Zoonotic Hantaviridae with Global Public Health Significance
Abstract
:1. Introduction
2. Diseases Caused by Hantaviruses
3. Morphology and Genomics of Hantaviruses
4. Taxonomy and Distribution of Hantaviruses
5. Evolution of Hantaviruses
6. Replication of Hantaviruses
7. Transmission of Hantaviruses
8. Pathogenesis of Hantaviruses
9. Diagnosis and Treatment of Hantavirus Infections
10. Prevention and Control of Hantaviruses
11. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, J.H.; Schmaljohn, C.S. A brief history of Bunyaviral family Hantaviridae. Diseases 2023, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Vial, P.A.; Ferrés, M.; Vial, C.; Klingström, J.; Ahlm, C.; López, R.; Le Corre, N.; Mertz, G.J. Hantavirus in humans: A review of clinical aspects and management. Lancet Infect. Dis. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kabwe, E.; Davidyuk, Y.; Shamsutdinov, A.; Garanina, E.; Martynova, E.; Kitaeva, K.; Malisheni, M.; Isaeva, G.; Savitskaya, T.; Urbanowicz, R.A.; et al. Orthohantaviruses, emerging zoonotic pathogens. Pathogens 2020, 9, 775. [Google Scholar] [CrossRef]
- Avšič-Županc, T.; Saksida, A.; Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 2019, 21S, e6–e16. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic fever with renal syndrome: Pathogenesis and cinical picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mir, S. Hantavirus induced kidney disease. Front. Med. 2021, 8, 795340. [Google Scholar] [CrossRef]
- Koskela, S.; Mäkelä, S.; Strandin, T.; Vaheri, A.; Outinen, T.; Joutsi-Korhonen, L.; Pörsti, I.; Mustonen, J.; Laine, O. Coagulopathy in acute puumala hantavirus infection. Viruses 2021, 13, 1553. [Google Scholar] [CrossRef]
- Thorp, L.; Fullerton, L.; Whitesell, A.; Dehority, W. Hantavirus pulmonary syndrome: 1993–2018. Pediatrics 2023, 151, e2022059352. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, P.W.; Johnson, K.M. Isolation of the etiologic agent of Korean hemorrhagic fever. J. Infect. Dis. 1978, 137, 298–308. [Google Scholar] [CrossRef]
- Kikuchi, F.; Senoo, K.; Arai, S.; Tsuchiya, K.; Sơn, N.T.; Motokawa, M.; Ranorosoa, M.C.; Bawm, S.; Lin, K.S.; Suzuki, H.; et al. Rodent-borne orthohantaviruses in Vietnam, Madagascar and Japan. Viruses 2021, 13, 1343. [Google Scholar] [CrossRef]
- Liu, R.; Ma, H.; Shu, J.; Zhang, Q.; Han, M.; Liu, Z.; Jin, X.; Zhang, F.; Wu, X. Vaccines and therapeutics against hantaviruses. Front. Microbiol. 2019, 10, 2989. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shen, W.; Qin, Y.; Ying, L.; Li, H.; Lu, J.; Lu, J.; Zhang, N.; Li, Z.; Zhou, W.; et al. A case-control study on the risk factors for hemorrhagic fever with renal syndrome. BMC Infect. Dis. 2020, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-K.; Kim, J.-A.; Song, D.H.; Lee, D.; Kim, Y.C.; Lee, S.-Y.; Lee, S.-H.; No, J.S.; Kim, J.H.; Kho, J.H.; et al. Phylogeographic analysis of hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation sequencing. Sci. Rep. 2016, 6, 26017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.W.; Baek, L.J.; Johnson, K.M. Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J. Infect. Dis. 1982, 146, 638–644. [Google Scholar] [CrossRef]
- Clement, J.; LeDuc, J.W.; Lloyd, G.; Reynes, J.-M.; McElhinney, L.; Van Ranst, M.; Lee, H.-W. Wild rats, laboratory rats, pet rats: Global Seoul hantavirus disease revisited. Viruses 2019, 11, 652. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.-D.; Guo, W.-P.; Wang, W.; Zou, Y.; Hao, Z.-Y.; Zhou, D.-J.; Dong, X.; Qu, Y.-G.; Li, M.-H.; Tian, H.-F.; et al. Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today. J. Virol. 2012, 86, 972–981. [Google Scholar] [CrossRef] [Green Version]
- Avsic-Zupanc, T.; Xiao, S.-Y.; Stojanovic, R.; Gligic, A.; van der Groen, G.; Leduc, J.W. Characterization of Dobrava virus: A hantavirus from Slovenia, Yugoslavia. J. Med. Virol. 1992, 38, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; No, J.S.; Kim, W.-K.; Gajda, E.; Perec-Matysiak, A.; Kim, J.-A.; Hildebrand, J.; Yanagihara, R.; Song, J.-W. Molecular epidemiology and genetic diversity of orthohantaviruses in small mammals in western Poland. Am. J. Trop. Med. Hyg. 2020, 103, 193–199. [Google Scholar] [CrossRef]
- Kruger, D.H.; Tkachenko, E.A.; Morozov, V.G.; Yunicheva, Y.V.; Pilikova, O.M.; Malkin, G.; Ishmukhametov, A.A.; Heinemann, P.; Witkowski, P.T.; Klempa, B.; et al. Life-threatening Sochi virus infections, Russia. Emerg. Infect. Dis. 2015, 21, 2204–2208. [Google Scholar] [CrossRef] [Green Version]
- Brummer-Korvenkontio, M.; Vaheri, A.; Hovi, T.; von Bonsdorff, C.H.; Vuorimies, J.; Manni, T.; Penttinen, K.; Oker-Blom, N.; Lahdevirta, J. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 1980, 141, 131–134. [Google Scholar] [CrossRef] [PubMed]
- López, N.; Padula, P.; Rossi, C.; Lázaro, M.E.; Franze-Fernández, M.T. Genetic identification of a new hantavirus causing severe pulmonary syndrome in Argentina. Virology 1996, 220, 223–226. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Espinoza, M.; Graf, J.; Mertz, G.; Ferrés, M.; Calvo, M.; Vial, C.; Vial, P.A. Proteinuria in hantavirus cardiopulmonary syndrome: A frequent finding linked to mortality. Int. J. Infect. Dis. 2021, 110, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Nichol, S.T.; Spiropoulou, C.F.; Morzunov, S.; Rollin, P.E.; Ksiazek, T.G.; Feldmann, H.; Sanchez, A.; Childs, J.; Zaki, S.; Peters, C.J. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993, 262, 914–917. [Google Scholar] [CrossRef]
- Warner, B.M.; Dowhanik, S.; Audet, J.; Grolla, A.; Dick, D.; Strong, J.E.; Kobasa, D.; Lindsay, L.R.; Kobinger, G.; Feldmann, H.; et al. Hantavirus cardiopulmonary syndrome in Canada. Emerg. Infect. Dis. 2020, 26, 3020–3024. [Google Scholar] [CrossRef]
- de St Maurice, A.; Ervin, E.; Schumacher, M.; Yaglom, H.; VinHatton, E.; Melman, S.; Komatsu, K.; House, J.; Peterson, D.; Buttke, D.; et al. Exposure characteristics of hantavirus pulmonary syndrome patients, United States, 1993–2015. Emerg. Infect. Dis. 2017, 23, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Saxenhofer, M.; Drewes, S.; Schlegel, M.; Wanka, K.M.; Frank, R.; Klimpel, S.; von Blanckenhagen, F.; Maaz, D.; Herden, C.; et al. High genetic structuring of Tula hantavirus. Arch. Virol. 2016, 161, 1135–1149. [Google Scholar] [CrossRef]
- Morzunov, S.P.; Feldmann, H.; Spiropoulou, C.F.; A Semenova, V.; E Rollin, P.; Ksiazek, T.G.; Peters, C.J.; Nichol, S.T. A newly recognized virus associated with a fatal case of hantavirus pulmonary syndrome in Louisiana. J. Virol. 1995, 69, 1980–1983. [Google Scholar] [CrossRef]
- Vincent, M.J.; Quiroz, E.; Gracia, F.; Sanchez, A.J.; Ksiazek, T.G.; Kitsutani, P.T.; Ruedas, L.A.; Tinnin, D.S.; Caceres, L.; Garcia, A.; et al. Hantavirus pulmonary syndrome in Panama: Identification of novel hantaviruses and their likely reservoirs. Virology 2000, 277, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Levis, S.; Pini, N.; Garcia, J.; Bego, M.; Barquez, R.; Lozano, E.; Ripoll, C.; Jeor, S.S.; Bravo, D.; Ramírez, J.; et al. Hantavirus pulmonary syndrome in northwestern Argentina: Circulation of Laguna Negra virus associated with Calomys callosus. Am. J. Trop. Med. Hyg. 2004, 71, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Meier, K.; Thorkelsson, S.R.; Quemin, E.R.J.; Rosenthal, M. Hantavirus replication cycle-an updated structural virology perspective. Viruses 2021, 13, 1561. [Google Scholar] [CrossRef]
- Parvate, A.; Williams, E.P.; Taylor, M.K.; Chu, Y.-K.; Lanman, J.; Saphire, E.O.; Jonsson, C.B. Diverse morphology and structural features of Old and New World hantaviruses. Viruses 2019, 11, 862. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Numan, A.; Sharma, D.; Shukla, R.; Alexander, A.; Jain, G.K.; Ahmad, F.J.; Kesharwani, P. Epidemiology, virology and clinical aspects of hantavirus infections: An overview. Int. J. Environ. Health Res. 2021, 32, 1815–1826. [Google Scholar] [CrossRef]
- Muyangwa, M.; Martynova, E.V.; Khaiboullina, S.F.; Morzunov, S.P.; Rizvanov, A.A. Hantaviral proteins: Structure, functions, and role in hantavirus infection. Front. Microbiol. 2015, 6, 1326. [Google Scholar] [CrossRef] [Green Version]
- Vergote, V.; Laenen, L.; Mols, R.; Augustijns, P.; Van Ranst, M.; Maes, P. Chloroquine, an anti-malaria drug as effective prevention for Hantavirus infections. Front. Cell. Infect. Microbiol. 2021, 11, 580532. [Google Scholar] [CrossRef]
- Arragain, B.; Effantin, G.; Gerlach, P.; Reguera, J.; Schoehn, G.; Cusack, S.; Malet, H. Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nat. Commun. 2020, 11, 3590. [Google Scholar] [CrossRef]
- Wang, P.; Liu, L.; Liu, A.; Yan, L.; He, Y.; Shen, S.; Hu, M.; Guo, Y.; Liu, H.; Liu, C.; et al. Author Correction: Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Nat. Microbiol. 2021, 6, 697–698. [Google Scholar] [CrossRef]
- Meissner, J.D.; E Rowe, J.; Borucki, M.K.; Jeor, S.C.S. Complete nucleotide sequence of a Chilean hantavirus. Virus Res. 2002, 89, 131–143. [Google Scholar] [CrossRef]
- Laenen, L.; Vergote, V.; Calisher, C.H.; Klempa, B.; Klingström, J.; Kuhn, J.H.; Maes, P. Hantaviridae: Current classification and future perspectives. Viruses 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.H.; Adkins, S.; Agwanda, B.R.; Al Kubrusli, R.; Alkhovsky, S.V.; Amarasinghe, G.K.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2021, 166, 3513–3566. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Adkins, S.; Alkhovsky, S.V.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; Ballinger, M.J.; Bandte, M.; Beer, M.; et al. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2022, 167, 2857–2906. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Sudi, L.E.; Düx, A.; Mangu, C.D.; Ntinginya, N.E.; Shirima, G.M.; Köndgen, S.; Schubert, G.; Witkowski, P.T.; Muyembe, J.-J.; et al. Kiwira virus, a newfound hantavirus discovered in free-tailed bats (Molossidae) in east and central africa. Viruses 2022, 14, 2368. [Google Scholar] [CrossRef] [PubMed]
- Blitvich, B.J.; Beaty, B.J.; Blair, C.D.; Brault, A.C.; Dobler, G.; Drebot, M.A.; Haddow, A.D.; Kramer, L.D.; LaBeaud, A.D.; Monath, T.P.; et al. Bunyavirus taxonomy: Limitations and misconceptions associated with the current ICTV criteria used for species demarcation. Am. J. Trop. Med. Hyg. 2018, 99, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, J.H.; Bradfute, S.B.; Calisher, C.H.; Klempa, B.; Klingström, J.; Laenen, L.; Palacios, G.; Schmaljohn, C.S.; Tischler, N.D.; Maes, P. Pending reorganization of Hantaviridae to include only completely sequenced viruses: A call to action. Viruses 2023, 15, 660. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.-D.; Chen, X.; Tian, J.-H.; Chen, L.-J.; Li, K.; Wang, W.; Eden, J.-S.; Shen, J.-J.; Liu, L.; et al. The evolutionary history of vertebrate RNA viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef]
- Guo, W.-P.; Lin, X.-D.; Wang, W.; Tian, J.-H.; Cong, M.-L.; Zhang, H.-L.; Wang, M.-R.; Zhou, R.-H.; Wang, J.-B.; Li, M.-H.; et al. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. 2013, 9, e1003159. [Google Scholar] [CrossRef] [Green Version]
- Straková, P.; Dufkova, L.; Širmarová, J.; Salát, J.; Bartonička, T.; Klempa, B.; Pfaff, F.; Höper, D.; Hoffmann, B.; Ulrich, R.G.; et al. Novel hantavirus identified in European bat species Nyctalus noctula. Infect. Genet. Evol. 2017, 48, 127–130. [Google Scholar] [CrossRef]
- Arai, S.; Nguyen, S.T.; Boldgiv, B.; Fukui, D.; Araki, K.; Dang, C.N.; Ohdachi, S.D.; Nguyen, N.X.; Pham, T.D.; Boldbaatar, B.; et al. Novel bat-borne hantavirus, Vietnam. Emerg. Infect. Dis. 2013, 19, 1159–1161. [Google Scholar] [CrossRef]
- Xu, L.; Wu, J.; He, B.; Qin, S.; Xia, L.; Qin, M.; Li, N.; Tu, C. Novel hantavirus identified in black-bearded tomb bats, China. Infect. Genet. Evol. 2015, 31, 158–160. [Google Scholar] [CrossRef]
- Arai, S.; Taniguchi, S.; Aoki, K.; Yoshikawa, Y.; Kyuwa, S.; Tanaka-Taya, K.; Masangkay, J.S.; Omatsu, T.; Puentespina, R., Jr.; Watanabe, S.; et al. Molecular phylogeny of a genetically divergent hantavirus harbored by the geoffroy’s rousette (Rousettus amplexicaudatus), a frugivorous bat species in the Philippines. Infect. Genet. Evol. 2016, 45, 26–32. [Google Scholar] [CrossRef]
- Gu, S.H.; Hejduk, J.; Markowski, J.; Kang, H.J.; Markowski, M.; Połatyńska, M.; Sikorska, B.; Liberski, P.P.; Yanagihara, R. Co-circulation of soricid- and talpid-borne hantaviruses in Poland. Infect. Genet. Evol. 2014, 28, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Yashina, L.N.; Abramov, S.A.; Zhigalin, A.V.; Smetannikova, N.A.; Dupal, T.A.; Krivopalov, A.V.; Kikuchi, F.; Senoo, K.; Arai, S.; Mizutani, T.; et al. Geographic distribution and phylogeny of soricine shrew-borne Seewis virus and Altai virus in Russia. Viruses 2021, 13, 1286. [Google Scholar] [CrossRef]
- Yadav, P.D.; Vincent, M.J.; Nichol, S.T. Thottapalayam virus is genetically distant to the rodent-borne hantaviruses, consistent with its isolation from the Asian house shrew (Suncus murinus). Virol. J. 2007, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Ohdachi, S.D.; Asakawa, M.; Kang, H.J.; Mocz, G.; Arikawa, J.; Okabe, N.; Yanagihara, R. Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides). Proc. Natl. Acad. Sci. USA 2008, 105, 16296–16301. [Google Scholar] [CrossRef]
- Li, N.; Li, A.; Liu, Y.; Wu, W.; Li, C.; Yu, D.; Zhu, Y.; Li, J.; Li, D.; Wang, S.; et al. Genetic diversity and evolution of Hantaan virus in China and its neighbors. PLoS Negl. Trop. Dis. 2020, 14, e0008090. [Google Scholar] [CrossRef]
- Cao, S.; Ma, J.; Cheng, C.; Ju, W.; Wang, Y. Genetic characterization of hantaviruses isolated from rodents in the port cities of Heilongjiang, China, in 2014. BMC Vet. Res. 2016, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.F.; Shao, J.W.; Sun, M.H.; Li, G.H.; Gong, H.Y.; Chen, R.X.; Chen, J.M. Frameshift mutations in the microevolution and macroevolution of viruses. BioRxiv 2023. preprint. Available online: https://www.biorxiv.org/content/10.1101/2022.07.20.500745v3.full (accessed on 20 July 2023).
- Klempa, B. Reassortment events in the evolution of hantaviruses. Virus Genes 2018, 54, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S.N.; Gu, S.H.; Kang, H.J.; Arai, S.; Yanagihara, R. Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol. 2014, 22, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Mittler, E.; Dieterle, M.E.; Kleinfelter, L.M.; Slough, M.M.; Chandran, K.; Jangra, R.K. Hantavirus entry: Perspectives and recent advances. Adv. Virus Res. 2019, 104, 185–224. [Google Scholar]
- Koehler, F.C.; Di Cristanziano, V.; Späth, M.R.; Hoyer-Allo, K.J.R.; Wanken, M.; Müller, R.U.; Burst, V. The kidney in hantavirus infection-epidemiology, virology, pathophysiology, clinical presentation, diagnosis and management. Clin. Kidney J. 2022, 15, 1231–1252. [Google Scholar] [CrossRef]
- Jangra, R.K.; Herbert, A.S.; Li, R.; Jae, L.T.; Kleinfelter, L.M.; Slough, M.M.; Barker, S.L.; Guardado-Calvo, P.; Román-Sosa, G.; Dieterle, M.E.; et al. Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 2018, 563, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Kleinfelter, L.M.; Jangra, R.K.; Jae, L.T.; Herbert, A.S.; Mittler, E.; Stiles, K.M.; Wirchnianski, A.S.; Kielian, M.; Brummelkamp, T.R.; Dye, J.M.; et al. Haploid genetic screen reveals a profound and direct dependence on cholesterol for Hantavirus membrane fusion. mBio 2015, 6, e00801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serris, A.; Stass, R.; Bignon, E.A.; Muena, N.A.; Manuguerra, J.-C.; Jangra, R.K.; Li, S.; Chandran, K.; Tischler, N.D.; Huiskonen, J.T.; et al. The hantavirus surface glycoprotein lattice and its fusion control mechanism. Cell 2020, 183, 442–456. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Hussain, S.; Mahmood, Z.; Ashiq, M.; Ehsan, F.; Akram, M.; Shah, S.M.A.; Riaz, M.; Sana, A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin. Exp. Pharmacol. Physiol. 2020, 48, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Petazzi, R.A.; Koikkarah, A.A.; Tischler, N.D.; Chiantia, S. Detection of envelope glycoprotein assembly from Old-World hantaviruses in the golgi apparatus of living cells. J. Virol. 2021, 95, e01238-20. [Google Scholar] [CrossRef]
- Kell, A.M. Innate immunity to orthohantaviruses: Could divergent immune interactions explain host-specific disease outcomes? J. Mol. Biol. 2021, 434, 167230. [Google Scholar] [CrossRef]
- Witkowski, P.T.; Drexler, J.F.; Kallies, R.; Ličková, M.; Bokorová, S.; Mananga, G.D.; Szemes, T.; Leroy, E.M.; Krüger, D.H.; Drosten, C.; et al. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses. Infect. Genet. Evol. 2016, 41, 113–119. [Google Scholar] [CrossRef]
- Voutilainen, L.; Sironen, T.; Tonteri, E.; Bäck, A.T.; Razzauti, M.; Karlsson, M.; Wahlström, M.; Niemimaa, J.; Henttonen, H.; Lundkvist, Å. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus). J. Gen. Virol. 2015, 96 Pt 6, 1238–1247. [Google Scholar] [CrossRef]
- Forbes, K.M.; Sironen, T.; Plyusnin, A. Hantavirus maintenance and transmission in reservoir host populations. Curr. Opin. Virol. 2018, 28, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Swanink, C.; Reimerink, J.; Gisolf, J.; de Vries, A.; Claassen, M.; Martens, L.; Waegemaekers, T.; Rozendaal, H.; Valkenburgh, S.; Hoornweg, T.; et al. Autochthonous human case of Seoul virus infection, the Netherlands. Emerg. Infect. Dis. 2018, 24, 2158–2163. [Google Scholar] [CrossRef] [Green Version]
- Le Duc, J.W. The power of we. Viruses 2023, 15, 921. [Google Scholar] [CrossRef]
- Kerins, J.L.; Koske, S.E.; Kazmierczak, J.; Austin, C.; Gowdy, K.; Dibernardo, A.; Achenbach, J.; Baber, J.; Balsamo, G.; Behravesh, C.B.; et al. Outbreak of Seoul virus among rats and rat owners—United States and Canada, 2017. Morb. Mortal. Wkly. Rep. 2018, 67, 131–134. [Google Scholar] [CrossRef] [Green Version]
- McELHINNEY, L.M.; Marston, D.A.; Pounder, K.C.; Goharriz, H.; Wise, E.L.; Verner-Carlsson, J.; Jennings, D.; Johnson, N.; Civello, A.; Nunez, A.; et al. High prevalence of Seoul hantavirus in a breeding colony of pet rats. Epidemiol. Infect. 2017, 145, 3115–3124. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, J.; Heuser, E.; Weiss, S.; Tenner, B.; Schoppmeyer, K.; Esser, J.; Klier, C.; Drewes, S.; Ulrich, R.G.; Kruger, D.H. Autochthonous ratborne Seoul Virus infection in woman with acute kidney injury. Emerg. Infect. Dis. 2020, 26, 3096–3099. [Google Scholar] [CrossRef]
- Martínez, V.P.; Di Paola, N.; Alonso, D.O.; Pérez-Sautu, U.; Bellomo, C.M.; Iglesias, A.A.; Coelho, R.M.; López, B.; Periolo, N.; Larson, P.A.; et al. “Super-Spreaders” and person-to-person transmission of Andes Virus in Argentina. N. Engl. J. Med. 2020, 383, 2230–2241. [Google Scholar] [CrossRef]
- D’Souza, M.H.; Patel, T.R. Biodefense implications of New-World hantaviruses. Front. Bioeng. Biotechnol. 2020, 8, 925. [Google Scholar] [CrossRef]
- Ferrés, M.; Martínez-Valdebenito, C.; Angulo, J.; Henríquez, C.; Vera-Otárola, J.; Vergara, M.J.; Pérez, J.; Fernández, J.; Sotomayor, V.; Valdés, M.F.; et al. Mother-to-child transmission of Andes virus through breast milk, Chile. Emerg. Infect. Dis. 2020, 26, 1885–1888. [Google Scholar] [CrossRef]
- Song, G. Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chin. Med. J. 1999, 112, 472–477. [Google Scholar]
- Jiang, F.; Wang, L.; Wang, S.; Zhu, L.; Dong, L.; Zhang, Z.; Hao, B.; Yang, F.; Liu, W.; Deng, Y.; et al. Meteorological factors affect the epidemiology of hemorrhagic fever with renal syndrome via altering the breeding and hantavirus-carrying states of rodents and mites: A 9 years’ longitudinal study. Emerg. Microbes Infect. 2017, 6, e104. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.Q.; Yu, S.Y.; Nie, J.; Chen, Q.; Li, Z.F.; Liu, Y.X.; Zhang, J.L.; Xu, J.J.; Yu, X.M.; Bu, X.P.; et al. Prevalence of hemorrhagic fever with renal syndrome virus in domestic pigs: An epidemiological investigation in Shandong province. J. First Millitary Med. Univ. 2004, 24, 1283–1286. [Google Scholar]
- Yang, Z.Q.; Yu, S.Y.; Nie, D.; Chen, Q.; Li, J.J.; Li, Z.F.; Liu, Y.X.; Zhang, J.L.; Yu, X.M.; Su, J.J.; et al. Molecular epidemiological investigation of relationship between HV naturainfection and HFRS in pigs. Med. J. Natl. Defending Forces 2006, 16, 274–276. [Google Scholar]
- Guo, J.Q.; Yang, Z.Q.; Wang, Y.M. Investigation of a swine breeder infected with hemorrhagic fever with renal syndrome. J. Prev. Med. Chin. People’s Lib. Army 1997, 15, 68. [Google Scholar]
- Zeier, M.; Handermann, M.; Bahr, U.; Rensch, B.; Kehm, R.; Muranyi, W.; Darai, G.; Müller, S. New ecological aspects of hantavirus infection: A change of a paradigm and a challenge of prevention—A review. Virus Genes 2005, 30, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Noack, D.; Goeijenbier, M.; Reusken, C.B.E.M.; Koopmans, M.P.G.; Rockx, B.H.G. Orthohantavirus pathogenesis and cell tropism. Front. Cell. Infect. Microbiol. 2020, 10, 399. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.; Ullah, S.; Wei, D.-Q. Hantavirus: The next pandemic we are waiting for? Interdiscip. Sci. 2021, 13, 147–152. [Google Scholar] [CrossRef]
- Schönrich, G.; Krüger, D.H.; Raftery, M.J. Hantavirus-induced disruption of the endothelial barrier: Neutrophils are on the payroll. Front. Microbiol. 2015, 6, 222. [Google Scholar]
- Lupuşoru, G.; Lupuşoru, M.; Ailincăi, I.; Bernea, L.; Berechet, A.; Spătaru, R.; Ismail, G. Hanta hemorrhagic fever with renal syndrome: A pathology in whose diagnosis kidney biopsy plays a major role (Review). Exp. Ther. Med. 2021, 22, 984. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X.; Shu, J.; Liu, Z.; Sun, W.; Hou, S.; Lv, Y.; Ying, Q.; Wang, F.; Jin, X.; et al. Knockout mice showed renal pathological changes after HTNV infection. Front. Immunol. 2021, 12, 692509. [Google Scholar] [CrossRef]
- Golden, J.W.; Hammerbeck, C.D.; Mucker, E.M.; Brocato, R.L. Animal models for the study of rodent-borne hemorrhagic fever viruses: Arenaviruses and hantaviruses. Biomed. Res. Int. 2015, 2015, 793257. [Google Scholar] [CrossRef] [Green Version]
- Brocato, R.L.; Hooper, J.W. Progress on the prevention and treatment of hantavirus disease. Viruses 2019, 11, 610. [Google Scholar] [CrossRef] [Green Version]
- Mayor, J.; Engler, O.; Rothenberger, S. Antiviral efficacy of ribavirin and favipiravir against Hantaan virus. Microorganisms 2021, 9, 1306. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.L.; Prescott, J.; Calvo, M.; Bravo, F.; Alvarez, R.; Salas, A.; Riquelme, R.; Rioseco, M.L.; Williamson, B.N.; Haddock, E.; et al. Two recombinant human monoclonal antibodies that protect against lethal Andes hantavirus infection in vivo. Sci. Transl. Med. 2018, 10, eaat6420. [Google Scholar] [CrossRef] [PubMed]
- Krug, C.; Rigaud, E.; Siby-Diakite, D.; Bénézet, L.; Papadopoulos, P.; de Valk, H.; Deffontaines, G.; Septfons, A.; Reynes, J.-M. Seroprevalence of hantavirus in forestry workers, northern France, 2019–2020. Viruses 2023, 15, 338. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-M. Introduction of vaccinomics to develop personalized vaccines in light of changes in the usage of Hantaan Virus vaccine (Hantavax®) in Korea. J. Prev. Med. Public Health 2019, 52, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Y.; Tang, H.Y.; Li, Y.J.; Weng, J.Q.; Yu, Y.X.; Zeng, R.F. Investigation on inactivated epidemic hemorrhagic fever tissue culture vaccine in humans. Chin. Med. J. 1994, 107, 167–170. [Google Scholar]
- Li, Z.; Zeng, H.; Wang, Y.; Zhang, Y.; Cheng, L.; Zhang, F.; Lei, Y.; Jin, B.; Ma, Y.; Chen, L. The assessment of Hantaan virus-specific antibody responses after the immunization program for hemorrhagic fever with renal syndrome in northwest China. Hum. Vaccin. Immunother. 2017, 13, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Engdahl, T.B.; Crowe, J.E. Humoral immunity to hantavirus infection. mSphere 2020, 5, e00482-20. [Google Scholar] [CrossRef]
- Drewes, S.; Jeske, K.; Straková, P.; Balčiauskas, L.; Ryll, R.; Balčiauskienė, L.; Kohlhause, D.; Schnidrig, G.A.; Hiltbrunner, M.; Špakova, A.; et al. Identification of a novel hantavirus strain in the root vole (Microtus oeconomus) in Lithuania, eastern Europe. Infect. Genet. Evol. 2021, 90, 104520. [Google Scholar] [CrossRef]
- Yashina, L.N.; Panov, V.V.; Abramov, S.A.; Smetannikova, N.A.; Luchnikova, E.M.; Dupal, T.A.; Krivopalov, A.V.; Arai, S.; Yanagihara, R. Academ virus, a novel hantavirus in the siberian mole (Talpa altaica) from Russia. Viruses 2022, 14, 309. [Google Scholar] [CrossRef]
Disease | Affected Organs | Etiological Viruses * | Case Fatality Rate | Distribution |
---|---|---|---|---|
Hemorrhagic fever with renal syndrome (HFRS) | Kidney, spleen, liver, brain, blood vessels, eyes | HTNV | ~1% | China, South Korea, Russia, Vietnam |
SEOV | <1% | Worldwide | ||
DOBV | 0–15% | Europe | ||
TULV | ~0% | Eurasia | ||
PUUV | 0.1–0.4% | Europe | ||
Hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) | Lung, heart, spleen, liver, blood vessels | ANDV | ~40% | Argentina, Chile |
SNV | 30–50% | USA, Canada | ||
CHOV | 12–15% | Panama | ||
LNV | 12–15% | Argentina, Brazil, Paraguay, Bolivia |
Genus | Species | Hosts |
---|---|---|
Actinovirus | Actinovirus halieutaeae | Fish (Halieutaea stellata) in China |
Actinovirus lophii | Fish (Lophius litulon) in China | |
Actinovirus bernense | Fish (Perca fluviatilis) in Switzerland | |
Actinovirus triacanthodis | Fish (Triacanthodes anomalus) in China | |
Agnathovirus | Agnathovirus eptatreti | Fish (Eptatretus burger) in China |
Loanvirus | Loanvirus brunaense | Bats (Nyctalus noctule) in the Czech Republic |
Loanvirus longquanense | Bats (e.g., Rhinolophus sinicus, Rhinolophus monoceros, and Rhinolophus sinicus) in China | |
Mobatvirus | Mobatvirus laibinense | Bats (Taphozous melanopogon) in China and Myanmar |
Mobatvirus lenaense | Shrews (Sorex caecutiens) in Russia | |
Mobatvirus novaense | Moles (Talpa europaea) in Europe | |
Mobatvirus quezonense | Bats (Rousettus amplexicaudatus) in Philippines | |
Mobatvirus xuansonense | Bats (Hipposideros cineraceus) in Asia | |
Orthohantavirus | Orthohantavirus asamaense | Rodents (e.g., Oligoryzomys longicaudatus, Oligoryzomys nigripes, and Akodon azarae), bats (e.g., Carollia perspicillata and Desmodus rotundus), and humans in South America |
Orthohantavirus asikkalaense | Moles (Urotrichus talpoides) in Japan | |
Orthohantavirus bayoui * | Shrews (Sorex minutus) in Europe | |
Orthohantavirus nigrorivense * | Rodents (Oryzomys palustris) and humans in the USA | |
Orthohantavirus boweense | Rodents (Sigmodon hispidus) in the USA | |
Orthohantavirus brugesense | Shrews (Crocidura douceti) in Guinea | |
Orthohantavirus delgaditoense | Moles (Talpa europaea) in Europe | |
Orthohantavirus caobangense | Rodents (Sigmodon alstoni) in Venezuela | |
Orthohantavirus chocloense * | Shrews (Anourosorex squamipes) in China and Vietnam | |
Orthohantavirus dabieshanense | Rodents (Oligoryzomys fulvescens) and humans in Panama | |
Orthohantavirus dobravaense * | Rodents (Niviventer confucianus) in China | |
Orthohantavirus moroense | Rodents (e.g., Apodemus flavicollis, Rattus norvegicus, and Mus musculus) and humans in Europe | |
Orthohantavirus fugongense | Rodents (Reithrodontomys megalotis) in Mexico | |
Orthohantavirus fusongense | Rodents (Eothenomys eleusis) in China | |
Orthohantavirus hantanense * | Rodents (Microtus fortis) in China | |
Orthohantavirus jejuense | Rodents (e.g., Apodemus agrarius, Rattus tanezumi, and Myospalax psilurus) and humans in Asia | |
Orthohantavirus kenkemeense | Shrews (Crocidura shantungensis) in South Korea | |
Orthohantavirus khabarovskense | Shrews (Sorex roboratus) in China and Russia | |
Orthohantavirus negraense * | Rodents (Microtus maximowiczii) in China and Russia | |
Orthohantavirus luxiense | Rodents (e.g., Calomys laucha, Calomys callidus, and Akodon simulator) in South America | |
Orthohantavirus maporalense | Rodents (Eothenomys miletus) in China | |
Orthohantavirus montanoense | Rodents (Oligoryzomys fulvescens) in Venezuela | |
Orthohantavirus necocliense | Rodents (Peromyscus beatae) in Mexico | |
Orthohantavirus oxbowense | Rodents (Zygodontomys brevicauda) in Colombia | |
Orthohantavirus prospectense | Moles (Neurotrichus gibbsii) in the USA | |
Orthohantavirus puumalaense * | Rodents (Microtus pennsylvanicus) in the USA | |
Orthohantavirus robinaense # | Rodents (Myodes glareolus) and humans in Russia and Germany | |
Orthohantavirus rockportense | Bats (Pteropus alecto) in Australia | |
Orthohantavirus sangassouense | Moles (Scalopus aquaticus) in the USA | |
Orthohantavirus seewisense | Rodents (e.g., Hylomyscus simus and Hylomyscus endorobae) in Guinea and Kenya | |
Orthohantavirus seoulense * | Rodents (e.g., Apodemus flavicollis, Apodemus ilex, and Apodemus chevrieri) and shrew (e.g., Sorex Araneus, Sorex caecutiens, and Anourosorex squamipes) in Europe | |
Orthohantavirus sinnombreense * | Rodents (e.g., Rattus norvegicus, Rattus tanezumi, and Rattus nitidus), shrew (e.g., Suncus murinus, Sorex Araneus, and Crocidura lasiura), and humans worldwide | |
Orthohantavirus tatenalense | Rodents (e.g., Peromyscus maniculatus, Mus musculus, and Tamias minimus) and humans in North America | |
Orthohantavirus thailandense | Rodents (Microtus agrestis) in the UK | |
Orthohantavirus tigrayense | Rodents (e.g., Rattus rattus, Eliurus majori, and Bandicota indica) and humans in Madagascar, Sri Lanka, and Thailand | |
Orthohantavirus tulaense * | Rodents (Stenocephalemys albipes) in Ethiopia | |
Orthohantavirus yakeshiense | Rodents (Microtus arvalis) in Europe | |
Thottimvirus imjinense | Shrews (Sorex isodon) in China and Russia | |
Thottimvirus | Thottimvirus thottapalayamense | Shrews (e.g., Crocidura lasiura, and Crocidura shantungensis) in China and South Korea |
Reptillovirus hemidactyli | Shrews (Suncus murinus) in Asia | |
Reptillovirus | Actinovirus halieutaeae | Geckos (Hemidactylus bowringii) in China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.-X.; Gong, H.-Y.; Wang, X.; Sun, M.-H.; Ji, Y.-F.; Tan, S.-M.; Chen, J.-M.; Shao, J.-W.; Liao, M. Zoonotic Hantaviridae with Global Public Health Significance. Viruses 2023, 15, 1705. https://doi.org/10.3390/v15081705
Chen R-X, Gong H-Y, Wang X, Sun M-H, Ji Y-F, Tan S-M, Chen J-M, Shao J-W, Liao M. Zoonotic Hantaviridae with Global Public Health Significance. Viruses. 2023; 15(8):1705. https://doi.org/10.3390/v15081705
Chicago/Turabian StyleChen, Rui-Xu, Huan-Yu Gong, Xiu Wang, Ming-Hui Sun, Yu-Fei Ji, Su-Mei Tan, Ji-Ming Chen, Jian-Wei Shao, and Ming Liao. 2023. "Zoonotic Hantaviridae with Global Public Health Significance" Viruses 15, no. 8: 1705. https://doi.org/10.3390/v15081705
APA StyleChen, R. -X., Gong, H. -Y., Wang, X., Sun, M. -H., Ji, Y. -F., Tan, S. -M., Chen, J. -M., Shao, J. -W., & Liao, M. (2023). Zoonotic Hantaviridae with Global Public Health Significance. Viruses, 15(8), 1705. https://doi.org/10.3390/v15081705