhyay, A.S.; Van Damme, P.; De Coster, I.; et al. Engineering the Live-Attenuated Polio Vaccine to Prevent Reversion to Virulence. Cell Host Microbe 2020, 27, 736–751.e8. [Google Scholar] [CrossRef]
- Piccone, M.E.; Rieder, E.; Mason, P.W.; Grubman, M.J. The Foot-and-Mouth Disease Virus Leader Proteinase Gene Is Not Required for Viral Replication. J. Virol. 1995, 69, 5376–5382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, P.W.; Piccone, M.E.; Mckenna, T.S.; Chinsangaram, J.; Grubman, M.J. Evaluation of a Live-Attenuated Foot-and-Mouth Disease Virus as a Vaccine Candidate. Virology 1997, 227, 96–102. [Google Scholar] [CrossRef] [PubMed]
- de los Santos, T.; Diaz-San Segundo, F.; Zhu, J.; Koster, M.; Dias, C.C.A.; Grubman, M.J. A Conserved Domain in the Leader Proteinase of Foot-and-Mouth Disease Virus Is Required for Proper Subcellular Localization and Function. J. Virol. 2009, 83, 1800–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-San Segundo, F.; Weiss, M.; Pérez-Martín, E.; Dias, C.C.; Grubman, M.J.; Santos, T.D.L. Inoculation of Swine with Foot-and-Mouth Disease SAP-Mutant Virus Induces Early Protection against Disease. J. Virol. 2012, 86, 1316–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, L.; Di Nardo, A.; Singer, B.; Lasecka-Dykes, L.; Logan, G.; Wright, C.; Pérez-Martín, E.; King, D.; Tuthill, T.; Ribeca, P. Within-Host Recombination in the Foot-and-Mouth Disease Virus Genome. Viruses 2018, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Domingo, E.; Perales, C. Quasispecies and Virus. Eur. Biophys. J. 2018, 47, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Brito, B.; Pauszek, S.J.; Hartwig, E.J.; Smoliga, G.R.; Vu, L.T.; Dong, P.V.; Stenfeldt, C.; Rodriguez, L.L.; King, D.P.; Knowles, N.J.; et al. A Traditional Evolutionary History of Foot-and-Mouth Disease Viruses in Southeast Asia Challenged by Analyses of Non-Structural Protein Coding Sequences. Sci. Rep. 2018, 8, 6472. [Google Scholar] [CrossRef] [Green Version]
- Fish, I.; Stenfeldt, C.; Spinard, E.; Medina, G.N.; Azzinaro, P.A.; Bertram, M.R.; Holinka, L.; Smoliga, G.R.; Hartwig, E.J.; de los Santos, T.; et al. Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle. Pathogens 2022, 11, 644. [Google Scholar] [CrossRef]
- Martínez, M.A.; Jordan-Paiz, A.; Franco, S.; Nevot, M. Synonymous Genome Recoding: A Tool to Explore Microbial Biology and New Therapeutic Strategies. Nucleic Acids Res. 2019, 47, 10506–10519. [Google Scholar] [CrossRef]
- Alexaki, A.; Kames, J.; Holcomb, D.D.; Athey, J.; Santana-Quintero, L.V.; Lam, P.V.N.; Hamasaki-Katagiri, N.; Osipova, E.; Simonyan, V.; Bar, H.; et al. Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J. Mol. Biol. 2019, 431, 2434–2441. [Google Scholar] [CrossRef]
- Diaz-San Segundo, F.; Medina, G.N.; Ramirez-Medina, E.; Velazquez-Salinas, L.; Koster, M.; Grubman, M.J.; de los Santos, T. Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo While Inducing a Strong Neutralizing Antibody Response. J. Virol. 2016, 90, 1298–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-San Segundo, F.; Medina, G.N.; Spinard, E.; Kloc, A.; Ramirez-Medina, E.; Azzinaro, P.; Mueller, S.; Rieder, E.; de los Santos, T. Use of Synonymous Deoptimization to Derive Modified Live Attenuated Strains of Foot and Mouth Disease Virus. Front. Microbiol. 2021, 11, 610286. [Google Scholar] [CrossRef] [PubMed]
- Rieder, E.; Henry, T.; Duque, H.; Baxt, B. Analysis of a Foot-and-Mouth Disease Virus Type A24 Isolate Containing an SGD Receptor Recognition Site In Vitro and Its Pathogenesis in Cattle. J. Virol. 2005, 79, 12989–12998. [Google Scholar] [CrossRef] [Green Version]
- LaRocco, M.; Krug, P.; Ahmed, Z.; Pacheco, J.; Duque, H.; Baxt, B.; Rodriguez, L. A Continuous Bovine Kidney Cell Line Constitutively Expressing Boving AVβ6 Integrin Had Increased Susceptibility to Foot-and-Mouth Disease Virus. J. Clin. Microbiol. 2012, 51, 1714–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera, J.; Brake, D.A.; Schutta, C.; Ettyreddy, D.; Kamicker, B.J.; Rasmussen, M.V.; Bravo de Rueda, C.; Zurita, M.; Pisano, M.; Hurtle, W.; et al. Versatility of the Adenovirus-Vectored Foot-and-Mouth Disease Vaccine Platform across Multiple Foot-and-Mouth Disease Virus Serotypes and Topotypes Using a Vaccine Dose Representative of the AdtA24 Conditionally Licensed Vaccine. Vaccine 2018, 36, 7345–7352. [Google Scholar] [CrossRef]
- Coleman, J.R.; Papamichail, D.; Skiena, S.; Futcher, B.; Wimmer, E.; Mueller, S. Virus Attenuation by Genome-Scale Changes in Codon Pair Bias. Science 2008, 320, 1784–1787. [Google Scholar] [CrossRef] [Green Version]
- Medina, G.N.; Azzinaro, P.; Ramirez-Medina, E.; Gutkoska, J.; Fang, Y.; Diaz-San Segundo, F.; de los Santos, T. Impairment of the DeISGylation Activity of Foot-and-Mouth Disease Virus Lpro Causes Attenuation In Vitro and In Vivo. J. Virol. 2020, 94, e00341-20. [Google Scholar] [CrossRef] [Green Version]
- Arzt, J.; Pacheco, J.M.; Smoliga, G.R.; Tucker, M.T.; Bishop, E.; Pauszek, S.J.; Hartwig, E.J.; de los Santos, T.; Rodriguez, L.L. Foot-and-Mouth Disease Virus Virulence in Cattle Is Co-Determined by Viral Replication Dynamics and Route of Infection. Virology 2014, 452–453, 12–22. [Google Scholar] [CrossRef] [Green Version]
- OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Part 2 OIE Listed Diseases and Other Diseases of Importance to Interntaional Trade. Mult. Species 2012, Section 2, 143–173.
- Devaney, M.A.; Vakharia, V.N.; Lloyd, R.; Ehrenfeld, E.; Grubman, M.J. Leader Protein of Foot-and-Mouth Disease Virus Is Required for Cleavage of the P220 Component of the Cap-Binding Protein Complex. J. Virol. 1988, 62, 4407–4409. [Google Scholar] [CrossRef] [Green Version]
- Kirchweger, R.; Ziegler, E.; Lamphear, B.J.; Waters, D.; Liebig, H.D.; Sommergruber, W.; Sobrino, F.; Hohenadl, C.; Blaas, D.; Rhoads, R.E. Foot-and-Mouth Disease Virus Leader Proteinase: Purification of the Lb Form and Determination of Its Cleavage Site on EIF-4 Gamma. J. Virol. 1994, 68, 5677–5684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salguero, F.J.; Sánchez-Martín, M.A.; Díaz-San Segundo, F.; De Avila, A.; Sevilla, N. Foot-and-Mouth Disease Virus (FMDV) Causes an Acute Disease That Can Be Lethal for Adult Laboratory Mice. Virology 2005, 332, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Diaz-San Segundo, F.; Dias, C.C.A.; Moraes, M.P.; Weiss, M.; Perez-Martin, E.; Owens, G.; Custer, M.; Kamrud, K.; de los Santos, T.; Grubman, M.J. Venezuelan Equine Encephalitis Replicon Particles Can Induce Rapid Protection against Foot-and-Mouth Disease Virus. J. Virol. 2013, 87, 5447–5460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, C.C.A.; Moraes, M.P.; Diaz-SanSegundo, F.; de los Santos, T.; Grubman, M.J. Porcine Type I Interferon Rapidly Protects Swine against Challenge with Multiple Serotypes of Foot-and-Mouth Disease Virus. J. Interferon Cytokine Res. 2011, 31, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddowla, S.; Hollister, J.; Pacheco, J.M.; Rodriguez, L.L.; Rieder, E. A Safe Foot-and-Mouth Disease Vaccine Platform with Two Negative Markers for Differentiating Infected from Vaccinated Animals. J. Virol. 2012, 86, 11675–11685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Nuñez, S.; König, G.; Berinstein, A.; Carrillo, E. Differences in the Virulence of Two Strains of Foot-and-Mouth Disease Virus Serotype A with the Same Spatiotemporal Distribution. Virus Res. 2010, 147, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative Genomics of Foot-and-Mouth Disease Virus. J. Virol. 2005, 79, 6487–6504. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular Basis of Pathogenesis of FMDV. Virus Res. 2003, 91, 9–32. [Google Scholar] [CrossRef]
- Logan, G.; Newman, J.; Wright, C.F.; Lasecka-Dykes, L.; Haydon, D.T.; Cottam, E.M.; Tuthill, T.J. Deep Sequencing of Foot-and-Mouth Disease Virus Reveals RNA Sequences Involved in Genome Packaging. J. Virol. 2018, 92, e01159-17. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Seo, H.W.; Cho, H.-S.; Oh, Y. A Vaccine Based on Asia1 Shamir of the Foot-and-Mouth Disease Virus Offers Low Levels of Protection to Pigs against Asia1/MOG/05, Circulating in East Asia. Viruses 2022, 14, 1726. [Google Scholar] [CrossRef]
- Mueller, S.; Papamichail, D.; Coleman, J.R.; Skiena, S.; Wimmer, E. Reduction of the Rate of Poliovirus Protein Synthesis through Large-Scale Codon Deoptimization Causes Attenuation of Viral Virulence by Lowering Specific Infectivity. J. Virol. 2006, 80, 9687–9696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Nouën, C.; Collins, P.L.; Buchholz, U.J. Attenuation of Human Respiratory Viruses by Synonymous Genome Recoding. Front. Immunol. 2019, 10, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenke, N.; Trimpert, J.; Merz, S.; Conradie, A.M.; Wyler, E.; Zhang, H.; Hazapis, O.-G.; Rausch, S.; Landthaler, M.; Osterrieder, N.; et al. Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Rep. 2020, 31, 107586. [Google Scholar] [CrossRef]
- Yu, C.-H.; Dang, Y.; Zhou, Z.; Wu, C.; Zhao, F.; Sachs, M.S.; Liu, Y. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-Translational Protein Folding. Mol. Cell 2015, 59, 744–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, G.; Ogurtsov, A.Y.; Shabalina, S.A.; Koonin, E.V. Role of MRNA Structure in the Control of Protein Folding. Nucleic Acids Res. 2016, 44, 10898–10911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlgemuth, S.E.; Gorochowski, T.E.; Roubos, J.A. Translational Sensitivity of the Escherichia Coli Genome to Fluctuating TRNA Availability. Nucleic Acids Res. 2013, 41, 8021–8033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, C.C.; Shaw, J.; Campagnoli, R.; Jorba, J.; Vincent, A.; Quay, J.; Kew, O. Modulation of Poliovirus Replicative Fitness in HeLa Cells by Deoptimization of Synonymous Codon Usage in the Capsid Region. J. Virol. 2006, 80, 3259–3272. [Google Scholar] [CrossRef] [Green Version]
- Lopez de Quinto, S. IRES-Driven Translation Is Stimulated Separately by the FMDV 3′-NCR and Poly(A) Sequences. Nucleic Acids Res. 2002, 30, 4398–4405. [Google Scholar] [CrossRef]
- Spinard, E.; Fish, I.; Azzinaro, P.A.; Rodriguez-Calzada, M.; Hartwig, E.J.; Smoliga, G.R.; Mogulothu, A.; Arzt, J.; de los Santos, T.; Medina, G.N. Evaluation of Potential In Vitro Recombination Events in Codon Deoptimized FMDV Strains. Viruses 2023, 15, 670. [Google Scholar] [CrossRef]
- Stauft, C.B.; Song, Y.; Gorbatsevych, O.; Pantoja, P.; Rodriguez, I.V.; Futcher, B.; Sariol, C.A.; Wimmer, E. Extensive Genomic Recoding by Codon-Pair Deoptimization Selective for Mammals Is a Flexible Tool to Generate Attenuated Vaccine Candidates for Dengue Virus 2. Virology 2019, 537, 237–245. [Google Scholar] [CrossRef]
- Konopka-Anstadt, J.L.; Campagnoli, R.; Vincent, A.; Shaw, J.; Wei, L.; Wynn, N.T.; Smithee, S.E.; Bujaki, E.; Te Yeh, M.; Laassri, M.; et al. Development of a New Oral Poliovirus Vaccine for the Eradication End Game Using Codon Deoptimization. npj Vaccines 2020, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group Dose a | Clinical Results after Deoptimized Virus Inoculation | Clinical Results after Challenge with WT Homologous Virus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pig # | Clinical Score b | Viremia c | Viremia-PCR d | Shedding Virus e | Shedding RT-PCR f | SN g | Clinical Score h | Viremia i | Viremia-PCR j | Shedding Virus k | Shedding RT-PCR l | SN m | |
1 × 106 | 50128 | 4/6 | 0/0/0 | 0/0/0 | 0/0/0 | 1/1.24 × 103/5 | 0/2.4 | ||||||
50129 | 3/9 | 3/4.75 × 101/1 | 0/0/0 | 0/0/0 | 3/1.28 × 103/3 | 0/1.5 | |||||||
50130 | 2/10 | 2/1.55 × 103/1 | 0/0/0 | 0/0/0 | 4/1.16 × 103/6 | 0/3 | |||||||
50131 | 3/9 | 0/0/0 | 6/2.96 × 106/6 | 0/0/0 | 2/1.74 × 103/4 | 0/1.8 | |||||||
1 × 105 | 50132 | 2/11 | 3/2.00 × 101/1 | 0/0/0 | 0/0/0 | 1/6.74 × 102/2 | 0/1.8 | ||||||
50133 | 3/9 | 3/2.50 × 101/1 | 0/0/0 | 0/0/0 | 1/1.34 × 103/5 | 0/2.4 | |||||||
50134 | 0/0 | 0/0/0 | 6/8.59 × 102/6 | 0/0/0 | 6/2.10 × 103/1 | 0/3.6 | |||||||
50135 | 2/12 | 2/6.25 × 102/1 | 0/0/0 | 0/0/0 | 2/2.10 × 103/1 | 0/1.8 | |||||||
1 × 104 | 50136 | 0/0 | 0/0/0 | 3/3.30 × 103/7 | 0/0/0 | 1/6.88 × 102/1 | 0/0 | 1/13 | 1/1.75 × 105/3 | 0/2.10 × 103/7 | 2/3.50 × 102/3 | 2/3.10 × 104/5 | 0/2.4 |
50137 | 0/0 | 0/0/0 | 3/1.20 × 104/7 | 0/0/0 | 3/6.88 × 102/1 | 0/0 | 1/16 | 2/4.50 × 105/3 | 1/6.97 × 105/7 | 2/2.65 × 104/3 | 2/7.10 × 106/5 | 0/2.7 | |
50138 | 0/0 | 0/0/0 | 4/5.67 × 103/6 | 0/0/0 | 2/1.29 × 103/1 | 0/0 | 1/14 | 2/2.15 × 105/3 | 0/1.92 × 103/7 | 2/5.75 × 102/3 | 3/4.92 × 104/5 | 0/3 | |
50139 | 0/0 | 0/0/0 | 6/1.28 × 103/6 | 0/0/0 | 4/1.27 × 103/1 | 0/0 | 1/17 | 2/2.28 × 105/3 | 1/4.40 × 101/7 | 2/7.75 × 102/3 | 1/4.80 × 102/5 | 0/3 | |
1 × 103 | 50140 | 0/0 | 0/0/0 | 5/6.50 × 106/7 | 0/0/0 | 3/3.77 × 103/1 | 0/0 | 2/16 | 2/3.70 × 105/3 | 0/5.23 × 102/7 | 2/3.75 × 103/3 | 1/7.00 × 102/5 | 0/3 |
50141 | 0/0 | 0/0/0 | 3/3.92 × 103/7 | 0/0/0 | 3/1.21 × 104/2 | 0/0 | 2/13 | 0/0/0 | 1/5.40 × 103/7 | 2/7.00 × 103/3 | 2/4.44 × 104/5 | 1.2/3 | |
50142 | 2/11 | 2/5.0 × 102/1 | 4/6.43 × 104/6 | 0/0/0 | 0/0/0 | 0/2.1 | |||||||
50143 | 0/0 | 0/0/0 | 4/7.21 × 102/6 | 0/0/0 | 0/0/0 | 0/0 | 1/14 | 1/4.00 × 105/3 | 0/2.26 × 103/7 | 2/5.50 × 103/3 | 1/1.08 × 103/5 | 0/2.4 | |
Control | 50144 | 1/16 | 1/3.40 × 105/3 | 2/1.33 × 106/7 | 2/3.00 × 102/3 | 2/8.23 × 103/5 | 1.8/2.4 | ||||||
50145 | 1/16 | 2/2.02 × 105/3 | 2/9.26 × 102/7 | 2/8.75 × 102/3 | 2/1.30 × 104/5 | 0/2.1 | |||||||
50146 | 1/15 | 2/1.85 × 105/3 | 2/1.42 × 104/7 | 2/5.50 × 102/3 | 2/1.70 × 104/5 | 1.2/3.3 | |||||||
50147 | 1/11 | 2/9.50 × 104/3 | 2/8.07 × 103/7 | 2/1.68 × 103/3 | 1/6.90 × 102/5 | 0/3.3 |
Group Dose a | Clinical Results after Deoptimized Virus Inoculation | Clinical Results after challenge with WT Homologous Virus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pig # | Clinical Score b | Viremia c | Viremia-PCR d | Shedding Virus e | Shedding RT-PCR f | SN g | Clinical Score h | Viremia i | Viremia-PCR j | Shedding Virus k | Shedding RT-PCR l | SN m | |
1 × 106 | 52481 | 0/0 | 0/0/0 | 7/2.53 × 103/1 | 0/0/0 | 5/4.42 × 103/1 | 0/0 | 3/16 | 2/5.62 × 102/2 | 2/5.67 × 103/5 | 4/1.00 × 103/1 | 4/1.66 × 104/3 | 0/3.3 |
52482 | 0/0 | 0/0/0 | 1/4.99 × 103/1 | 0/0/0 | 1/3.70 × 103/1 | 0/0 | 3/17 | 2/1.78 × 103/1 | 2/4.04 × 104/5 | 0/0/0 | 6/2.3 × 103/1 | 0/2.7 | |
52483 | 2/3 | 0/0/0 | 1/4.28 × 103/5 | 0/0/0 | 0/0/0 | 0/1.2 | 5/7 | 1/3.16 × 102/3 | 3/9.15 × 103/5 | 3/1.78 × 102/1 | 1/2.11 × 104/5 | 1.2/3.3 | |
52484 | 0/0 | 0/0/0 | 2/2.32 × 104/4 | 0/0/0 | 2/4.07 × 103/3 | 0/2.1 | 7/1 | 5/3.16 × 102/1 | 0/0/0 | 0/0/0 | 1/8.73 × 103/7 | 2.1/2.4 | |
1 × 105 | 52485 | 0/0 | 0/0/0 | 3/2.65 × 103/1 | 0/0/0 | 3/3.61 × 103/2 | 0/0 | 7/1 | 4/1.00 × 102/1 | 6/2.29 × 103/1 | 0/0/0 | 2/7.78 × 104/5 | 0/2.4 |
52486 | 0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 1/3.58 × 103/3 | 0/0 | 3/15 | 2/1.00 × 104/1 | 2/2.06 × 104/5 | 0/0/0 | 4/3.85 × 101/1 | 0/2.7 | |
52487 | 0/0 | 0/0/0 | 2/2.84 × 103/4 | 0/0/0 | 2/3.78 × 103/1 | 0/1.8 | 0/0 | 0/0/0 | 1/1.92 × 104/5 | 0/0/0 | 1/5.37 × 104/7 | 1.8/3 | |
52488 | 0/0 | 0/0/0 | 2/6.08 × 103/1 | 0/0/0 | 2/6.08 × 103/1 | 0/0 | 3/16 | 3/1.00 × 107/6 | 3/1.64 × 106/3 | 3/1.76 × 102/1 | 1/9.16 × 104/7 | 0/3.3 | |
1 × 103 | 52489 | 0/0 | 0/0/0 | 5/3.02 × 103/1 | 0/0/0 | 1/3.99 × 103/1 | 0/0 | 2/17 | 2/1.78 × 106/1 | 2/3.1 × 106/5 | 2/1.78 × 104/3 | 2/3.39 × 104/5 | 0/1.8 |
52490 | 0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 7/3.94 × 103/1 | 0/0 | 2/12 | 2/1.00 × 107/2 | 2/8.72 × 105/5 | 2/1.00 × 102/1 | 2/2.7 × 103/1 | 0/2.4 | |
52491 | 0/0 | 0/0/0 | 2/2.30 × 103/1 | 0/0/0 | 0/0/0 | 0/0 | 2/17 | 3/3.16 × 105/5 | 3/3.16 × 105/3 | 3/3.16 × 102/1 | 1/5.37 × 104/7 | 0/2.4 | |
52492 | 0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 2/4.32 × 103/5 | 0/0 | 2/17 | 3/5.62 × 102/1 | 3/7.50 × 105/3 | 3/1.78 × 102/1 | 1/7.57 × 104/7 | 0/3 | |
Control | 52493 | 3/13 | 2/1.00 × 102/2 | 4/2.37 × 103/3 | 2/5.62 × 101/1 | 2/4.04 × 104/5 | 0/2.7 | ||||||
52495 | 3/14 | 3/1.78 × 106/1 | 3/6.25 × 105/3 | 0/0/0 | 0/0/0 | 0/2.4 | |||||||
52496 | 2/16 | 1/1.78 × 106/1 | 1/1.25 × 105/5 | 0/0/0 | 1/1.01 × 104/7 | 0/2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, G.N.; Spinard, E.; Azzinaro, P.A.; Rodriguez-Calzada, M.; Gutkoska, J.; Kloc, A.; Rieder, E.A.; Taillon, B.E.; Mueller, S.; de los Santos, T.; et al. Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses 2023, 15, 1332. https://doi.org/10.3390/v15061332
Medina GN, Spinard E, Azzinaro PA, Rodriguez-Calzada M, Gutkoska J, Kloc A, Rieder EA, Taillon BE, Mueller S, de los Santos T, et al. Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses. 2023; 15(6):1332. https://doi.org/10.3390/v15061332
Chicago/Turabian StyleMedina, Gisselle N., Edward Spinard, Paul A. Azzinaro, Monica Rodriguez-Calzada, Joseph Gutkoska, Anna Kloc, Elizabeth A. Rieder, Bruce E. Taillon, Stephen Mueller, Teresa de los Santos, and et al. 2023. "Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation" Viruses 15, no. 6: 1332. https://doi.org/10.3390/v15061332
APA StyleMedina, G. N., Spinard, E., Azzinaro, P. A., Rodriguez-Calzada, M., Gutkoska, J., Kloc, A., Rieder, E. A., Taillon, B. E., Mueller, S., de los Santos, T., & Segundo, F. D. -S. (2023). Deoptimization of FMDV P1 Region Results in Robust Serotype-Independent Viral Attenuation. Viruses, 15(6), 1332. https://doi.org/10.3390/v15061332