Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Sites
2.3. Human Sampling
2.4. Livestock Sampling
2.5. Sampling of Peridomestic Rodents
2.6. CCHFV IgG and IgM ELISA
2.7. Statistical Data Analysis
2.8. RNA Extraction, PCR Screening, and Sequencing
2.9. Phylogenetic Analysis
3. Results
3.1. CCHFV Serology
3.1.1. CCHFV Antibody Detection in Humans
3.1.2. CCHFV Antibody Detection in Livestock
3.1.3. CCHFV Antibody Detection in Rodents
3.2. Detection of CCHFV in Livestock, Rodents and Humans
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, J.H.; Adkins, S.; Agwanda, B.R.; Al Kubrusli, R.; Alkhovsky, S.V.; Amarasinghe, G.K.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2021 Taxonomic Update of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales. Arch. Virol. 2021, 166, 3513–3566. [Google Scholar] [CrossRef] [PubMed]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; et al. Taxonomy of the Order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.; González-Scarano, F. Emerging Infectious Diseases: The Bunyaviridae. J. Neurovirol. 2005, 11, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Briese, T.; Bird, B.; Kapoor, V.; Nichol, S.T.; Lipkin, W.I. Batai and Ngari Viruses: M Segment Reassortment and Association with Severe Febrile Disease Outbreaks in East Africa. J. Virol. 2006, 80, 5627–5630. [Google Scholar] [CrossRef] [PubMed]
- Bowen, M.D.; Trappier, S.G.; Sanchez, A.J.; Meyer, R.F.; Goldsmith, C.S.; Zaki, S.R.; Dunster, L.M.; Peters, C.J.; Ksiazek, T.G.; Nichol, S.T. A Reassortant Bunyavirus Isolated from Acute Hemorrhagic Fever Cases in Kenya and Somalia. Virology 2001, 291, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Odhiambo, C.; Venter, M.; Lwande, O.; Swanepoel, R.; Sang, R. Phylogenetic Analysis of Bunyamwera and Ngari Viruses (Family Bunyaviridae, Genus Orthobunyavirus) Isolated in Kenya. Epidemiol. Infect. 2016, 144, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hoogstraal, H. The Epidemiology of Tick-Borne Crimean-Congo Hemorrhagic Fever in Asia, Europe, and Africa. J. Med. Entomol. 1979, 15, 307–417. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Maupin, G.O.; Ksiazek, T.G.; Rollin, P.E.; Khan, A.S.; Schwarz, T.F.; Lofts, R.S.; Smith, J.F.; Noor, A.M.; Peters, C.J.; et al. Molecular Investigation of a Multisource Outbreak of Crimean-Congo Hemorrhagic Fever in the United Arab Emirates. Am. J. Trop. Med. Hyg. 1997, 57, 512–518. [Google Scholar] [CrossRef]
- Kuehnert, P.A.; Stefan, C.P.; Badger, C.V.; Ricks, K.M. Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A Silent but Widespread Threat. Curr. Trop. Med. Rep. 2021, 8, 141–147. [Google Scholar] [CrossRef]
- Shayan, S.; Bokaean, M.; Shahrivar, M.R.; Chinikar, S. Crimean-Congo Hemorrhagic Fever. Lab Med. 2015, 46, 180–189. [Google Scholar] [CrossRef]
- WHO. Crimean-Congo Haemorrhagic Fever; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hua, B.L.; Scholte, F.E.M.; Ohlendorf, V.; Kopp, A.; Marklewitz, M.; Drosten, C.; Nichol, S.T.; Spiropoulou, C.F.; Junglen, S.; Bergeron, É. A Single Mutation in Crimean-Congo Hemorrhagic Fever Virus Discovered in Ticks Impairs Infectivity in Human Cells. Elife 2020, 9, e50999. [Google Scholar] [CrossRef] [PubMed]
- Spengler, J.R.; Estrada-Peña, A.; Garrison, A.R.; Schmaljohn, C.; Spiropoulou, C.F.; Bergeron, É.; Bente, D.A. A Chronological Review of Experimental Infection Studies of the Role of Wild Animals and Livestock in the Maintenance and Transmission of Crimean-Congo Hemorrhagic Fever Virus. Antivir. Res. 2016, 135, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Zohaib, A.; Saqib, M.; Athar, M.A.; Hussain, M.H.; Sial, A.u.R.; Tayyab, M.H.; Batool, M.; Sadia, H.; Taj, Z.; Tahir, U.; et al. Crimean-Congo Hemorrhagic Fever Virus in Humans and Livestock, Pakistan, 2015–2017. Emerg. Infect. Dis. 2020, 26, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Lwande, O.W.; Irura, Z.; Tigoi, C.; Chepkorir, E.; Orindi, B.; Musila, L.; Venter, M.; Fischer, A.; Sang, R. Seroprevalence of Crimean Congo Hemorrhagic Fever Virus in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2012, 12, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Tigoi, C.; Lwande, O.; Orindi, B.; Irura, Z.; Ongus, J.; Sang, R. Seroepidemiology of Selected Arboviruses in Febrile Patients Visiting Selected Health Facilities in the Lake/River Basin Areas of Lake Baringo, Lake Naivasha, and Tana River, Kenya. Vector-Borne Zoonotic Dis. 2015, 15, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Földes, F.; Madai, M.; Németh, V.; Zana, B.; Papp, H.; Kemenesi, G.; Bock-Marquette, I.; Horváth, G.; Herczeg, R.; Jakab, F. Serologic Survey of the Crimean-Congo Haemorrhagic Fever Virus Infection among Wild Rodents in Hungary. Ticks Tick. Borne. Dis. 2019, 10, 101258. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Tsergouli, K.; Tsioka, K.; Mirazimi, A. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Front. Cell. Infect. Microbiol. 2017, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.G.; Bessell, P.R.; Nkongho, E.F.; Ngwa, V.N.; Tanya, V.N.; Sander, M.; Ndip, L.; Morgan, K.L.; Handel, I.G.; Mazeri, S.; et al. Seroepidemiology of Crimean-Congo Haemorrhagic Fever among Cattle in Cameroon: Implications from a One Health Perspective. PLoS Negl. Trop. Dis. 2022, 16, e0010217. [Google Scholar]
- Ergonul, O. Crimean-Congo Hemorrhagic Fever Virus. In Viral Hemorrhagic Fevers; CRC Press: Boca Raton, FL, USA, 2016; pp. 617–629. [Google Scholar] [CrossRef]
- Whitehouse, C.A. Crimean-Congo Haemorrhagic Fever. Antiviral Res. 2004, 64, 145–160. [Google Scholar] [CrossRef]
- Flick, R.; Whitehouse, C.A. Crimean-Congo Hemorrhagic Fever Virus. Curr. Mol. Med. 2005, 5, 754–758. [Google Scholar] [CrossRef]
- Spengler, J.R.; Bergeron, É.; Rollin, P.E. Seroepidemiological Studies of Crimean-Congo Hemorrhagic Fever Virus in Domestic and Wild Animals. PLoS Negl. Trop. Dis. 2016, 10, e0004210. [Google Scholar] [CrossRef] [PubMed]
- Belobo, J.T.E.; Kenmoe, S.; Kengne-Nde, C.; Emoh, C.P.D.; Bowo-Ngandji, A.; Tchatchouang, S.; Wobessi, J.N.S.; Mikangue, C.A.M.; Tazokong, H.R.; Bebey, S.R.K.; et al. Worldwide Epidemiology of Crimean-Congo Hemorrhagic Fever Virus in Humans, Ticks and Other Animal Species, a Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2021, 15, e0009299. [Google Scholar] [CrossRef] [PubMed]
- Balinandi, S.; von Brömssen, C.; Tumusiime, A.; Kyondo, J.; Kwon, H.; Monteil, V.M.; Mirazimi, A.; Lutwama, J.; Mugisha, L.; Malmberg, M. Serological and Molecular Study of Crimean-Congo Hemorrhagic Fever Virus in Cattle from Selected Districts in Uganda. J. Virol. Methods 2021, 290, 114075. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.J.; Swanepoel, R.; Shepherd, S.P.; McGillivray, G.M.; Searle, L.A. Antibody to Crimean-Congo Hemorrhagic Fever Virus in Wild Mammals from Southern Africa. Am. J. Trop. Med. Hyg. 1987, 36, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Mangombi, J.B.; Roqueplo, C.; Sambou, M.; Dahmani, M.; Mediannikov, O.; Comtet, L.; Davoust, B. Seroprevalence of Crimean-Congo Hemorrhagic Fever in Domesticated Animals in Northwestern Senegal. Vector-Borne Zoonotic Dis. 2020, 20, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Msimang, V.; Weyer, J.; Le Roux, C.; Kemp, A.; Burt, F.J.; Tempia, S.; Grobbelaar, A.; Moolla, N.; Rostal, M.K.; Bagge, W.; et al. Risk Factors Associated with Exposure to Crimean-Congo Haemorrhagic Fever Virus in Animal Workers and Cattle, and Molecular Detection in Ticks, South Africa. PLoS Negl. Trop. Dis. 2021, 15, e0009384. [Google Scholar] [CrossRef]
- Blanco-Penedo, I.; Obanda, V.; Kingori, E.; Agwanda, B.; Ahlm, C.; Lwande, O.W. Seroepidemiology of Crimean-Congo Hemorrhagic Fever Virus (CCHFV) in Cattle across Three Livestock Pastoral Regions in Kenya. Dairy 2021, 2, 425–434. [Google Scholar] [CrossRef]
- Chiuya, T.; Masiga, D.K.; Falzon, L.C.; Bastos, A.D.S.; Fèvre, E.M.; Villinger, J. Tick-Borne Pathogens, Including Crimean-Congo Haemorrhagic Fever Virus, at Livestock Markets and Slaughterhouses in Western Kenya. Transbound. Emerg. Dis. 2021, 68, 2429–2445. [Google Scholar] [CrossRef]
- Sang, R.; Lutomiah, J.; Koka, H.; Makio, A.; Chepkorir, E.; Ochieng, C.; Yalwala, S.; Mutisya, J.; Musila, L.; Richardson, J.H.; et al. Crimean-Congo Hemorrhagic Fever Virus in Hyalommid Ticks, Northeastern Kenya. Emerg. Infect. Dis. 2011, 17, 1502–1505. [Google Scholar] [CrossRef]
- Obanda, V.; Agwanda, B.; Blanco-Penedo, I.; Mwangi, I.A.; King’ori, E.; Omondi, G.P.; Ahlm, C.; Evander, M.; Lwande, O.W. Livestock Presence Influences the Seroprevalence of Crimean Congo Hemorrhagic Fever Virus on Sympatric Wildlife in Kenya. Vector-Borne Zoonotic Dis. 2021, 21, 809–816. [Google Scholar] [CrossRef]
- Lutomiah, J.; Musila, L.; Makio, A.; Ochieng, C.; Koka, H.; Chepkorir, E.; Mutisya, J.; Mulwa, F.; Khamadi, S.; Miller, B.R.; et al. Ticks and Tick-Borne Viruses From Livestock Hosts in Arid and Semiarid Regions of the Eastern and Northeastern Parts of Kenya. J. Med. Entomol. 2014, 51, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Diagne, M.M.; Ndione, M.H.D.; Di Paola, N.; Fall, G.; Bedekelabou, A.P.; Sembène, P.M.; Faye, O.; Zanotto, P.M.d.A.; Sall, A.A. Usutu Virus Isolated from Rodents in Senegal. Viruses 2019, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Diagne, M.M.; Faye, M.; Faye, O.; Sow, A.; Balique, F.; Sembène, M.; Granjon, L.; Handschumacher, P.; Faye, O.; Diallo, M.; et al. Emergence of Wesselsbron Virus among Black Rat and Humans in Eastern Senegal in 2013. One Health 2017, 3, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, H. ADW: Rattus Rattus: Information. Available online: https://animaldiversity.org/accounts/Rattus_rattus/#5c07902a49ae8af145719eca77117bc9 (accessed on 13 November 2021).
- Darwish, M.A.; Hoogstraal, H.; Roberts, T.J.; Ghazi, R.; Amer, T. A Sero-Epidemiological Survey for Bunyaviridae and Certain Other Arboviruses in Pakistan. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 446–450. [Google Scholar] [CrossRef]
- Gonzalez, J.; Mccormick, J.B.; Saluzzo, J.; Georges, A. Les Fièvres Hémorragiques d ’ Origine à Leur Africaines Étude Contribution En République Centrafricaine. Cah.—ORSTOM. Entomol. Médicale Et Parasitol. 1983, 21, 119–130. [Google Scholar]
- Saluzzo, J.F.; Digoutte, J.P.; Camicas, J.L.; Chauvancy, G. Crimean-Congo Haemorrhagic Fever And Rift Valley Fever In South-Eastern Mauritania. Lancet 1985, 325, 116. [Google Scholar] [CrossRef] [PubMed]
- Gargili, A.; Estrada-Peña, A.; Spengler, J.R.; Lukashev, A.; Nuttall, P.A.; Bente, D.A. The Role of Ticks in the Maintenance and Transmission of Crimean-Congo Hemorrhagic Fever Virus: A Review of Published Field and Laboratory Studies. Antivir. Res. 2017, 144, 93–119. [Google Scholar] [CrossRef]
- Spengler, J.R.; Estrada-Peña, A. Host Preferences Support the Prominent Role of Hyalomma Ticks in the Ecology of Crimean-Congo Hemorrhagic Fever. PLoS Negl. Trop. Dis. 2018, 12, e0006248. [Google Scholar] [CrossRef]
- Gonzalez, J.P.; Camicas, J.L.; Cornet, J.P.; Faye, O.; Wilson, M.L. Sexual and Transovarian Transmission of Crimean-Congo Haemorrhagic Fever Virus in Hyalomma Truncatum Ticks. Res. Virol. 1992, 143, 23–28. [Google Scholar] [CrossRef]
- Bhowmick, S.; Kasi, K.K.; Gethmann, J.; Fischer, S.; Conraths, F.J.; Sokolov, I.M.; Lentz, H.H.K. Ticks on the Run: A Mathematical Model of Crimean-Congo Haemorrhagic Fever (CCHF)—Key Factors for Transmission. Epidemiologia 2022, 3, 116–134. [Google Scholar] [CrossRef]
- Bendary, H.A.; Rasslan, F.; Wainwright, M.; Alfarraj, S.; Zaki, A.M.; Abdulall, A.K. Crimean-Congo Hemorrhagic Fever Virus in Ticks Collected from Imported Camels in Egypt. Saudi J. Biol. Sci. 2022, 29, 2597–2603. [Google Scholar] [CrossRef]
- Burt, F.J.; Swanepoel, R. Molecular Epidemiology of African and Asian Crimean-Congo Haemorrhagic Fever Isolates. Epidemiol. Infect. 2005, 133, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Volynkina, A.; Lisitskaya, Y.; Kolosov, A.; Shaposhnikova, L.; Pisarenko, S.; Dedkov, V.; Dolgova, A.; Platonov, A.; Kulichenko, A. Molecular Epidemiology of Crimean-Congo Hemorrhagic Fever Virus in Russia. PLoS ONE 2022, 17, e0266177. [Google Scholar] [CrossRef]
- Dunster, L.; Dunster, M.; Ofula, V.; Beti, D.; Kazooba-Voskamp, F.; Burt, F.; Swanepoel, R.; DeCock, K.M. First Documentation of Human Crimean-Congo Hemorrhagic Fever, Kenya. Emerg. Infect. Dis. 2002, 8, 1005. [Google Scholar] [CrossRef]
- Gakuya, F.; Obanda, V.; Lwande, O.W.; Lutomiah, J.; Chepkorir, E.; Sang, R.; Mutisya, J.; Mulwa, F.; Michuki, G.; Venter, M.; et al. Isolation of Tick and Mosquito-Borne Arboviruses from Ticks Sampled from Livestock and Wild Animal Hosts in Ijara District, Kenya. Vector-Borne Zoonotic Dis. 2013, 13, 637–642. [Google Scholar] [CrossRef]
- Ogola, E.O.; Kopp, A.; Bastos, A.D.S.; Slothouwer, I.; Marklewitz, M.; Omoga, D.; Rotich, G.; Getugi, C.; Sang, R.; Torto, B.; et al. Jingmen Tick Virus in Ticks from Kenya. Viruses 2022, 14, 1041. [Google Scholar] [CrossRef] [PubMed]
- Nyataya, J.; Maraka, M.; Lemtudo, A.; Masakhwe, C.; Mutai, B.; Njaanake, K.; Estambale, B.B.; Nyakoe, N.; Siangla, J.; Waitumbi, J.N. Serological Evidence of Yersiniosis, Tick-Borne Encephalitis, West Nile, Hepatitis E, Crimean-Congo Hemorrhagic Fever, Lyme Borreliosis, and Brucellosis in Febrile Patients Presenting at Diverse Hospitals in Kenya. Vector-Borne Zoonotic Dis. 2020, 20, 348–357. [Google Scholar] [CrossRef]
- Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Langat, S.; Getugi, C.; Eibner, G.; Kopp, A.; Slothouwer, I.; Torto, B.; et al. Characterization of a Novel Orbivirus from Cattle Reveals Active Circulation of a Previously Unknown and Pathogenic Orbivirus in Ruminants in Kenya. mSphere 2023, 8, e00488-22. [Google Scholar] [CrossRef]
- Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Eibner, G.J.; Kopp, A.; Slothouwer, I.; Torto, B.; Junglen, S.; Sang, R. Circulation of Ngari Virus in Livestock, Kenya. mSphere 2022, 7, e00416-22. [Google Scholar] [CrossRef]
- Tchouassi, D.P.; Marklewitz, M.; Chepkorir, E.; Zirkel, F.; Agha, S.B.; Tigoi, C.C.; Koskei, E.; Drosten, C.; Borgemeister, C.; Torto, B.; et al. Sand Fly–Associated Phlebovirus with Evidence of Neutralizing Antibodies in Humans, Kenya. Emerg. Infect. Dis. 2019, 25, 681–690. [Google Scholar] [CrossRef]
- Marklewitz, M.; Tchouassi, D.P.; Hieke, C.; Heyde, V.; Torto, B.; Sang, R.; Junglen, S. Insights into the Evolutionary Origin of Mediterranean Sandfly Fever Viruses. mSphere 2020, 5, e00598-20. [Google Scholar] [CrossRef] [PubMed]
- Sanders, E.J.; Marfin, A.A.; Tukei, P.M.; Kuria, G.; Ademba, G.; Agata, N.N.; Ouma, J.O.; Cropp, C.B.; Karabatsos, N.; Reiter, P.; et al. First Recorded Outbreak of Yellow Fever in Kenya, 1992-1993. I. Epidemiologic Investigations. Am. J. Trop. Med. Hyg. 1998, 59, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Kingdon, J. Field Guide to African Mammals. Acad. Press 2015, 212–302, 314–319. [Google Scholar]
- Kingdon, J. East African Mammals, an Atlas of Evolution in Africa; Part b (Hares and Rodents); Academic Press: London, UK, 1974; Volume 2, ISBN 0124083420/9780124083424. [Google Scholar]
- Musila, S.; Monadjem, A.; Webala, P.W.; Patterson, B.D.; Hutterer, R.; De Jong, Y.A.; Butynski, T.M.; Mwangi, G.; Chen, Z.-Z.; Jiang, X.-L. An Annotated Checklist of Mammals of Kenya. Zool. Res. 2019, 40, 3–52. [Google Scholar] [CrossRef]
- Vences, M.; Nagy, Z.T.; Sonet, G.; Verheyen, E. DNA Barcodes Amphibians and Reptiles. In DNA Barcodes; Humana Press: Totowa, NJ, USA, 2012; p. 858. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Nsanze, H.; Longson, M.; Nitschko, H.; Gilch, S.; Shurie, H.; Ameen, A.; Zahir, A.R.M.; Acharya, U.G.; Jager, G. Polymerase Chain Reaction for Diagnosis and Identification of Distinct Variants of Crimean-Congo Hemorrhagic Fever Virus in the United Arab Emirates. Am. J. Trop. Med. Hyg. 1996, 55, 190–196. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Langat, S.K.; Eyase, F.; Bulimo, W.; Lutomiah, J.; Oyola, S.O.; Imbuga, M.; Sang, R. Profiling of RNA Viruses in Biting Midges (Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021, 6, e00551-21. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Gudo, E.S.; Ali, S.; António, V.S.; Chelene, I.R.; Chongo, I.; Demanou, M.; Falk, K.; Guiliche, O.C.; Heinrich, N.; Monteiro, V.; et al. Seroepidemiological Studies of Arboviruses in Africa. In Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1062, pp. 361–371. ISSN 0065-2598. [Google Scholar]
- Schulz, A.; Barry, Y.; Stoek, F.; Ba, A.; Schulz, J.; Haki, M.L.; Sas, M.A.; Doumbia, B.A.; Kirkland, P.; Bah, M.Y.; et al. Crimean-Congo Hemorrhagic Fever Virus Antibody Prevalence in Mauritanian Livestock (Cattle, Goats, Sheep and Camels) Is Stratified by the Animal’s Age. PLoS Negl. Trop. Dis. 2021, 15, e0009228. [Google Scholar] [CrossRef]
- Maiga, O.; Sas, M.A.; Rosenke, K.; Kamissoko, B.; Mertens, M.; Sogoba, N.; Traore, A.; Sangare, M.; Niang, M.; Schwan, T.G.; et al. Serosurvey of Crimean-Congo Hemorrhagic Fever Virus in Cattle, Mali, West Africa. Am. J. Trop. Med. Hyg. 2017, 96, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Adam, I.A.; Mahmoud, M.A.M.; Aradaib, I.E. A Seroepidemiological Survey of Crimean Congo Hemorrhagic Fever among Cattle in North Kordufan State, Sudan. Virol. J. 2013, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Sas, M.A.; Mertens, M.; Isselmou, E.; Reimer, N.; El Mamy, B.O.; Doumbia, B.; Groschup, M.H. Crimean-Congo Hemorrhagic Fever Virus-Specific Antibody Detection in Cattle in Mauritania. Vector-Borne Zoonotic Dis. 2017, 17, 582–587. [Google Scholar] [CrossRef]
- Fisher-Hoch, S.P.; McCormick, J.B.; Swanepoel, R.; Van Middelkoop, A.; Harvey, S.; Kustner, H.G.V. Risk of Human Infections with Crimean-Congo Hemorrhagic Fever Virus in a South African Rural Community. Am. J. Trop. Med. Hyg. 1992, 47, 337–345. [Google Scholar] [CrossRef]
- Mohamed, M.; Said, A.-R.; Murad, A.; Graham, R. A Serological Survey of Crimean-Congo Haemorrhagic Fever in Animals in the Sharkia Governorate of Egypt. Vet. Ital. 2008, 44, 513–517. [Google Scholar] [PubMed]
- Holy, T.E.; Guo, Z. Ultrasonic Songs of Male Mice. PLoS Biol. 2005, 3, e386. [Google Scholar] [CrossRef] [PubMed]
- Cigarroa-Toledo, N.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; García-Rejón, J.E.; Hernandez-Betancourt, S.; Blitvich, B.J.; Machain-Williams, C. Serologic Evidence of Flavivirus Infections in Peridomestic Rodents in Merida, Mexico. J. Wildl. Dis. 2016, 52, 168–172. [Google Scholar] [CrossRef]
- Ballenger, L. ADW: Mus Musculus: Information. Available online: https://animaldiversity.org/accounts/Mus_musculus/ (accessed on 13 November 2021).
- Aradaib, I.E.; Erickson, B.R.; Karsany, M.S.; Khristova, M.L.; Elageb, R.M.; Mohamed, M.E.H.; Nichol, S.T. Multiple Crimean-Congo Hemorrhagic Fever Virus Strains Are Associated with Disease Outbreaks in Sudan, 2008–2009. PLoS Negl. Trop. Dis. 2011, 5, 2008–2009. [Google Scholar] [CrossRef]
- Bower, B.; Fletcher, T.E.; Mohamed, R.; Alzain, M.; Elhalawi, A.; Osman, A.; Semper, A.; Brooks, T.; Osborne, J.; Furneaux, J.; et al. Severe Undifferentiated Febrile Illness Outbreaks in the Federal Republic of Sudan—A Retrospective Epidemiological and Diagnostic Study. Int. J. Infect. Dis. 2016, 79 (Suppl. S1), 123–124. [Google Scholar] [CrossRef]
- Bukbuk, D.N.; Dowall, S.D.; Lewandowski, K.; Bosworth, A.; Baba, S.S.; Varghese, A.; Watson, R.J.; Bell, A.; Atkinson, B.; Hewson, R. Serological and Virological Evidence of Crimean-Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. PLoS Negl. Trop. Dis. 2016, 10, e0005126. [Google Scholar] [CrossRef]
- Lukashev, A.N.; Klimentov, A.S.; Smirnova, S.E.; Dzagurova, T.K.; Drexler, J.F.; Gmyl, A.P. Phylogeography of Crimean Congo Hemorrhagic Fever Virus. PLoS ONE 2016, 11, e0166744. [Google Scholar] [CrossRef]
- Goedhals, D.; Bester, P.A.; Paweska, J.T.; Swanepoel, R.; Burt, F.J. Next-Generation Sequencing of Southern African Crimean-Congo Haemorrhagic Fever Virus Isolates Reveals a High Frequency of M Segment Reassortment. Epidemiol. Infect. 2014, 142, 1952–1962. [Google Scholar] [CrossRef]
Parameter | Category | N (%) | Contact with Animals n (%) | IgG Results | χ2, df | p Value |
---|---|---|---|---|---|---|
Location | Marigat | 323 (65.5) | 289 (89.5) | 22 (6.8) | 1.46, 1 | 0.23 |
Nguruman | 170 (34.5) | 138 (81.2) | 7 (4.1) | |||
Gender | Female | 295 (59.8) | 255 (86.4) | 13 (4.4) | 2.89, 1 | 0.09 |
Male | 198 (40.2) | 172 (86.9) | 16 (8.1) | |||
Age | 5–10 | 49 (9.9) | 41 (83.7) | 3 (6.1) | 1.53, 2 | 0.47 |
10 ≤ 18 | 114 (23.1) | 98 (60.1) | 4 (3.5) | |||
>18 | 330 (66.9) | 288 (87.3) | 22 (6.7) | |||
Occupation | Casual workers | 3 (0.6) | 1 (33) | 0 | 6.82, 10 | 0.74 |
Farmer | 104 (21.1) | 94 (90.4) | 6 (5.8) | |||
Non-Student | 17 (3.4) | 11 (64.7) | 0 | |||
Nurse | 2 (0.4) | 1 (50) | 0 | |||
Pastoralist | 2 (0.4) | 2 (100) | 0 | |||
Farmhand | 71 (14.4) | 64 (90.1) | 8 (11.3) | |||
Businesspersons | 27 (5.5) | 22 (81.5) | 2 (7.4) | |||
Security | 2 (0.4) | 2 (100) | 0 | |||
Student | 169 (34.3) | 147 (87) | 10 (5.9) | |||
Unemployed | 97 (19.7) | 83 (85.6) | 3 (3.1) |
Parameter | Category | N | Ig M | χ2, df | p-Value |
---|---|---|---|---|---|
Gender | Female | 13 | 4 (30.8) | 2.890,1 | 0.27 |
Male | 16 | 5 (31.3) | |||
Age | 5–10 | 3 | 2 (66.7) | 1.993, 2 | 0.37 |
10 ≤ 18 | 4 | 1 (25) | |||
>18 | 22 | 6 (27.3) | |||
Location | Marigat | 22 | 8 (36.4) | 1.209, 1 | 0.27 |
Nguruman | 7 | 1 (14.3) |
CCHFV Antibody | Age | Gender | Joint Pain | Retro-Orbital Pain | Headache | Abdominal Pain | |
---|---|---|---|---|---|---|---|
Results: IgM | Pearson Correlation | −0.184 | 0.005 | −0.141 | 0.380 | 0.183 | 0.025 |
Sig. (2-tailed) | 0.339 | 0.979 | 0.467 | 0.042 * | 0.343 | 0.896 | |
N | 29 | 29 | 29 | 29 | 29 | 29 |
Livestock | N | Location | Sex | Age (yrs) | ||||
---|---|---|---|---|---|---|---|---|
Species | Marigat n (%) | Nguruman n (%) | Females n (%) | Males n (%) | 1 n (%) | 2 n (%) | 3 n (%) | |
Cattle | 310 | 170 (54.8) | 140 (45.2) | 207 (66.8) | 103 (33.2) | 70 (22.6) | 177 (57.1) | 63 (20.3) |
Goats | 295 | 165 (55.9) | 130 (44.1) | 219 (74.2) | 76 (25.8) | 75 (25.4) | 171 (58) | 49 (16.6) |
Donkey | 51 | 51 (100) | 0 | 40 (78.4) | 11 (21.6) | 6 (11.8) | 36 (70.6) | 9 (17.6) |
Sheep | 295 | 165 (55.9) | 130 (44.1) | 209 (70.8) | 86 (29.2) | 64 (21.7) | 182 (61.7) | 49 (16.6) |
Total | 951 | 551 (57.9) | 400 (42.1) | 675 (71) | 276 (29) |
Species | N | Within Population n (%) | Among the Total Population n (%) | Sex | Seropositive n (%) | χ2, df | p-Value | OR (95% CI) |
---|---|---|---|---|---|---|---|---|
Cattle | 310 | 44 (14.19) | 44 (4.63) | Female ⁑ | 32 (15.5) | 0.82, 1 | 0.365 | 1.4 (0.68–2.74) |
Male | 12 (11.7) | |||||||
Goats | 295 | 24 (8.14c) | 24 (2.52) | Female | 14 (6.4) | 3.46, 1 | 0.063 | 2.2 (0.94–5.19) |
Male ⁑ | 10 (13.2) | |||||||
Donkey | 51 | 16 (31.37) | 16 (1.68) | Female ⁑ | 13 (32.5) | 0.11, 1 | 0.7407 | 1.3 (0.28–5.04) |
Male | 3 (27.3) | |||||||
Sheep | 295 | 29 (9.83) | 29 (3.05) | Female | 19 (9.1) | 0.44, 1 | 0.665 | 1.3 (0.60–2.93) |
Male ⁑ | 10 (11.6) |
Parameter | Level | N (%) | Positives (%) |
---|---|---|---|
Gender | Female | 54 (58.1) | 5 (9.3) |
Male | 39 (41.9) | 1 (2.5) | |
Age | Sub-Adult | 78 (83.9) | 5 (6.4) |
Adult | 15 (16.1) | 1 (6.7) | |
Location | Marigat | 37 (39.8) | 1 (2.7) |
Nguruman | 56 (60.2) | 5 (8.9) | |
Species | Acomys sp. | 1 (1.1) | 0 |
Aethomys spp. | 4 (4.3) | 0 | |
Arvicanthis spp. | 6 (6.5) | 0 | |
Gerbilliscus spp. | 3 (3.2) | 0 | |
Grammomys spp | 2 (2.2) | 0 | |
Graphiurus sp. | 1 (1.1) | 0 | |
Mastomys spp. | 48 (51.6) | 5 (10.4) | |
Mus sp. | 1 (1.1) | 0 | |
Paraxerus sp. | 1 (1.1) | 0 | |
Rattus spp. | 26 (28) | 1 (3.8) |
Parameter | Category | N (%) | Positive | χ2, df | p-Value | OR, 95%CI | RR |
---|---|---|---|---|---|---|---|
Gender | Female | 54 (58.1) | 5 (9.3) | 1.682, 1 | 0.1947 | 3.9 (0.5–46.7) | 1.5 (0.8–2.0) |
Male | 39 (41.9) | 1 (2.5) | |||||
Age | Sub-Adult | 78 (83.9) | 5 (6.4) | 0.001370, 1 | 0.9705 | 1.0 (0.1–12.0) | 1.0 (0.5–1.2) |
Adult | 15 (16.1) | 1 (6.7) | |||||
Location | Marigat | 37 | 1 (2.7) | 1.431, 1 | 0.2316 | 3.5 (0.4- 42.6) | 2.5 (0.7–13.9) |
Nguruman | 56 | 5 (8.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Osalla, J.; Kopp, A.; Slothouwer, I.; Torto, B.; Junglen, S.; Sang, R. Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya. Viruses 2023, 15, 1891. https://doi.org/10.3390/v15091891
Omoga DCA, Tchouassi DP, Venter M, Ogola EO, Osalla J, Kopp A, Slothouwer I, Torto B, Junglen S, Sang R. Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya. Viruses. 2023; 15(9):1891. https://doi.org/10.3390/v15091891
Chicago/Turabian StyleOmoga, Dorcus C. A., David P. Tchouassi, Marietjie Venter, Edwin O. Ogola, Josephine Osalla, Anne Kopp, Inga Slothouwer, Baldwyn Torto, Sandra Junglen, and Rosemary Sang. 2023. "Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya" Viruses 15, no. 9: 1891. https://doi.org/10.3390/v15091891
APA StyleOmoga, D. C. A., Tchouassi, D. P., Venter, M., Ogola, E. O., Osalla, J., Kopp, A., Slothouwer, I., Torto, B., Junglen, S., & Sang, R. (2023). Transmission Dynamics of Crimean–Congo Haemorrhagic Fever Virus (CCHFV): Evidence of Circulation in Humans, Livestock, and Rodents in Diverse Ecologies in Kenya. Viruses, 15(9), 1891. https://doi.org/10.3390/v15091891