Virus Inactivation by Formaldehyde and Common Lysis Buffers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formaldehyde Inactivation Solution
2.2. Lysis Buffers
2.3. Viruses
2.4. Cell Culture and Virus Stocks
2.5. Interfering Substances
2.6. Experimental Procedure (Formaldehyde)
2.6.1. Cell Culture for Titration and Blind Passages
2.6.2. Infection
2.6.3. Experimental Controls
2.6.4. Inactivation and Cell Collection
2.6.5. Virus Titration
2.6.6. Blind Passaging
2.7. Experimental Procedure (Lysis Buffers)
2.7.1. Virus Inactivation
2.7.2. Lysis Conditions
2.7.3. Virus Titration
2.7.4. Blind Passaging
2.8. Readout for Formaldehyde and Lysis Buffer Experiments
3. Results
3.1. Virus Stability
3.2. Summary of Results for Formaldehyde Inactivation
3.2.1. Formaldehyde Titration
3.2.2. Formaldehyde Blind Passage
3.3. Summary of Results for Lysis Buffer Inactivation
3.3.1. Virus Titration after Lysis Buffer Treatment
3.3.2. Blind Passaging after Lysis Buffer Treatment
3.4. Utility of Salt Removal Columns
3.5. Potential Influence of Interfering Substances on Viral Inactivation
4. Discussion
5. Conclusions
- This study demonstrates the relevance of a thorough assessment of the reliable inactivation of viruses and the risk of residual infectiousness in samples in laboratory and clinical settings.
- We demonstrate that not all buffers or fixatives readily inactivate every virus when applying standard conditions, which indicates that, especially for new pathogens, safe conditions must be verified and validated that may require a prior evaluation of the inactivation system to be used.
- An interference of high protein contents and other potentially interfering supplements as reported by others [2] for inactivation processes was not confirmed with our test panel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Classification of Organisms (Switzerland). Available online: https://www.bafu.admin.ch/bafu/en/home/topics/biotechnology/publications-studies/publications/classification-of-organisms.html (accessed on 24 July 2023).
- Guidelines on Viral Inactivation and Removal Procedures Intended to Assure the Viral Safety of Human Blood Plasma Products. Available online: https://www.who.int/publications/m/item/WHO-TRS924-Annex4 (accessed on 24 July 2023).
- ICH Guideline Q5A(R2) on Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin-Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-guideline-q5ar2-viral-safety-evaluation-biotechnology-products-derived-cell-lines-human-animal (accessed on 24 July 2023).
- Virus Safety Evaluation of Biotechnological Investigational Medicinal Products-Scientific Guideline. Available online: https://www.ema.europa.eu/en/virus-safety-evaluation-biotechnological-investigational-medicinal-products-scientific-guideline (accessed on 24 July 2023).
- Widera, M.; Westhaus, S.; Rabenau, H.F.; Hoehl, S.; Bojkova, D.; Cinatl, J., Jr.; Ciesek, S. Evaluation of stability and inactivation methods of SARS-CoV-2 in context of laboratory settings. Med. Microbiol. Immunol. 2021, 210, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Rabenau, H.F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H.W. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 2005, 194, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elveborg, S.; Monteil, V.M.; Mirazimi, A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lim, J.Y.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing agents for virus inactivation and disinfection. View 2020, 1, e16. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.; De Los Rios, P.; Vendruscolo, M. Effective interactions between chaotropic agents and proteins. Proteins Struct. Funct. Bioinform. 2005, 61, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Otte, F.; Zhang, Y.; Spagnuolo, J.; Thielen, A.; Däumer, M.; Wiethe, C.; Stoeckle, M.; Kusejko, K.; Klein, F.; Metzner, K.J.; et al. Swiss HIV Cohort Study, Revealing viral and cellular dynamics of HIV-1 at the single-cell level during early treatment periods. Cell Rep. Methods 2023, 3, 100485. [Google Scholar] [CrossRef] [PubMed]
- Klimkait, T.; Stauffer, F.; Lupo, E.; Sonderegger-Rubli, C. Dissecting the mode of action of various HIV-inhibitor classes in a stable cellular system. Arch. Virol. 1998, 143, 2109–2131. [Google Scholar] [CrossRef] [PubMed]
- Kuno, H.; Ikeda, H.; Takeuchi, M.; Yoshida, T. A simple and rapid reverse transcriptase assay for the detection of retroviruses in cell cultures. Cytotechnology 1999, 29, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID(50) for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Ngo, K.A.; Jones, S.A.; Church, T.M.; Fuschino, M.E.; George, K.S.; Lamson, D.M.; Maffei, J.; Kramer, L.D.; Ciota, A.T. Unreliable Inactivation of Viruses by Commonly Used Lysis Buffers. Appl. Biosaf. 2017, 22, 56–59. [Google Scholar] [CrossRef]
Name | Company | Extraction Kit/Reference | Active Ingredients | Usage on |
---|---|---|---|---|
AVL | Qiagen | Catalog no. 19073 | Guanidinium thiocyanate | viral cell culture supernatant |
RLT | Qiagen | Catalog no. 79216 | Guanidinium thiocyanate | infected cells |
TRIzol | Invitrogen/ Thermo Fisher Scientific | Catalog no. 15596026 | Thiocyanic acid, compound with guanidine (1:1) Ammonium thiocyanate | viral cell culture supernatant |
A671 | Promega | AS1620—Cultured Cells DNA Kit | Guanidinium thiocyanate | infected cells |
MC136A | Promega | AS1460—Maxwell® RSC miRNA from Tissue and Plasma/Serum Kit | Guanidine thiocyanate 1-thioglycerol | viral cell culture supernatant |
MC143A + A826D | Promega | AS1660—PureFood Pathogen Kit | Guanidinium thiocyanate | infected cells |
MC501C | Promega | AS1330—Viral TNA Kit AS1400—Blood Kit | Guanidinium thiocyanate | viral cell culture supernatant |
Genus | Virus | Characteristics/Features | Strain | Biosafety Level |
---|---|---|---|---|
Adenovirus | AdV-5 | Non-enveloped, DNA (ds) | - | BSL2 |
Enterovirus | ECHO-11 | Non-enveloped, RNA (ss, +) | - | BSL2 |
Lentivirus | HIV-1 | Enveloped, RNA (ss, +) | NL4-3 | BSL3 |
Coronavirus | SARS-CoV-2 | Enveloped, RNA (ss, +) | Wuhan | BSL3 |
Virus | Cell Type | Propagation | Readout | Harvest | Final Titer (TCID50) |
---|---|---|---|---|---|
AdV-5 | A549 | 3 days | day 7 | SN + detached cells, freeze/thaw, centrifugation | 1 × 108/mL |
ECHO-11 | Vero | 6 days | day 7 | SN + detached cells, freeze/thaw, centrifugation | 3 × 108/mL |
HIV-1 | HUT4-3 | 3 days | - | Remove cells, concentrate virus 10fold by centrifugation | 3 × 105/mL |
SXR5&SupT1 | - | day 10 | |||
SARS-CoV-2 | CaCo2/ VeroE6-T2 | 12 days/ 4 days | - | SN + detached cells, centrifugation | 3 × 106/mL |
VeroE6 | - | day 7 |
Level of “Dirtiness” | Supplement to DMEM |
---|---|
low dirty condition | 0.3 g/L BSA |
dirty condition | 3.0 g/L BSA |
dirty condition + erythrocytes | 3.0 g/L BSA + 3.0 mL/L sheep erythrocytes |
dirty condition + yeast | 10.0 g/L BSA + 10.0 g/L yeast extract |
high dirty condition | 80.0 g/L BSA |
Virus | Cells | Culture Media | 12wp Treatment | 12wp Blind Passages | 96wp Titrations |
---|---|---|---|---|---|
AdV-5 | A549 | cDMEM | 2 × 106/plate | 2 × 106/plate | 1 × 106/plate |
ECHO-11 | Vero | cDMEM | 1 × 106/plate | 1 × 106/plate | 1 × 106/plate |
HIV-1 | SXR5 SupT1 | cDMEM | 2.5 × 106/plate | 1.5 × 106/plate | 8 × 105 plate |
cRPMI | 5 × 105/plate | 5 × 105/plate | 2 × 105/plate | ||
SARS-CoV-2 | VeroE6 | cDMEM (2% FBS) | 2 × 106/plate | 2 × 106/plate | 1 × 106/plate |
Virus | Condition | Experiment 1 log TCID50/mL | Experiment 2 log TCID50/mL | Experiment 3 log TCID50/mL | Average TCID50/mL | TiterReduction |
---|---|---|---|---|---|---|
AdV-5 | Stock | 7.2 | 7.2 | 7.2 | 1.58 × 107 | |
H2O+ | 4.2 | 5.2 | 4.2 | 1.58 × 104 | ||
CCM+ | 4.2 | 4.2 | 4.2 | 1.58 × 104 | ||
FA 5′ | 1.2 | 1.2 | 1.2 | <1.58 × 101 | 6.0 log10 | |
ECHO-11 | Stock | 11.2 | 11.2 | 11.2 | 1.58 × 1011 | |
H2O+ | 11.2 | 11.2 | 11.2 | 1.58 × 1011 | ||
CCM+ | 11.2 | 10.2 | 10.2 | 6.32 × 1010 | ||
FA 5′ | 2.2 | 2.7 ** | 1.2 | 2.25 × 102 | 9.2 log10 ** | |
HIV-1 | Stock | 5.2 | 5.2 | 5.2 | 1.58 × 105 | |
H2O+ | nd | 2.2 | 2.2 | 1.58 × 102 | ||
CCM+ | nd | 2.2 | 4.2 | 7.98 × 103 | ||
FA 5′ | nd | 1.2 | 1.2 | <1.58 × 101 | 4.0 log10 | |
SARS-CoV-2 | Stock | 5.8 | 5.8 | - | 2.8 × 106 | |
H2O+ | 4.9 | 4.9 | - | 8.1 × 104 | ||
CCM+ | 5.4 | 4.9 | - | 1.8 × 105 | ||
FA 5′ | 0.9 | 0.9 | - | 8.1 × 100 | 4.9 log10 |
------------------A------------------- | ------------------B------------------- | -------------------C------------------ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Virus | Condition | BP1 | BP2 | BP3 | BP1 | BP2 | BP3 | BP1 | BP2 | BP3 |
AdV-5 (A549) | no FA | CPE | - | - | CPE | - | - | CPE | - | - |
1’ FA | CPE | CPE | CPE | CPE | CPE | CPE | CPE | |||
15’ FA | CPE | CPE | ||||||||
30’ FA | ||||||||||
60’ FA | ||||||||||
ECHO-11 (Vero) | no FA | CPE | - | - | CPE | - | - | CPE | - | - |
15’ FA | ||||||||||
30’ FA | ||||||||||
60’ FA | - | |||||||||
120’ FA | ||||||||||
HIV-1 (SXR5 & SupT1) | no FA | CPE | - | - | CPE | - | - | CPE | - | - |
1’ FA | S | S | S | S | S | S | ||||
15’ FA | ||||||||||
30’ FA | ||||||||||
60’ FA | ||||||||||
SARS-CoV-2 (VeroE6) | no FA | CPE | - | - | CPE | - | - | CPE | - | - |
5’ FA | CPE | CPE | CPE | CPE | CPE | |||||
15’ FA | ||||||||||
30’ FA | ||||||||||
60’ FA |
Virus: | AdV-5 | HIV-1 | ECHO-11 | SARS-CoV-2 | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experiment (E): | E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | E1 | E2 | E3 | ||||||||||||||||||||||||||||
Passage Number: | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||||
AVL | CCM (clean) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||
0.3 g/L BSA | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
3 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
3 g/L BSA+E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
10 g/L BSA+Y | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
80 g/L BSA | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
RLT | CCM (clean) | |||||||||||||||||||||||||||||||||||||||
TRIzol | CCM (clean) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||
0.3 g/L BSA | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
3 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
3 g/L BSA+E | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
10 g/L BSA+Y | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
80 g/L BSA | - | - | - | - | - | - | - | - | - | |||||||||||||||||||||||||||||||
A671 | CCM (clean) | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||||||||||
MC136A | CCM (clean) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||
0.3 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
80 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
MC143A | CCM (clean) | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||||||||||
MC501C | CCM (clean) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||
0.3 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||||||||||||||||||||||
80 g/L BSA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Buffer | Virus | Stock Titer (TCID50/mL) | CPE Results | Reduction from Mock (TD) log10 | |||
---|---|---|---|---|---|---|---|
Stock | Experiment | p1 | p2 | p3 | |||
AVL | AdV | 1 × 108 | 1 × 108 | >5.5 | ? | ? | >5.5 |
ECHO-11 | 3 × 108 | 4 × 1011 | >9.9 | - | - | >9.9 | |
HIV-1 | 3 × 105 | 1 × 105 | >3 | - | - | >3 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >4.7 | - | - | >4.7 | |
RLT | AdV | 1 × 108 | 1 × 108 | >5.3 | - | - | >5.3 |
ECHO-11 | 3 × 108 | 4 × 1011 | >10.6 | - | - | >10.6 | |
HIV-1 | 3 × 105 | 1 × 105 | >3.9 | - | - | >3.9 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >5 | - | - | >5 | |
TRIzol | AdV | 1 × 108 | 1 × 108 | >6.3 | - | - | >6.3 |
ECHO-11 | 3 × 108 | 4 × 1011 | >9 | - | - | >9 | |
HIV-1 | 3 × 105 | 1 × 105 | >1.9 | - | - | >1.9 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >4.3 | - | - | >4.3 | |
A671 | AdV | 1 × 108 | 1 × 108 | >5 | - | - | >5 |
HIV-1 | 3 × 105 | 1 × 105 | >3 | - | - | >3 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >6 | - | - | >6 | |
MC136A | AdV | 1 × 108 | 1 × 108 | >8.5 | + | +++ * | >8.5 |
HIV-1 | 3 × 105 | 1 × 105 | >3.9 | - | - | >3.9 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >6.1 | + | +++ * | >6.1 | |
MC143A | AdV | 1 × 108 | 1 × 108 | >7.7 | - | - | >7.7 |
HIV-1 | 3 × 105 | 1 × 105 | >3.6 | - | - | >3.6 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >5.3 | ++ | +++ * | >5.3 | |
MC501C | AdV | 1 × 108 | 1 × 108 | >8 | + | +++ * | >8 |
HIV-1 | 3 × 105 | 1 × 105 | >4.2 | - | - | >4.2 | |
SARS-CoV-2 | 2.8 × 106 | 2.8 × 106 | >7 | ++ | +++ * | >7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seeburg, U.; Urda, L.; Otte, F.; Lett, M.J.; Caimi, S.; Mittelholzer, C.; Klimkait, T. Virus Inactivation by Formaldehyde and Common Lysis Buffers. Viruses 2023, 15, 1693. https://doi.org/10.3390/v15081693
Seeburg U, Urda L, Otte F, Lett MJ, Caimi S, Mittelholzer C, Klimkait T. Virus Inactivation by Formaldehyde and Common Lysis Buffers. Viruses. 2023; 15(8):1693. https://doi.org/10.3390/v15081693
Chicago/Turabian StyleSeeburg, Ulrike, Lorena Urda, Fabian Otte, Martin J. Lett, Silvia Caimi, Christian Mittelholzer, and Thomas Klimkait. 2023. "Virus Inactivation by Formaldehyde and Common Lysis Buffers" Viruses 15, no. 8: 1693. https://doi.org/10.3390/v15081693
APA StyleSeeburg, U., Urda, L., Otte, F., Lett, M. J., Caimi, S., Mittelholzer, C., & Klimkait, T. (2023). Virus Inactivation by Formaldehyde and Common Lysis Buffers. Viruses, 15(8), 1693. https://doi.org/10.3390/v15081693