Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms
Abstract
:1. Background
2. Data and Methods
2.1. ADM Modelling Platform
2.2. HYSPLIT–LINUX Model Inputs
2.3. Disease Data and the Partitioning of the Study Area
2.4. Wind Data
2.5. HYSPLIT–LINUX Model Outputs
2.6. Data Analysis: Seasonality and Barn Air Filtration
2.7. Model Cross-Validation: AUC, Sensitivity, and Specificity
3. Results
3.1. HYSPLIT–LINUX Deposition Thresholds and Seasonality
3.2. The Effect of Barn Air Filtration
3.3. Model Cross-Validation: AUC, Sensitivity, and Specificity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Neumann, E.J.; Kliebenstein, J.B.; Johnson, C.D.; Mabry, J.W.; Bush, E.J.; Seitzinger, A.H.; Green, A.L.; Zimmerman, J.J. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc. 2005, 227, 385–392. [Google Scholar] [CrossRef] [PubMed]
- VanderWaal, K.; Paploski, I.A.D.; Makau, D.N.; Corzo, C.A. Contrasting animal movement and spatial connectivity networks in shaping transmission pathways of a genetically diverse virus. Prev. Vet. Med. 2020, 178, 104977. [Google Scholar] [CrossRef]
- Mortensen, S.; Stryhn, H.; Søgaard, R.; Boklund, A.; Stärk, K.D.; Christensen, J.; Willeberg, P. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus. Prev. Vet. Med. 2002, 53, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.; Torremorell, M.; Thompson, B.; Deen, J.; Pijoan, C. An evaluation of thermo-assisted drying and decontamination for the elimination of porcine reproductive and respiratory syndrome virus from contaminated livestock transport vehicles. Can. J. Vet. Res.-Rev. Can. Rech. Vet. 2005, 69, 58–63. [Google Scholar]
- Dee, S.; Otake, S.; Oliveira, S.; Deen, J. Evidence of long distance airborne transport of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Vet. Res. 2009, 40, 13. [Google Scholar] [CrossRef]
- Otake, S.; Dee, S.; Corzo, C.; Oliveira, S.; Deen, J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet. Microbiol. 2010, 145, 198–208. [Google Scholar] [CrossRef]
- Anderson, B.D.; Lednicky, J.A.; Torremorell, M.; Gray, G.C. The Use of Bioaerosol Sampling for Airborne virus Surveillance in Swine Production Facilities: A Mini Review. Front. Vet. Sci. 2017, 4, 8. [Google Scholar] [CrossRef]
- Arruda, A.G.; Tousignant, S.; Sanhueza, J.; Vilalta, C.; Poljak, Z.; Torremorell, M.; Alonso, C.; Corzo, C.A. Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps? Viruses 2019, 11, 712. [Google Scholar] [CrossRef]
- Cho, J.G.; Dee, S.A. Porcine reproductive and respiratory syndrome virus. Theriogenology 2006, 66, 655–662. [Google Scholar] [CrossRef]
- Zhao, Y.; Aarnink, A.J.A.; De Jong, M.C.M.; Koerkamp, P. Airborne microorganisms from livestock production systems and their relation to dust. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1071–1128. [Google Scholar] [CrossRef] [PubMed]
- Kanankege, K.S.T.; Graham, K.; Corzo, C.A.; VanderWaal, K.; Perez, A.M.; Durr, P.A. Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2022, 14, 1658. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT_4 Modeling System; NOAA Technical Memorandum ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997; 24p. [Google Scholar]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag. 1998, 47, 295–308. [Google Scholar]
- Draxler, R.R. HYSPLIT4 User’s Guide; NOAA Technical Memorandum ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory); NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2015. Available online: http://ready.arl.noaa.gov/HYSPLIT.php (accessed on 20 January 2020).
- Tousignant, S.J.P.; Perez, A.M.; Lowe, J.F.; Yeske, P.E.; Morrison, R.B. Temporal and spatial dynamics of porcine reproductive and respiratory syndrome virus infection in the United States. Am. J. Vet. Res. 2015, 76, 70–76. [Google Scholar] [CrossRef]
- Perez, A.M.; Davies, P.R.; Goodell, C.K.; Holtkamp, D.J.; Mondaca-Fernández, E.; Poljak, Z.; Tousignant, S.J.; Valdes-Donoso, P.; Zimmerman, J.J.; Morrison, R.B. Lessons learned and knowledge gaps about the epidemiology and control of porcine reproductive and respiratory syndrome virus in North America. J. Am. Vet. Med. Assoc. 2015, 246, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.; Mackay, D.K.J.; Donaldson, A.I. Modelling the Atmospheric Dispersion of Foot and Mouth Virus for Emergency Preparedness. Phys. Chem. Earth B 2001, 26, 93–97. [Google Scholar] [CrossRef]
- Garner, M.G.; Hess, G.D.; Yang, X. An integrated modelling approach to access the risk of wind borne spread of foot-and mouth disease virus from infected premises. Environ. Model. Assess. 2006, 11, 195–207. [Google Scholar] [CrossRef]
- Lambkin, K.; Hamilton, J.; McGrath, G.; Dando, P.; Draxler, R. Foot and mouth disease atmospheric dispersion system. Adv. Sci. Res. 2019, 16, 113–117. [Google Scholar] [CrossRef]
- Hermann, J.; Hoff, S.; Munoz-Zanzi, C.; Yoon, K.-J.; Roof, M.; Burkhardt, A.; Zimmerman, J. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet. Res. 2007, 38, 81–93. [Google Scholar] [CrossRef]
- Cutler, T.D.; Wang, C.; Hoff, S.J.; Kittawornrat, A.; Zimmerman, J.J. Median infectious dose (ID50) of porcine reproductive and respiratory syndrome virus isolate MN-184 via aerosol exposure. Vet. Microbiol. 2011, 151, 229–237. [Google Scholar] [CrossRef]
- Durr, P.; Graham, K.; Freeman, J.; Beckett, D.; van Klinken, R.D. TAPPAS: Tool for Assessing Pest. and Pathogen Aerial Spread, Version 1.0. 2015. Available online: https://tappas.csiro.au (accessed on 20 January 2020).
- Durr, P.A.; Graham, K.; van Klinken, R.D. Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges. Front. Vet. Sci. 2017, 4, 98. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.L. An Introduction to Meteorology for Airborne Wind Energy. In Airborne Wind Energy; Ahrens, U., Diehl, M., Schmehl, R., Eds.; Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 81–94. [Google Scholar]
- Reche, I.; D’Orta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Holmes, N.S.; Morawska, L. A Review of Dispersion Modeling and Its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef]
- Van Leuken, J.P.G.; Swart, A.N.; Havelaar, A.H.; Van Pul, A.; Van der Hoek, W.; Heederik, D. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—A review to inform risk assessment studies. Microb. Risk Anal. 2016, 1, 19–39. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Dunnington, D.; Pebesma, E.; Rubak, E. s2: Spherical Geometry Operators Using the S2 Geometry Library, version 1.02. 2020. Available online: https://CRAN.R-project.org/package=s2, (accessed on 20 June 2021).
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Holtkamp, D.J.; Polson, D.D.; Torremorell, M. Terminology for classifying swine herds by porcine reproductive and respiratory syndrome virus status. J. Swine Health Prod. 2011, 19, 44–56. [Google Scholar]
- Kanankege, K.; Lim, S.; Perez, A. MSHMP When the Farm Is Exposed to a Critical Level of PRRSv in Air, the Probability of Having an Outbreak Is Four Times Higher for Non-Filtered Farms: A Retrospective Analysis Using Wind Data; Swine Health Information Center: Ames, IA, USA, 2022. [Google Scholar]
- Stevenson, G.W.; Hoang, H.; Schwartz, K.J.; Burrough, E.R.; Sun, D.; Madson, D.; Cooper, V.L.; Pillatzki, A.; Gauger, P.; Schmitt, B.J.; et al. Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences. J. Vet. Diagn. Investig. 2013, 25, 649–654. [Google Scholar] [CrossRef]
- Trevisan, G.; Linhares, L.C.M.; Crim, B.; Dubey, P.; Schwartz, K.J.; Burrough, E.R.; Wang, C.; Main, R.G.; Sundberg, P.; Thurn, M.; et al. Prediction of seasonal patterns of porcine reproductive and respiratory syndrome virus RNA detection in the U.S. swine industry. J. Vet. Diagn. Investig. 2020, 32, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.A.; Deen, J.; Cano, J.P.; Batista, L.; Pijoan, C. Further Evaluation of Alternative Air-Filtration Systems for Reducing the Transmission of Porcine Reproductive and Respiratory Syndrome Virus by Aerosol. Can. J. Vet. Res. 2006, 70, 168–175. [Google Scholar] [PubMed]
- Dee, S.; Pitkin, A.; Otake, S.; Deen, J. A four-year summary of air filtration system efficacy for preventing airborne spread of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. J. Swine Health Prod. 2011, 19, 292–294. [Google Scholar]
- Eisenlöffel, L.; Reutter, T.; Horn, M.; Schlegel, S.; Truyen, U.; Speck, S. Impact of UVC-sustained recirculating air filtration on airborne bacteria and dust in a pig facility. PLoS ONE 2019, 14, e0225047. [Google Scholar] [CrossRef] [PubMed]
Deposition Index | Season | Threshold at Natural Break 1 (mass/m2) | High-Risk Farms above Threshold over All Simulations | Number of Unique Farms at High-Risk |
---|---|---|---|---|
Cumulative 14-day deposition | Fall | 9.43 × 10−6 | 130 | 40 |
Winter | 8.13 × 10−6 | 236 | 47 | |
Spring | 2.04 × 10−5 | 114 | 30 | |
Summer | 2.30 × 10−5 | 64 | 19 | |
Median daily deposition | Fall | 4.37 × 10−7 | 77 | 30 |
Winter | 4.07 × 10−7 | 168 | 40 | |
Spring | 8.22 × 10−7 | 89 | 31 | |
Summer | 5.75 × 10−7 | 100 | 30 | |
Maximum daily deposition | Fall | 4.81 × 10−6 | 104 | 32 |
Winter | 3.88 × 10−6 | 110 | 34 | |
Spring | 6.11 × 10−6 | 198 | 52 | |
Summer | 5.89 × 10−6 | 190 | 48 |
1. Cumulative 14-day deposition. | |||||
Number of high-risk farms | |||||
Season | 5 km | 5–10 km | 10–20 km | 20–30 km | >30 km |
Fall | 62 (48%) | 43 (33%) | 25 (19%) | 0 | 0 |
Winter | 146 (62%) | 51 (22%) | 36 (15%) | 3 (1%) | 0 |
Spring | 89 (78%) | 12 (11%) | 13 (11%) | 0 | 0 |
Summer | 59 (92%) | 3 (5%) | 2 (3%) | 0 | 0 |
2. Median daily deposition. | |||||
Number of high-risk farms | |||||
Season | 5 km | 5–10 km | 10–20 km | 20–30 km | >30 km |
Fall | 42 (54%) | 25 (33%) | 8 (10%) | 2 (3%) | 0 |
Winter | 95 (56%) | 48 (29%) | 22 (13%) | 3 (2%) | 0 |
Spring | 65 (73%) | 10 (11%) | 14 (16%) | 0 | 0 |
Summer | 69 (69%) | 22 (22%) | 9 (9%) | 0 | 0 |
3. Maximum daily deposition. | |||||
Number of high-risk farms | |||||
Season | 5 km | 5–10 km | 10–20 km | 20–30 km | >30 km |
Fall | 38 (37%) | 35 (34%) | 31 (30%) | 0 | 0 |
Winter | 69 (63%) | 16 (14%) | 22 (20%) | 3 (3%) | 0 |
Spring | 106 (54%) | 52 (26%) | 38 (19%) | 2 (1%) | 0 |
Summer | 120 (63%) | 33 (17%) | 29 (15%) | 5 (3%) | 3 (2%) |
Season | AUC | Threshold (14-Day Cumulative Concentration) | Newly Infected Farms (Spring = 49, Summer = 30, Fall = 55, Winter = 34) | No Infected Farms (Spring = 4247, Summer = 2623, Fall = 5322, Winter = 3169) | Sensitivity | Specificity | ||
---|---|---|---|---|---|---|---|---|
True Positive (TP) | False Negative (FN) | False Positive (FP) | True Negative (TN) | |||||
Spring | 0.69 | 2.04 × 10−5 | 2 | 47 | 65 | 4182 | 0.04 | 0.985 |
7.31 × 10−6 | 11 | 38 | 443 | 3804 | 0.22 | 0.896 | ||
1.98 × 10−6 | 38 | 11 | 1860 | 2387 | 0.775 | 0.562 | ||
Summer | 0.64 | 2.30 × 10−5 | 1 | 29 | 14 | 2609 | 0.033 | 0.995 |
6.56 × 10−6 | 5 | 25 | 180 | 2443 | 0.167 | 0.931 | ||
2.22 × 10−6 | 19 | 11 | 797 | 1826 | 0.633 | 0.696 | ||
Fall | 0.67 | 9.43 × 10−6 | 1 | 54 | 83 | 5239 | 0.018 | 0.984 |
3.60 × 10−6 | 22 | 33 | 838 | 4484 | 0.40 | 0.842 | ||
2.85 × 10−6 | 29 | 26 | 1227 | 4095 | 0.527 | 0.769 | ||
Winter | 0.70 | 8.13 × 10−6 | 5 | 29 | 111 | 3058 | 0.147 | 0.965 |
3.35 × 10−6 | 16 | 18 | 757 | 2412 | 0.470 | 0.761 | ||
2.92 × 10−6 | 21 | 13 | 918 | 2251 | 0.617 | 0.710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Perez, A.M.; Kanankege, K.S.T. Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2023, 15, 1765. https://doi.org/10.3390/v15081765
Lim S, Perez AM, Kanankege KST. Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses. 2023; 15(8):1765. https://doi.org/10.3390/v15081765
Chicago/Turabian StyleLim, Seunghyun, Andres M. Perez, and Kaushi S. T. Kanankege. 2023. "Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms" Viruses 15, no. 8: 1765. https://doi.org/10.3390/v15081765
APA StyleLim, S., Perez, A. M., & Kanankege, K. S. T. (2023). Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses, 15(8), 1765. https://doi.org/10.3390/v15081765