Virological Findings and Treatment Outcomes of Cases That Developed Dolutegravir Resistance in Malawi’s National HIV Treatment Program
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Genotypic HIVDR Testing
2.3. Data Collection and Analysis
3. Results
3.1. HIVDR Testing Cascade
3.2. Characteristics of Individuals with Integrase Sequences and Their HIVDR Results
3.3. Factors Associated with HIVDR Resistance
3.4. ART Outcomes of Individuals Diagnosed with Dolutegravir Resistance (Table S1)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, A.V.; Crutchley, R.D.; Guduru, R.C.; Ton, K.; Lam, T.; Min, A.C. A clinical review of HIV integrase strand transfer inhibitors (INSTIs) for the prevention and treatment of HIV-1 infection. Retrovirology 2022, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring. Recommendations for a Public Health Approach; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications-detail-redirect/9789240031593 (accessed on 27 October 2023).
- World Health Organization. Update on the Transition to Dolutegravir-Based Antiretroviral Therapy; Report of a WHO meeting, 29–30 March 2022; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240053335 (accessed on 27 October 2023).
- Castagna, A.; Maggiolo, F.; Penco, G.; Wright, D.; Mills, A.; Grossberg, R.; Molina, J.M.; Chas, J.; Durant, J.; Moreno, S.; et al. VIKING-3 Study Group. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J. Infect Dis. 2014, 210, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Lübke, N.; Jensen, B.; Hüttig, F.; Feldt, T.; Walker, A.; Thielen, A.; Däumer, M.; Obermeier, M.; Kaiser, R.; Knops, E.; et al. Failure of Dolutegravir First-Line ART with Selection of Virus Carrying R263K and G118R. N. Engl. J. Med. 2019, 381, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Venter, W.D.F.; Moorhouse, M.; Sokhela, S.; Fairlie, L.; Mashabane, N.; Masenya, M.; Serenata, C.; Akpomiemie, G.; Qavi, A.; Chandiwana, N.; et al. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N. Engl. J. Med. 2019, 381, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Kouanfack, C.; Mpoudi-Etame, M.; Omgba Bassega, P.; Eymard-Duvernay, S.; Leroy, S.; Boyer, S.; Peeters, M.; Calmy, A.; Delaporte, E.; NAMSAL ANRS 12313 Study Group. Dolutegravir-Based or Low-Dose Efavirenz-Based Regimen for the Treatment of HIV-1. N. Engl. J. Med. 2019, 381, 816–826. [Google Scholar] [PubMed]
- Payne, D.; Wadonda-Kabondo, N.; Wang, A.; Smith-Sreen, J.; Kabaghe, A.; Bello, G.; Kayigamba, F.; Tenthani, L.; Maida, A.; Auld, A.; et al. Trends in HIV prevalence, incidence, and progress towards the UNAIDS 95-95-95 targets in Malawi among individuals aged 15–64 years: Population-based HIV impact assessments, 2015–2016 and 2020-21. Lancet HIV 2023, 10, e597–e605. [Google Scholar] [CrossRef]
- van Oosterhout, J.J.; Chipungu, C.; Nkhoma, L.; Kanise, H.; Hosseinipour, M.C.; Sagno, J.B.; Simon, K.; Cox, C.; Hoffman, R.; Steegen, K.; et al. Dolutegravir Resistance in Malawi’s National HIV Treatment Program. Open Forum Infect. Dis. 2022, 9, ofac148. [Google Scholar] [CrossRef]
- Hamisi, T.; Chimpandule, T.; Jahn, A.; Chiwandira, B.; Kalua, T.; Nyirenda, R. Transition to dolutegravir-based regimens improves overall viral-load suppression in the national ART cohort in Malawi and closes the gender gap. In Proceedings of the 23rd International AIDS Conference 2020, San Francisco, CA, USA, 6–10 July 2020. [Google Scholar]
- Malawi Ministry of Health. Clinical Management of HIV in Children and Adults: Malawi Integrated Guidelines; Malawi Ministry of Health: Lilongwe, Malawi, 2022. [Google Scholar]
- Heller, T.; Ganesh, P.; Gumulira, J.; Nkhoma, L.; Chipingu, C.; Kanyama, C.; Kalua, T.; Nyrienda, R.; Phiri, S.; Schooley, A. Successful establishment of third-line antiretroviral therapy in Malawi: Lessons learned. Public Health Action 2019, 9, 169–173. [Google Scholar] [CrossRef]
- Zhou, Z.; Wagar, N.; DeVos, J.R.; Rottinghaus, E.; Diallo, K.; Nguyen, D.B.; Bassey, O.; Ugbena, R.; Wadonda-Kabondo, N.; McConnell, M.S.; et al. Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. PLoS ONE 2011, 6, e28184. [Google Scholar] [CrossRef]
- Van Laethem, K.; Schrooten, Y.; Covens, K.; Dekeersmaeker, N.; De Munter, P.; Van Wijngaerden, E.; Van Ranst, M.; Vandamme, A.M. A genotypic assay for the amplification and sequencing of integrase from diverse HIV-1 group M subtypes. J. Virol. Methods 2008, 153, 176–181. [Google Scholar] [CrossRef]
- Government of Malawi Ministry of Health. Directorate of HIV-AIDS Website. Available online: https://dms.hiv.health.gov.mw/link/khw0bvaq (accessed on 27 October 2023).
- Schramm, B.; Temfack, E.; Descamps, D.; Nicholas, S.; Peytavin, G.; Bitilinyu-Bangoh, J.E.; Storto, A.; Lê, M.P.; Abdi, B.; Ousley, J.; et al. Viral suppression and HIV-1 drug resistance 1 year after pragmatic transitioning to dolutegravir first-line therapy in Malawi: A prospective cohort study. Lancet HIV 2022, 9, e544–e553. [Google Scholar] [CrossRef] [PubMed]
- Kamori, D.; Barabona, G.; Rugemalila, J.; Maokola, W.; Masoud, S.S.; Mizinduko, M.; Sabasaba, A.; Ruhago, G.; Sambu, V.; Mushi, J.; et al. Emerging integrase strand transfer inhibitor drug resistance mutations among children and adults on ART in Tanzania: Findings from a national representative HIV drug resistance survey. J. Antimicrob. Chemother. 2023, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Seatla, K.K.; Maruapula, D.; Choga, W.T.; Ntsipe, T.; Mathiba, N.; Mogwele, M.; Kapanda, M.; Nkomo, B.; Ramaabya, D.; Makhema, J.; et al. HIV-1 Subtype C Drug Resistance Mutations in Heavily Treated Patients Failing Integrase Strand Transfer Inhibitor-Based Regimens in Botswana. Viruses 2021, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, A.; Kida, I.M.; Maina, U.A.; Ibrahim, A.H.; Mshelia, J.; Wisso, H.; Adamu, A.; Onyemata, J.E.; Edun, M.; Yusuph, H.; et al. Limited emergence of resistance to integrase strand transfer inhibitors (INSTIs) in ART-experienced participants failing dolutegravir-based antiretroviral therapy: A cross-sectional analysis of a Northeast Nigerian cohort. J. Antimicrob. Chemother. 2023, 78, 2000–2007. [Google Scholar] [CrossRef] [PubMed]
- Stanford University. HIV Drug Resistance Database. INSTI Resistance Notes. Available online: https://hivdb.stanford.edu/dr-summary/resistance-notes/INSTI/ (accessed on 31 October 2023).
- Tao, K.; Rhee, S.Y.; Chu, C.; Avalos, A.; Ahluwalia, A.K.; Gupta, R.K.; Jordan, M.R.; Shafer, R.W. Treatment Emergent Dolutegravir Resistance Mutations in Individuals Naïve to HIV-1 Integrase Inhibitors: A Rapid Scoping Review. Viruses 2023, 15, 1932. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.A.; Cleyle, J.; Yoo, S.; Forrest, M.; Krullaars, Z.; Pham, H.T.; Mesplède, T. The G118R plus R263K Combination of Integrase Mutations Associated with Dolutegravir-Based Treatment Failure Reduces HIV-1 Replicative Capacity and Integration. Antimicrob. Agents Chemother. 2023, 67, e0138622. [Google Scholar] [CrossRef] [PubMed]
- Geubbels, E.; Bowie, C. Epidemiology of HIV/AIDS in adults in Malawi. Malawi Med. J. 2006, 18, 111–133. [Google Scholar] [CrossRef]
- Paton, N.I.; Musaazi, J.; Kityo, C.; Walimbwa, S.; Hoppe, A.; Balyegisawa, A.; Asienzo, J.; Kaimal, A.; Mirembe, G.; Lugemwa, A.; et al. Efficacy and safety of dolutegravir or darunavir in combination with lamivudine plus either zidovudine or tenofovir for second-line treatment of HIV infection (NADIA): Week 96 results from a prospective, multicentre, open-label, factorial, randomised, non-inferiority trial. Lancet HIV 2022, 9, e381–e393. [Google Scholar] [CrossRef]
- van Sighem, A.; Stecher, M.; d’Arminio Monforte, A.; Gill, M.J.; Sabin, C.A.; Maartens, G.; Günthard, H.F.; Sterne, J.A.C.; Lessells, R.; Egger, M.; et al. HIV-1 drug resistance in people on dolutegravir-based antiretroviral therapy: A collaborative cohort analysis. Lancet HIV 2023, 10, S2352-3018(23)00228-X. [Google Scholar] [CrossRef]
- Siedner, M.J.; Moorhouse, M.A.; Simmons, B.; de Oliveira, T.; Lessells, R.; Giandhari, J.; Kemp, S.A.; Chimukangara, B.; Akpomiemie, G.; Serenata, C.M.; et al. Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase. Nat. Commun. 2020, 11, 5922. [Google Scholar] [CrossRef]
- da Silva, J.; Pals, S.; Chang, J.; Hackett, S.; Godfrey, C.; Raizes, E. Monitoring Emerging Human Immunodeficiency Virus Drug Resistance in Sub-Saharan Africa in the Era of Dolutegravir. J. Infect Dis. 2022, 225, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.E.; Umunnakwe, C.N.; Lalla-Edward, S.T.; Hebel, S.K.; Tempelman, H.A.; Nijhuis, M.; Venter, W.D.F.; Wensing, A.M.J. Point-of-Care Tenofovir Urine Testing for the Prediction of Treatment Failure and Drug Resistance During Initial Treatment for Human Immunodeficiency Virus Type 1 (HIV-1) Infection. Clin. Infect Dis. 2023, 76, e553–e560. [Google Scholar] [CrossRef] [PubMed]
- Chua, R.J.; Capiña, R.; Ji, H. Point-of-Care Tests for HIV Drug Resistance Monitoring: Advances and Potentials. Pathogens 2022, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Mahomed, K.; Wallis, C.L.; Dunn, L.; Maharaj, S.; Maartens, G.; Meintjies, G. Case report: Emergence of dolutegravir resistance in a patient on second-line antiretroviral therapy. S. Afr. J. HIV Med. 2020, 21, a1062. [Google Scholar] [CrossRef]
Variable | Samples with Integrase Sequences | DTG Resistance Mutations Present | Wild Type | HIVDR Mutations Present, No DTG Resistance Mutations | ||||
---|---|---|---|---|---|---|---|---|
n | 89 | 24 | 30 | 35 | ||||
n | % | n | % | n | % | n | % | |
Presence high level NNRTI resistance # | ||||||||
No | 35 | 40.7 | 4 | 18.2 | 30 | 100.0 | 1 | 2.9 |
Yes | 51 | 59.3 | 18 | 81.8 | 0 | 0.0 | 33 | 97.1 |
Presence of high level NRTI resistance * | ||||||||
No | 69 | 80.2 | 11 | 50.0 | 30 | 100.0 | 28 | 82.4 |
Yes | 17 | 19.8 | 11 | 50.0 | 0 | 0.0 | 6 | 17.6 |
Presence of M184V mutation | ||||||||
No | 63 | 74.3 | 2 | 9.1 | 30 | 100.0 | 31 | 91.2 |
Yes | 23 | 26.7 | 20 | 90.9 | 0 | 0.0 | 3 | 8.8 |
Median age (range) | 29 (4–63) | 40 (5–63) | 26 (11–56) | 20 (4–54) | ||||
age 0–9 | 5 | 5.6 | 2 | 8.3 | 0 | 0.0 | 3 | 8.6 |
age 10–19 | 32 | 36.0 | 4 | 16.7 | 14 | 46.7 | 14 | 40.0 |
age 20–49 | 42 | 47.2 | 14 | 58.3 | 13 | 43.3 | 15 | 42.9 |
age 50+ | 10 | 11.2 | 4 | 16.7 | 3 | 10.0 | 3 | 8.6 |
Sex | ||||||||
Female | 51 | 57.3 | 9 | 37.5 | 20 | 66.7 | 22 | 62.9 |
Male | 38 | 42.7 | 15 | 62.5 | 10 | 33.3 | 13 | 37.1 |
ART regimen at time of resistance testing | ||||||||
TDF/3TC/DTG | 62 | 69.7 | 16 | 66.7 | 23 | 65.7 | 23 | 63.6 |
AZT/3TC + DTG | 9 | 10.1 | 2 | 8.3 | 2 | 6.7 | 3 | 13.6 |
ABC/3TC + DTG | 16 | 18.0 | 6 | 25.0 | 4 | 13.3 | 6 | 17.1 |
pABC/3TC + DTG | 1 | 1.1 | 0 | 0.0 | 1 | 3.3 | 0 | 0.0 |
pABC/3TC + pDTG | 1 | 1.1 | 0 | 0.0 | 0 | 0.0 | 1 | 2.9 |
Median duration ART, months (range) | 87 (14–231) | 97 (20–202) | 53 (14–231) | 92 (27–216) | ||||
ART 0–36 months | 17 | 19.1 | 3 | 12.5 | 7 | 23.3 | 3 | 8.6 |
ART 37–72 months | 20 | 22.5 | 4 | 16.7 | 12 | 40.0 | 6 | 17.1 |
ART 73+ months | 52 | 58.4 | 17 | 70.8 | 11 | 36.7 | 26 | 74.3 |
Median duration on DTG, months (range) | 22 (5–56) | 24 (8–46) | 22 (8–51) | 20 (5–56) | ||||
DTG 0–12 months | 18 | 20.2 | 5 | 20.8 | 5 | 16.7 | 8 | 22.9 |
DTG 13–24 months | 36 | 40.4 | 7 | 29.2 | 14 | 46.7 | 15 | 42.9 |
DTG 25+ months | 35 | 39.3 | 12 | 50.0 | 11 | 36.7 | 12 | 34.3 |
Median duration viremia on DTG, months (range) | 12 (0–35) | 14 (0–31) | 13 (2–35) | 9 (0–28) | ||||
0–12 months | 50 | 56.2 | 10 | 41.7 | 15 | 50.0 | 25 | 71.4 |
13+ months | 39 | 43.8 | 14 | 58.3 | 15 | 50.0 | 10 | 28.6 |
TB treatment during DTG regimen | ||||||||
No | 82 | 92.1 | 21 | 87.5 | 28 | 93.3 | 33 | 94.3 |
Yes | 7 | 7.9 | 3 | 12.5 | 2 | 6.7 | 2 | 5.7 |
Application year | ||||||||
2020 | 2 | 2.2 | 0 | 0.0 | 2 | 6.7 | 0 | 0.0 |
2021 | 52 | 58.4 | 12 | 50.0 | 18 | 60.0 | 22 | 62.9 |
2022 | 35 | 39.3 | 12 | 50.0 | 10 | 33.3 | 13 | 37.1 |
Case # | R263K | E138K | S147G ^ | T66A/I | G118R | Q148R | N155H | Stanford Resistance Score (Level) |
---|---|---|---|---|---|---|---|---|
1 | x | 40 (intermediate) | ||||||
2 | x | 30 (intermediate) | ||||||
3 | x | x | x | 60 (high) | ||||
4 | x | 30 (intermediate) | ||||||
5 | x | 40 (intermediate) | ||||||
6 | x | 30 (intermediate) | ||||||
7 | x | 20 (low) | ||||||
8 | x | 30 (intermediate) | ||||||
9 | x | 30 (intermediate) | ||||||
10 | x | x | x | 70 (high) | ||||
11 | x | 30 (intermediate) | ||||||
12 * | 15 (low) | |||||||
13 | x | x | x | 80 (high) | ||||
14 | x | 60 (high) | ||||||
15 | x | x | x | 85 (high) | ||||
16 | x | x | x | 60 (high) | ||||
17 | x | 30 (intermediate) | ||||||
18 | x | 30 (intermediate) | ||||||
19 | x | x | x | 125 (high) | ||||
20 | x | 50 (intermediate) | ||||||
21 | x | x | x | 80 (high) | ||||
22 | x | 30 (intermediate) | ||||||
23 | x | 30 (intermediate) | ||||||
24 | x | x | x | 110 (high) |
Variable | Unadjusted ORs for DTG Resistance | Adjusted ORs for DTG Resistance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DTG Resistance (n = 24) | No DTG Resistance (n = 65) | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |||
Age categories, years (%) | ||||||||||
0–19 | 25.0 | 47.7 | 1 (ref) | 1 (ref) | ||||||
20–39 | 16.7 | 27.7 | 1.15 | 0.29 | 4.62 | 0.846 | 2.63 | 0.42 | 16.6 | 0.305 |
40+ | 58.3 | 24.6 | 4.52 | 1.46 | 14.0 | 0.009 | 4.77 | 1.13 | 20.1 | 0.033 |
Male sex (%) | 62.5 | 35.4 | 3.04 | 1.15 | 8.03 | 0.025 | 2.72 | 0.69 | 10.8 | 0.16 |
TDF/3TC (%) vs. any other (AZT/3TC & ABC/3TC) backbone | 66.7 | 70.8 | 0.83 | 0.30 | 2.25 | 0.709 | ||||
Median duration on ART (months) | 97.0 | 83.0 | 1.01 | 1.00 | 1.01 | 0.299 | ||||
Median duration on DTG (months) | 24.0 | 21.0 | 1.02 | 0.97 | 1.06 | 0.452 | ||||
Median duration viremia on DTG, months (%) | ||||||||||
0–12 | 41.7 | 61.5 | 1 (ref) | 1 (ref) | ||||||
13+ | 58.3 | 38.5 | 2.24 | 0.86 | 5.81 | 0.097 | 1.66 | 0.50 | 5.54 | 0.41 |
TB treatment during DTG regimen (%) | 12.5 | 6.2 | 2.18 | 0.45 | 10.6 | 0.333 | 5.04 | 0.79 | 32.0 | 0.09 |
Application year 2022 (%) vs. 2020 or 2021 | 50.0 | 35.4 | 1.83 | 0.71 | 4.71 | 0.213 | ||||
Presence high level NNRTI (NVP and/or EFV) resistance (%) | 81.8 | 51.6 | 4.23 | 1.29 | 13.9 | 0.018 | ||||
Presence high level NRTI (TDF, AZT and/or ABC) resistance (%) | 50.0 | 9.4 | 9.67 | 2.96 | 31.6 | 0.000 | 10.0 | 2.57 | 39.1 | 0.00 |
Presence of M184V mutation (%) | 90.9 | 4.7 | 203 | 31.7 | 1305 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanise, H.; van Oosterhout, J.J.; Bisani, P.; Songo, J.; Matola, B.W.; Chipungu, C.; Simon, K.; Cox, C.; Hosseinipour, M.C.; Sagno, J.-B.; et al. Virological Findings and Treatment Outcomes of Cases That Developed Dolutegravir Resistance in Malawi’s National HIV Treatment Program. Viruses 2024, 16, 29. https://doi.org/10.3390/v16010029
Kanise H, van Oosterhout JJ, Bisani P, Songo J, Matola BW, Chipungu C, Simon K, Cox C, Hosseinipour MC, Sagno J-B, et al. Virological Findings and Treatment Outcomes of Cases That Developed Dolutegravir Resistance in Malawi’s National HIV Treatment Program. Viruses. 2024; 16(1):29. https://doi.org/10.3390/v16010029
Chicago/Turabian StyleKanise, Hope, Joep J. van Oosterhout, Pachawo Bisani, John Songo, Bilaal W. Matola, Chifundo Chipungu, Katherine Simon, Carrie Cox, Mina C. Hosseinipour, Jean-Batiste Sagno, and et al. 2024. "Virological Findings and Treatment Outcomes of Cases That Developed Dolutegravir Resistance in Malawi’s National HIV Treatment Program" Viruses 16, no. 1: 29. https://doi.org/10.3390/v16010029
APA StyleKanise, H., van Oosterhout, J. J., Bisani, P., Songo, J., Matola, B. W., Chipungu, C., Simon, K., Cox, C., Hosseinipour, M. C., Sagno, J.-B., Hoffman, R. M., Wallrauch, C., Phiri, S., Steegen, K., Jahn, A., Nyirenda, R., & Heller, T. (2024). Virological Findings and Treatment Outcomes of Cases That Developed Dolutegravir Resistance in Malawi’s National HIV Treatment Program. Viruses, 16(1), 29. https://doi.org/10.3390/v16010029