Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Viral Sequence Generation
2.3. Phylogenetic Analysis
2.4. Identification of Sequence Clusters from Distinct Outbreaks
2.5. Phylogeography Analysis
2.6. Correlation of Serotype Switches with Disease Severity
3. Results
3.1. Viral Sequences and Phylogeny
3.2. Identification of Distinct Outbreaks
3.3. Phylogeography Analysis
3.4. Serotype Switches and Illness Severity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horstick, O.; Tozan, Y.; Wilder-Smith, A. Reviewing Dengue: Still a Neglected Tropical Disease? PLoS Negl. Trop. Dis. 2015, 9, e0003632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A Minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef]
- World Health Organization. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- World Health Organization. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd ed.; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Narayan, R.; Tripathi, S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020, 10, 580096. [Google Scholar] [CrossRef]
- Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr. Microbiol. 2020, 78, 17–32. [Google Scholar] [CrossRef]
- Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 2013, 158, 1445–1459. [Google Scholar] [CrossRef]
- Alvarez, M.; Rodriguez-Roche, R.; Bernardo, L.; Vázquez, S.; Morier, L.; Gonzalez, D.; Castro, O.; Kouri, G.; Halstead, S.B.; Guzman, M.G. Dengue hemorrhagic Fever caused by sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am. J. Trop. Med. Hyg. 2006, 75, 1113–1117. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Moore, T.C.; Brown, H.E. Estimating Aedes aegypti (Diptera: Culicidae) Flight Distance: Meta-Data Analysis. J. Med. Èntomol. 2022, 59, 1164–1170. [Google Scholar] [CrossRef]
- Tissera, H.A.; Jayamanne, B.D.; Raut, R.; Janaki, S.M.; Tozan, Y.; Samaraweera, P.C.; Liyanage, P.; Ghouse, A.; Rodrigo, C.; de Silva, A.M.; et al. Severe Dengue Epidemic, Sri Lanka, 2017. Emerg. Infect. Dis. 2020, 26, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Muthanje, E.M.; Kimita, G.; Nyataya, J.; Njue, W.; Mulili, C.; Mugweru, J.; Mutai, B.; Kituyi, S.N.; Waitumbi, J. March 2019 dengue fever outbreak at the Kenyan south coast involving dengue virus serotype 3, genotypes III and V. PLoS Glob. Public Health 2022, 2, e0000122. [Google Scholar] [CrossRef] [PubMed]
- Neto, Z.; Martinez, P.A.; Hill, S.C.; Jandondo, D.; Thézé, J.; Mirandela, M.; Aguiar, R.S.; Xavier, J.; Sebastião, C.D.S.; Cândido, A.L.M.; et al. Molecular and genomic investigation of an urban outbreak of dengue virus serotype 2 in Angola, 2017–2019. PLoS Negl. Trop. Dis. 2022, 16, e0010255. [Google Scholar] [CrossRef] [PubMed]
- Sigera, C.; Rodrigo, C.; de Silva, N.L.; Weeratunga, P.; Fernando, D.; Rajapakse, S. Direct costs of managing in-ward dengue patients in Sri Lanka: A prospective study. PLoS ONE 2021, 16, e0258388. [Google Scholar] [CrossRef] [PubMed]
- Sigera, P.C.; Amarasekara, R.; Rodrigo, C.; Rajapakse, S.; Weeratunga, P.; De Silva, N.L.; Huang, C.H.; Sahoo, M.K.; Pinsky, B.A.; Pillai, D.R.; et al. Risk prediction for severe disease and better diagnostic accuracy in early dengue infection; the Colombo dengue study. BMC Infect. Dis. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Marandi, R.Z.; Leung, P.; Sigera, C.; Murray, D.D.; Weeratunga, P.; Fernando, D.; Rodrigo, C.; Rajapakse, S.; MacPherson, C.R. Development of a machine learning model for early prediction of plasma leakage in suspected dengue patients. PLoS Negl. Trop. Dis. 2023, 17, e0010758. [Google Scholar] [CrossRef]
- Department of Census and Statistics. Statistical Pocket Book; Department of Census and Statistics: Battaramulla, Sri Lanka, 2022. [Google Scholar]
- Department of Census and Statistics. Estimates on Mid-year Population 2014–2022. 2022. Available online: http://www.statistics.gov.lk/Population/StaticalInformation/VitalStatistics/ByDistrictandSex (accessed on 9 March 2023).
- Nation.lk. Postal Codes Sri Lanka. Available online: https://nation.lk/postalcode/ (accessed on 13 March 2023).
- Macrotrends. Colombo, Sri Lanka Metro Area Population 1950–2023. 2023. Available online: https://www.macrotrends.net/cities/20414/colombo/population (accessed on 28 March 2023).
- Adikari, T.N.; Riaz, N.; Sigera, C.; Leung, P.; Valencia, B.M.; Barton, K.; Smith, M.A.; Bull, R.A.; Li, H.; Luciani, F.; et al. Single molecule, near full-length genome sequencing of dengue virus. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.; Libin, P.J.K.; Theys, K.; Faria, N.R.; Nunes, M.R.T.; Restovic, M.I.; Freire, M.; Giovanetti, M.; Cuypers, L.; Nowé, A.; et al. A computational method for the identification of Dengue, Zika and Chikungunya virus species and genotypes. PLoS Negl. Trop. Dis. 2019, 13, e0007231. [Google Scholar] [CrossRef] [Green Version]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.-M.; et al. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010. [Google Scholar]
- Hong, S.L.; Lemey, P.; Suchard, M.A.; Baele, G. Bayesian Phylogeographic Analysis Incorporating Predictors and Individual Travel Histories in BEAST. Curr. Protoc. 2021, 1, e98. [Google Scholar] [CrossRef] [PubMed]
- Valencia, B.M.; Sigera, P.C.; Weeratunga, P.; Tedla, N.; Fernando, D.; Rajapakse, S.; Lloyd, A.R.; Rodrigo, C. Effect of prior Zika and dengue virus exposure on the severity of a subsequent dengue infection in adults. Sci. Rep. 2022, 12, 17225. [Google Scholar] [CrossRef] [PubMed]
- Epidemiology Unit Ministry of Health Sri Lanka. Trends. 2022. Available online: http://www.epid.gov.lk/web/index.php?option=com_casesanddeaths&Itemid=448&lang=en (accessed on 4 July 2022).
- Vitarana, T.; Jayakuru, W.S.; Withane, N. Historical Account of Dengue Haemorrhagic Fever in Sri Lanka. Dengue Bull. 1997, 21, 117. [Google Scholar]
- Sirisena, P.D.N.N.; Noordeen, F. Evolution of dengue in Sri Lanka—Changes in the virus, vector, and climate. Int. J. Infect. Dis. 2014, 19, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanakaratne, N.; Wahala, W.M.; Messer, W.B.; Tissera, H.A.; Shahani, A.; Abeysinghe, N.; De Silva, A.M.; Gunasekera, M. Severe Dengue Epidemics in Sri Lanka, 2003–2006. Emerg. Infect. Dis. 2009, 15, 192–199. [Google Scholar] [CrossRef]
- Tissera, H.; Ooi, E.; Gubler, D.; Tan, Y.; Logendra, B.; Wahala, W.; de Silva, A.; Abeysinghe, M.N.; Palihawadana, P.; Gunasena, S.; et al. New Dengue Virus Type 1 Genotype in Colombo, Sri Lanka. Emerg. Infect. Dis. 2011, 17, 2053–2055. [Google Scholar] [CrossRef]
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; et al. ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012, 40, D593–D598. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Narvaez, C.; Arguello, S.; Mercado, B.L.; Collado, D.; Ampie, O.; Elizondo, D.; Miranda, T.; Carillo, F.B.; Mercado, J.C.; et al. Zika virus infection enhances future risk of severe dengue disease. Science 2020, 369, 1123–1128. [Google Scholar] [CrossRef]
- Jayasekera, S.A. Toll on Colombo Bound Traffic on the Cards. Daily Mirror, 5 December 2019. [Google Scholar]
- Kumarage, A.S. Impacts of Transportation Infrastructure and Services on Urban Poverty and Land Development in Colombo, Sri Lanka. Glob. Urban Dev. Mag. 2007, 3, 1–15. Available online: https://catalog.ihsn.org/citations/26901 (accessed on 18 June 2023).
- Jansen, C.C.; Beebe, N.W. The dengue vector Aedes aegypti: What comes next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Janaki, M.D.S.; Aryaprema, V.; Fernando, N.; Handunnetti, S.; Weerasena, O.; Pathirana, P.; Tissera, H. Prevalence and resting behaviour of dengue vectors, Aedes aegypti and Aedes albopictus in dengue high risk urban settings in Colombo, Sri Lanka. J. Asia-Pac. Èntomol. 2022, 25, 101961. [Google Scholar] [CrossRef]
DENV1 | DENV2 | DENV3 | Total | ||||
---|---|---|---|---|---|---|---|
Genotype I | Uncategorized | Cosmopolitan | Other | Genotype I | Genotype III | ||
All sequences | 49 | 223 | 73 | 345 | |||
Sequences that could be genotyped | 7 | 36 | 216 | 3 | 65 | 1 | 328 |
Genotyped sequences from residents in Colombo district | 4 | 22 | 148 | 2 | 51 | 1 | 228 |
Cluster Name | Serotype | Genotype | Bin | Number of Sequences |
---|---|---|---|---|
Q | DENV2 | Cosmopolitan | 2 | 45 |
R | DENV2 | Cosmopolitan | 4 | 17 |
S | DENV2 | Cosmopolitan | 4 | 16 |
T | DENV3 | Genotype I | 4 | 37 |
Cluster Name | Root Post Code | Median (km) | IQR (km) | Max (km) |
---|---|---|---|---|
Q | 00200 | 3.49 | 4.00 | 16.62 |
R | 01400 | 4.71 | 9.91 | 18.57 |
S | 00500 | 5.97 | 6.05 | 14.96 |
T | 00500 | 6.06 | 5.12 | 12.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maduranga, S.; Valencia, B.M.; Sigera, C.; Adikari, T.; Weeratunga, P.; Fernando, D.; Rajapakse, S.; Lloyd, A.R.; Bull, R.A.; Rodrigo, C. Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka. Viruses 2023, 15, 1408. https://doi.org/10.3390/v15071408
Maduranga S, Valencia BM, Sigera C, Adikari T, Weeratunga P, Fernando D, Rajapakse S, Lloyd AR, Bull RA, Rodrigo C. Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka. Viruses. 2023; 15(7):1408. https://doi.org/10.3390/v15071408
Chicago/Turabian StyleMaduranga, Sachith, Braulio Mark Valencia, Chathurani Sigera, Thiruni Adikari, Praveen Weeratunga, Deepika Fernando, Senaka Rajapakse, Andrew R. Lloyd, Rowena A. Bull, and Chaturaka Rodrigo. 2023. "Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka" Viruses 15, no. 7: 1408. https://doi.org/10.3390/v15071408
APA StyleMaduranga, S., Valencia, B. M., Sigera, C., Adikari, T., Weeratunga, P., Fernando, D., Rajapakse, S., Lloyd, A. R., Bull, R. A., & Rodrigo, C. (2023). Genomic Surveillance of Recent Dengue Outbreaks in Colombo, Sri Lanka. Viruses, 15(7), 1408. https://doi.org/10.3390/v15071408