Vaccine and Non-Vaccine HPV Types Presence in Adolescents with Vertically Acquired HIV Five Years Post Gardasil Quadrivalent Vaccination: The ZIMGARD Cohort
Abstract
:1. Introduction
2. Methods
2.1. Materials and Methods
Study Design and Specimen Collection
2.2. DNA Extraction and HPV Genotyping
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef] [PubMed]
- zur Hausen, H. Papillomavirus infections—A major cause of human cancers. Biochim. Biophys. Acta 1996, 1288, F55–F78. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global burden of human papillomavirus and related diseases. Vaccine 2012, 30 (Suppl. S5), F12–F23. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Agency for Research in Cancer; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Chokunonga, E.; Borok, M.Z.; Chirenje, Z.M.; Makunike-Mutasa, R.; Ndlovu, N.; Nyakabau, A.M.; Vuma, S. Pattern of Cancer in Zimbabwe; Zimbabwe National Cancer Registry: Harare, Zimbabwe, 2017. [Google Scholar]
- Gultekin, M.; Ramirez, P.T.; Broutet, N.; Hutubessy, R. World Health Organization call for action to eliminate cervical cancer globally. Int. J. Gynecol. Cancer 2020, 30, 426–427. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Human papillomavirus vaccines: WHO position paper, May 2017-Recommendations. Vaccine 2017, 35, 5753–5755. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.L. Recent Developments in Human Papillomavirus (HPV) Vaccinology. Viruses 2023, 15, 1440. [Google Scholar] [CrossRef] [PubMed]
- Capra, G.; Giovannelli, L.; Matranga, D.; Bellavia, C.; Guarneri, M.F.; Fasciana, T.; Scaduto, G.; Firenze, A.; Vassiliadis, A.; Perino, A. Potential impact of a nonavalent HPV vaccine on HPV related low-and high-grade cervical intraepithelial lesions: A referral hospital-based study in Sicily. Hum. Vaccin. Immunother. 2017, 13, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Tumban, E. Gardasil-9: A global survey of projected efficacy. Antivir. Res. 2016, 130, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Saraiya, M.; Unger, E.R.; Thompson, T.D.; Lynch, C.F.; Hernandez, B.Y.; Lyu, C.W.; Steinau, M.; Watson, M.; Wilkinson, E.J.; Hopenhayn, C.; et al. US assessment of HPV types in cancers: Implications for current and 9-valent HPV vaccines. J. Natl. Cancer Inst. 2015, 107, djv086. [Google Scholar] [CrossRef] [PubMed]
- (SAGE) WSAGoEoI. One-Dose Human Papillomavirus (HPV) Vaccine Offers Solid Protection against Cervical Cancer. Available online: https://www.who.int/news/item/11-04-2022-one-dose-human-papillomavirus-(hpv)-vaccine-offers-solid-protection-against-cervical-cancer (accessed on 1 December 2023).
- WHO. Human papillomavirus vaccines: WHO position paper (2022 update). Wkly. Epidemiol. Rec. 2022, 97, 645–672. [Google Scholar]
- Staadegaard, L.; Ronn, M.M.; Soni, N.; Bellerose, M.E.; Bloem, P.; Brisson, M.; Maheu-Giroux, M.; Barnabas, R.V.; Drolet, M.; Mayaud, P.; et al. Immunogenicity, safety, and efficacy of the HPV vaccines among people living with HIV: A systematic review and meta-analysis. EClinicalMedicine 2022, 52, 101585. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, A.; Cachay, E.; Ocampo, A.; Poveda, E. Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection. Microorganisms 2022, 10, 1047. [Google Scholar] [CrossRef]
- Petca, A.; Borislavschi, A.; Zvanca, M.E.; Petca, R.C.; Sandru, F.; Dumitrascu, M.C. Non-sexual HPV transmission and role of vaccination for a better future (Review). Exp. Ther. Med. 2020, 20, 186. [Google Scholar] [CrossRef]
- Syrjanen, S.; Puranen, M. Human papillomavirus infections in children: The potential role of maternal transmission. Crit. Rev. Oral Biol. Med. 2000, 11, 259–274. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, J.S.; Norwitz, E.R.; Koo, J.N.; Oh, I.H.; Park, J.W.; Kim, S.M.; Kim, Y.H.; Park, C.W.; Song, Y.S. Risk of vertical transmission of human papillomavirus throughout pregnancy: A prospective study. PLoS ONE 2013, 8, e66368. [Google Scholar] [CrossRef] [PubMed]
- Mbulawa, Z.Z.; Johnson, L.F.; Marais, D.J.; Gustavsson, I.; Moodley, J.R.; Coetzee, D.; Gyllensten, U.; Williamson, A.L. Increased alpha-9 human papillomavirus species viral load in human immunodeficiency virus positive women. BMC Infect. Dis. 2014, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Mbulawa, Z.Z.; Coetzee, D.; Marais, D.J.; Kamupira, M.; Zwane, E.; Allan, B.; Constant, D.; Moodley, J.R.; Hoffman, M.; Williamson, A.-L. Genital human papillomavirus prevalence and human papillomavirus concordance in heterosexual couples are positively associated with human immunodeficiency virus coinfection. J. Infect. Dis. 2009, 199, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, M.K.; Gray, R.H.; Serwadda, D.; Kigozi, G.; Gravitt, P.E.; Nalugoda, F.; Reynolds, S.J.; Wawer, M.J.; Watya, S.; Quinn, T.C.; et al. High-risk human papillomavirus viral load and persistence among heterosexual HIV-negative and HIV-positive men. Sex Transm. Infect. 2014, 90, 337–343. [Google Scholar] [CrossRef]
- Asangbeh-Kerman, S.L.; Davidovic, M.; Taghavi, K.; Kachingwe, J.; Rammipi, K.M.; Muzingwani, L.; Pascoe, M.; Jousse, M.; Mulongo, M.; Mwanahamuntu, M.; et al. Cervical cancer prevention in countries with the highest HIV prevalence: A review of policies. BMC Public Health 2022, 22, 1530. [Google Scholar] [CrossRef]
- Ibrahim Khalil, A.; Mpunga, T.; Wei, F.; Baussano, I.; de Martel, C.; Bray, F.; Stelzle, D.; Dryden-Peterson, S.; Jaquet, A.; Horner, M.J.; et al. Age-specific burden of cervical cancer associated with HIV: A global analysis with a focus on sub-Saharan Africa. Int. J. Cancer 2022, 150, 761–772. [Google Scholar] [CrossRef]
- Stelzle, D.; Tanaka, L.F.; Lee, K.K.; Ibrahim Khalil, A.; Baussano, I.; Shah, A.S.V.; McAllister, D.A.; Gottlieb, S.L.; Klug, S.J.; Winkler, A.S.; et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob. Health 2021, 9, e161–e169. [Google Scholar] [CrossRef]
- UNAIDS. Epidemiological Estimates Report 2022; UNAIDS: Geneva, Switzerland, 2023. [Google Scholar]
- Hawes, S.E.; Critchlow, C.W.; Faye Niang, M.A.; Diouf, M.B.; Diop, A.; Toure, P.; Aziz Kasse, A.; Dembele, B.; Salif Sow, P.; Coll-Seck, A.M.; et al. Increased risk of high-grade cervical squamous intraepithelial lesions and invasive cervical cancer among African women with human immunodeficiency virus type 1 and 2 infections. J. Infect. Dis. 2003, 188, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.C.; Fonseca, R.R.S.; Ferreira, T.C.S.; Rodrigues, L.L.S.; da Silva, A.R.B.; Gomes, S.T.; Silvestre, R.V.D.; Silva, A.; Pamplona, I.; Vallinoto, A.C.R.; et al. Prevalence of High Risk HPV in HIV-Infected Women From Belém, Pará, Amazon Region of Brazil: A Cross-Sectional Study. Front. Public Health 2021, 9, 649152. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 16. Available online: http://www.stata.com/ (accessed on 25 September 2023).
- Farooq, P.D.; Sherman, K.E. Hepatitis B Vaccination and Waning Hepatitis B Immunity in Persons Living with HIV. Curr. HIV/AIDS Rep. 2019, 16, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, K.; Pollock, K.G.; Cuschieri, K.; Palmer, T.; Cameron, R.L.; Watt, C.; Bhatia, R.; Moore, C.; Cubie, H.; Cruickshank, M.; et al. Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: A 7-year cross-sectional study. Lancet Infect. Dis. 2017, 17, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.H.; Sampson, J.N.; Schussler, J.; Porras, C.; Wagner, S.; Boland, J.; Cortes, B.; Lowy, D.R.; Schiller, J.T.; Schiffman, M.; et al. Durability of Cross-Protection by Different Schedules of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1030–1037. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Naleway, A.L.; Lewis, R.M.; Crane, B.; Querec, T.D.; Weinmann, S.; Steinau, M.; Unger, E.R. Declines in HPV vaccine type prevalence in women screened for cervical cancer in the United States: Evidence of direct and herd effects of vaccination. Vaccine 2019, 37, 3918–3924. [Google Scholar] [CrossRef]
- Lowy, D.R.; Herrero, R.; Hildesheim, A. Primary endpoints for future prophylactic human papillomavirus vaccine trials: Towards infection and immunobridging. Lancet Oncol. 2015, 16, e226–e233. [Google Scholar] [CrossRef]
- IARC HPV Working Group. Primary End-Points for Prophylactic HPV Vaccine Trials; International Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
- Lehtinen, M.; Lagheden, C.; Luostarinen, T.; Eriksson, T.; Apter, D.; Harjula, K.; Kuortti, M.; Natunen, K.; Palmroth, J.; Petäjä, T.; et al. Ten-year follow-up of human papillomavirus vaccine efficacy against the most stringent cervical neoplasia end-point-registry-based follow-up of three cohorts from randomized trials. BMJ Open 2017, 7, e015867. [Google Scholar] [CrossRef] [PubMed]
- Hildesheim, A.; Herrero, R.; Wacholder, S.; Rodriguez, A.C.; Solomon, D.; Bratti, M.C.; Schiller, J.T.; Gonzalez, P.; Dubin, G.; Porras, C.; et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: A randomized trial. JAMA 2007, 298, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Hildesheim, A.; Gonzalez, P.; Kreimer, A.R.; Wacholder, S.; Schussler, J.; Rodriguez, A.C.; Porras, C.; Schiffman, M.; Sidawy, M.; Schiller, J.T.; et al. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am. J. Obstet. Gynecol. 2016, 215, e211–e212. [Google Scholar] [CrossRef] [PubMed]
- Adjei Boakye, E.; McKinney, S.L.; Whittington, K.D.; Boyer, V.E.; Franca, M.C.; Lee, M.; McKinnies, R.C.; Collins, S.K.; Gerend, M.A. Association between Sexual Activity and Human Papillomavirus (HPV) Vaccine Initiation and Completion among College Students. Vaccines 2022, 10, 2079. [Google Scholar] [CrossRef]
- Kjaer, S.K.; Nygård, M.; Dillner, J.; Brooke Marshall, J.; Radley, D.; Li, M.; Munk, C.; Hansen, B.T.; Sigurdardottir, L.G.; Hortlund, M.; et al. A 12-Year Follow-up on the Long-Term Effectiveness of the Quadrivalent Human Papillomavirus Vaccine in 4 Nordic Countries. Clin. Infect. Dis. 2018, 66, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Porras, C.; Tsang, S.H.; Herrero, R.; Guillén, D.; Darragh, T.M.; Stoler, M.H.; Hildesheim, A.; Wagner, S.; Boland, J.; Lowy, D.R.; et al. Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: Long-term follow-up results from the Costa Rica Vaccine Trial. Lancet Oncol. 2020, 21, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Mbulawa, Z.Z.A.; van Schalkwyk, C.; Hu, N.C.; Meiring, T.L.; Barnabas, S.; Dabee, S.; Jaspan, H.; Kriek, J.M.; Jaumdally, S.Z.; Muller, E.; et al. High human papillomavirus (HPV) prevalence in South African adolescents and young women encourages expanded HPV vaccination campaigns. PLoS ONE 2018, 13, e0190166. [Google Scholar] [CrossRef]
- Mbulawa, Z.Z.A.; Phohlo, K.; Garcia-Jardon, M.; Williamson, A.L.; Businge, C.B. High human papillomavirus (HPV)-35 prevalence among South African women with cervical intraepithelial neoplasia warrants attention. PLoS ONE 2022, 17, e0264498. [Google Scholar] [CrossRef]
- Mudini, W.; Palefsky, J.M.; Hale, M.J.; Chirenje, M.Z.; Makunike-Mutasa, R.; Mutisi, F.; Murahwa, A.; Mario, A. Human Papillomavirus Genotypes in Invasive Cervical Carcinoma in HIV-Seropositive and HIV-Seronegative Women in Zimbabwe. J. Acquir. Immune Defic. Syndr. 2018, 79, e1–e6. [Google Scholar] [CrossRef]
- Fitzpatrick, M.B.; Hahn, Z.; Mandishora, R.S.D.; Dao, J.; Weber, J.; Huang, C.; Sahoo, M.K.; Katzenstein, D.A.; Pinsky, B.A. Whole-Genome Analysis of Cervical Human Papillomavirus Type 35 from rural Zimbabwean Women. Sci. Rep. 2020, 10, 7001. [Google Scholar] [CrossRef] [PubMed]
- Pimenoff, V.N.; Gray, P.; Louvanto, K.; Eriksson, T.; Lagheden, C.; Söderlund-Strand, A.; Dillner, J.; Lehtinen, M. Ecological diversity profiles of non-vaccine-targeted HPVs after gender-based community vaccination efforts. Cell Host Microbe 2023, 31, 1921–1929.e1923. [Google Scholar] [CrossRef] [PubMed]
- Harari, A.; Chen, Z.; Rodriguez, A.C.; Hildesheim, A.; Porras, C.; Herrero, R.; Wacholder, S.; Panagiotou, O.A.; Befano, B.; Burk, R.D.; et al. Cross-protection of the Bivalent Human Papillomavirus (HPV) Vaccine Against Variants of Genetically Related High-Risk HPV Infections. J. Infect. Dis. 2016, 213, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Koutsky, L.A.; Tay, E.H.; Garcia, P.; et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J. Infect. Dis. 2009, 199, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.M.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Hernandez-Avila, M.; Perez, G.; Brown, D.R.; Koutsky, L.A.; Tay, E.H.; García, P.; et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16-26 years. J. Infect. Dis. 2009, 199, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Herrero, R. Human Papillomavirus (HPV) Vaccines: Limited Cross-Protection against Additional HPV Types. J. Infect. Dis. 2009, 199, 919–922. [Google Scholar] [CrossRef]
- Brown, D.R.; Joura, E.A.; Yen, G.P.; Kothari, S.; Luxembourg, A.; Saah, A.; Walia, A.; Perez, G.; Khoury, H.; Badgley, D.; et al. Systematic literature review of cross-protective effect of HPV vaccines based on data from randomized clinical trials and real-world evidence. Vaccine 2021, 39, 2224–2236. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; DeSalle, R.; Schiffman, M.; Herrero, R.; Burk, R.D. Evolutionary dynamics of variant genomes of human papillomavirus types 18, 45, and 97. J. Virol. 2009, 83, 1443–1455. [Google Scholar] [CrossRef]
- Chen, Z.; Schiffman, M.; Herrero, R.; DeSalle, R.; Anastos, K.; Segondy, M.; Sahasrabuddhe, V.V.; Gravitt, P.E.; Hsing, A.W.; Burk, R.D. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLoS ONE 2013, 8, e72565. [Google Scholar] [CrossRef]
- Chen, Z.; Schiffman, M.; Herrero, R.; Desalle, R.; Anastos, K.; Segondy, M.; Sahasrabuddhe, V.V.; Gravitt, P.E.; Hsing, A.W.; Burk, R.D. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. PLoS ONE 2011, 6, e20183. [Google Scholar] [CrossRef] [PubMed]
- Petrosky, E.Y.; Liu, G.; Hariri, S.; Markowitz, L.E. Human Papillomavirus Vaccination and Age at First Sexual Activity, National Health and Nutrition Examination Survey. Clin. Pediatr. 2017, 56, 363–370. [Google Scholar] [CrossRef]
- Allison, M.A.; Dunne, E.F.; Markowitz, L.E.; O’Leary, S.T.; Crane, L.A.; Hurley, L.P.; Stokley, S.; Babbel, C.I.; Brtnikova, M.; Beaty, B.L.; et al. HPV vaccination of boys in primary care practices. Acad. Pediatr. 2013, 13, 466–474. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n1 = 98) | HPV− (n2 = 30) | HPV+ (n3 = 68) | p-Value |
---|---|---|---|---|
Sex, n (%) | 0.01 ^ | |||
Female | 42 (45) | 7 (23) | 35 (53) | |
Male | 56 (55) | 23 (77) | 33 (47) | |
Age in years, median (IQR) | 20 (19–22) | 20 (19–21) | 21 (20–22) | 0.05 ‡ |
Ethnic group (Black African) | 98 (95) | 30 (100) | 68 (93) | 0.32 * |
Level of education, n (%) | 0.90 * | |||
No schooling | 3 (3) | 0 | 3 (4) | |
Primary | 8 (8) | 2 (7) | 6 (9) | |
Ordinary level | 73 (74) | 24 (80.0) | 49 (72) | |
Advanced level | 13 (13) | 4 (13) | 9 (13) | |
Tertiary | 1 (1) | 0 | 1 (1) | |
First CD4+ count (cell/mm3) after being HIV-reactive, median (IQR) n1 = 55; n2 = 18; n3 = 37 | 320 (183–542) | 402 (287–655) | 280 (161–489) | 0.18 ‡ |
Most recent CD4+ count (cell/mm3), median (IQR) | 542 (398–731) | 589 (469–782) | 538 (375–714) | 0.29 ‡ |
Nadir CD4+ count (cell/mm3), median (IQR) | 199 (94–339) | 230 (125–323) | 180 (86–344) | 0.38 ‡ |
Latest viral load copies/mL, median (IQR) n1 = 97; n2 = 30; n3 = 67 | 20 (20–33) | 20 (20–21) | 20 (20–39) | 0.59 ‡ |
Latest viral load copies, n (%) | 0.77 * | |||
n1 = 97; n2 = 30; n3 = 67 | ||||
<50 copies/mL | 76 (78) | 24 (80) | 52 (78) | |
50–999 copies/mL | 16 (16) | 4 (13) | 12 (18) | |
≥1000 copies/ml | 5 (5) | 2 (7) | 3 (4) | |
Highest viral load copies/mL, median (IQR) n1 = 95; n2 = 30; n3 = 65 | 6374 (64–124, 150) | 1037 (40–92, 544) | 9710 (77–149, 517) | 0.37 ‡ |
Highest viral load copies, n (%) | 0.56 ^ | |||
n1 = 95; n2 = 30; n3 = 65 | ||||
<50 copies/mL | 22 (23) | 8 (27) | 14 (22) | |
50–999 copies/mL | 18 (19) | 7 (23) | 11 (17) | |
≥1000 copies/mL | 55 (58) | 15 (50) | 40 (62) | |
Time on ART (months), median (IQR) | 157 (132–187) | 146 (132–172) | 159 (133–190) | 0.31 ‡ |
Sociodemographic characteristics | ||||
Current smoker, n (%) n1 = 96; n2 = 29; n3 = 67 | 19 (20) | 4 (14) | 15 (22) | 0.41 * |
Ever drank alcohol, n (%) n1 = 97; n2 = 30; n3 = 67 | 44 (45) | 14 (47) | 30 (45) | 1.00 ^ |
Had sexual intercourse, n (%) n1 = 93; n2 = 29; n3 = 64 | 58 (62) | 14 (48) | 44 (69) | 0.06 ^ |
Age at sexual debut, mean (±SD) n1 = 57; n2 = 13; n3 = 44 | 18 (±2) | 18 (±2) | 18 (±2) | 0.59 # |
Lifetime sexual partners, n (%) | 1.00 * | |||
n1 = 56; n2 = 13; n3 = 43 | ||||
One | 19 (34) | 4 (31) | 15 (35) | |
Two–four | 27 (48) | 7 (54) | 20 (47) | |
Five–nine | 10 (18) | 2 (15) | 8 (19) |
PID | Sex | Type | Age | Sexually Active | Age of Sexual Debut | Age at First Vaccination | Number of Vaccine Doses Received | Lifetime Number of Sexual Partners | Current Contraceptive Usage | STI History |
---|---|---|---|---|---|---|---|---|---|---|
8 | Female | HPV18 | 22 | Yes | 19 | 17 | 2 | 2–4 | None | None |
17 | Female | HPV18 | 21 | Yes | 21 | 16 | 3 | 1 | None | None |
26 | Female | HPV18 | 20 | Yes | 19 | 14 | 3 | 1 | Condoms | None |
42 | Female | HPV18 | 20 | Yes | 18 | 15 | 3 | 1 | Condoms | Yes |
50 | Female | HPV18 | 21 | Yes | 17 | 15 | 3 | 5–9 | IUD | Yes |
150 | Female | HPV18 | 23 | Yes | 19 | 18 | 3 | 1 | 3m injectable | None |
9 | Male | HPV18 | 22 | Yes | 19 | 17 | 2 | 2–4 | Condoms | None |
34 | Male | HPV18 | 22 | Yes | 21 | 18 | 1 | 2–4 | Condoms | None |
58 | Male | HPV18 | 21 | Yes | 19 | 15 | 3 | 1 | IUD | None |
74 | Male | HPV18 | 18 | Missing | Missing | 13 | 3 | Missing | Missing | None |
75 | Male | HPV18 | 21 | Yes | 15 | 16 | 3 | 5–9 | Missing | None |
90 | Male | HPV18 | 21 | Yes | 21 | 17 | 3 | 5–9 | Condoms | None |
109 | Female | HPV16 | 21 | Yes | 20 | 15 | 3 | 2–4 | Condoms | Yes |
64 | Female | HPV6 | 22 | Yes | 20 | 17 | 3 | 2–4 | Condoms | Yes |
110 | Male | HPV6 | 17 | No | N/A | 12 | 3 | N/A | N/A | N/A |
135 | Male | HPV6 | 20 | No | N/A | 15 | 3 | N/A | N/A | N/A |
31 | Male | HPV11 | 20 | Yes | 18 | 15 | 3 | 5–9 | Condoms | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murahwa, A.T.; Mudzviti, T.; Mandishora, R.S.D.; Chatindo, T.; Chanetsa, P.; Pascoe, M.; Shamu, T.; Basera, W.; Luethy, R.; Williamson, A.-L. Vaccine and Non-Vaccine HPV Types Presence in Adolescents with Vertically Acquired HIV Five Years Post Gardasil Quadrivalent Vaccination: The ZIMGARD Cohort. Viruses 2024, 16, 162. https://doi.org/10.3390/v16010162
Murahwa AT, Mudzviti T, Mandishora RSD, Chatindo T, Chanetsa P, Pascoe M, Shamu T, Basera W, Luethy R, Williamson A-L. Vaccine and Non-Vaccine HPV Types Presence in Adolescents with Vertically Acquired HIV Five Years Post Gardasil Quadrivalent Vaccination: The ZIMGARD Cohort. Viruses. 2024; 16(1):162. https://doi.org/10.3390/v16010162
Chicago/Turabian StyleMurahwa, Alltalents T., Tinashe Mudzviti, Racheal S. Dube Mandishora, Takudzwa Chatindo, Peace Chanetsa, Margaret Pascoe, Tinei Shamu, Wisdom Basera, Ruedi Luethy, and Anna-Lise Williamson. 2024. "Vaccine and Non-Vaccine HPV Types Presence in Adolescents with Vertically Acquired HIV Five Years Post Gardasil Quadrivalent Vaccination: The ZIMGARD Cohort" Viruses 16, no. 1: 162. https://doi.org/10.3390/v16010162
APA StyleMurahwa, A. T., Mudzviti, T., Mandishora, R. S. D., Chatindo, T., Chanetsa, P., Pascoe, M., Shamu, T., Basera, W., Luethy, R., & Williamson, A. -L. (2024). Vaccine and Non-Vaccine HPV Types Presence in Adolescents with Vertically Acquired HIV Five Years Post Gardasil Quadrivalent Vaccination: The ZIMGARD Cohort. Viruses, 16(1), 162. https://doi.org/10.3390/v16010162