Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs (Varecia rubra)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Doorslaer, K.; Chen, Z.; Bernard, H.U.; Chan, P.K.; DeSalle, R.; Dillner, J.; Forslund, O.; Haga, T.; McBride, A.A.; Villa, L.L. ICTV Virus Taxonomy Profile: Papillomaviridae. J. Gen. Virol. 2018, 99, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Rector, A.; Van Ranst, M. Animal papillomaviruses. Virology 2013, 445, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, N.; Bosch, F.X.; Jensen, O.M.; International Agency for Research on Cancer. Cancerregisteret (Denmark). In Human Papillomavirus and Cervical Cancer; International Agency for Research on Cancer; Oxford University Press: Lyon, NY, USA, 1989; Volume xii, 155p. [Google Scholar]
- Joh, J.; Hopper, K.; Van Doorslaer, K.; Sundberg, J.P.; Jenson, A.B.; Ghim, S.J. Macaca fascicularis papillomavirus type 1: A non-human primate betapapillomavirus causing rapidly progressive hand and foot papillomatosis. J. Gen. Virol. 2009, 90, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Bergin, I.L.; Bell, J.D.; Chen, Z.; Zochowski, M.K.; Chai, D.; Schmidt, K.; Culmer, D.L.; Aronoff, D.M.; Patton, D.L.; Mwenda, J.M.; et al. Novel Genital Alphapapillomaviruses in Baboons (Papio hamadryas Anubis) With Cervical Dysplasia. Vet. Pathol. 2013, 50, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Denny, L.A.; Franceschi, S.; de Sanjosé, S.; Heard, I.; Moscicki, A.B.; Palefsky, J. Human Papillomavirus, Human Immunodeficiency Virus and Immunosuppression. Vaccine 2012, 30, F168–F174. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Wang, H.; Li, Y.; Zhang, L.; Wang, Z.; Song, L.; Liu, H. Genetic diversity of E6, E7 and the long control region in human papillomavirus type 16 variants in Beijing, China. Biochem. Biophys. Rep. 2022, 31, 101286. [Google Scholar] [CrossRef] [PubMed]
- Long, T.; Burk, R.D.; Chan, P.K.S.; Chen, Z. Non-human primate papillomavirus E6-mediated p53 degradation reveals ancient evolutionary adaptation of carcinogenic phenotype to host niche. PLoS Pathog. 2022, 18, e1010444. [Google Scholar] [CrossRef]
- Gimpelj Domjanič, G.; Hošnjak, L.; Lunar, M.M.; Skubic, L.; Zorec, T.M.; Račnik, J.; Cigler, B.; Poljak, M. First Report of Phodopus sungorus Papillomavirus Type 1 Infection in Roborovski Hamsters (Phodopus roborovskii). Viruses 2021, 13, 739. [Google Scholar] [CrossRef]
- Canuti, M.; Munro, H.J.; Robertson, G.J.; Kroyer, A.N.; Roul, S.; Ojkic, D.; Whitney, H.G.; Lang, A.S. New insight into avian papillomavirus ecology and evolution from characterization of novel wild bird papillomaviruses. Front. Microbiol. 2019, 10, 701. [Google Scholar] [CrossRef]
- Gottschling, M.; Stamatakis, A.; Nindl, I.; Stockfleth, E.; Alonso, Á.; Bravo, I.G. Multiple Evolutionary Mechanisms Drive Papillomavirus Diversification. Mol. Biol. Evol. 2007, 24, 1242–1258. [Google Scholar] [CrossRef]
- Trewby, H.; Ayele, G.; Borzacchiello, G.; Brandt, S.; Campo, M.S.; Del Fava, C.; Marais, J.; Leonardi, L.; Vanselow, B.; Biek, R.; et al. Analysis of the long control region of bovine papillomavirus type 1 associated with sarcoids in equine hosts indicates multiple cross-species transmission events and phylogeographical structure. J. Gen. Virol. 2014, 95, 2748–2756. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, R.; Ibáñez, C.; Godínez, J.M.; Aréchiga, N.; Garin, I.; Pérez-Suárez, G.; de Paz, O.; Juste, J.; Echevarría, J.E.; Bravo, I.G. Novel papillomaviruses in free-ranging Iberian bats: No virus-host co-evolution, no strict host specificity, and hints for recombination. Genome. Biol. Evol. 2014, 6, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Varsani, A.; van der Walt, E.; Heath, L.; Rybicki, E.P.; Williamson, A.L.; Martin, D.P. Evidence of ancient papillomavirus recombination. J. Gen. Virol. 2006, 87, 2527–2531. [Google Scholar] [CrossRef] [PubMed]
- Otten, N.; von Tscharner, C.; Lazary, S.; Antczak, D.F.; Gerber, H. DNA of bovine papillomavirus type 1 and 2 in equine sarcoids: PCR detection and direct sequencing. Arch. Virol. 1993, 132, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.; Alcântara, B.K.d.; Otonel, R.A.A.; Rodrigues, W.B.; Alfieri, A.F.; Alfieri, A.A. Bovine Papillomavirus Type 13 DNA in Equine Sarcoids. J. Clin. Microbiol. 2013, 51, 2167–2171. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.; De Moor, A.; Demeulemeester, J.; Peelman, L. Polymerase chain reaction analysis of the surgical margins of equine sarcoids for bovine papilloma virus DNA. Vet. Surg. 2001, 30, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Kidney, B.A.; Berrocal, A. Sarcoids in two captive tapirs (Tapirus bairdii): Clinical, pathological and molecular study. Vet. Dermatol. 2008, 19, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Roperto, S.; Russo, V.; Ozkul, A.; Corteggio, A.; Sepici-Dincel, A.; Catoi, C.; Esposito, I.; Riccardi, M.G.; Urraro, C.; Luca, R. Productive infection of bovine papillomavirus type 2 in the urothelial cells of naturally occurring urinary bladder tumors in cattle and water buffaloes. PLoS ONE 2013, 8, e62227. [Google Scholar] [CrossRef]
- Silvestre, O.; Borzacchiello, G.; Nava, D.; Iovane, G.; Russo, V.; Vecchio, D.; D’ausilio, F.; Gault, E.; Campo, M.; Paciello, O. Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. Vet. Pathol. 2009, 46, 636–641. [Google Scholar] [CrossRef]
- Munday, J.S.; Thomson, N.; Dunowska, M.; Knight, C.G.; Laurie, R.E.; Hills, S. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Vet. Microbiol. 2015, 177, 289–295. [Google Scholar] [CrossRef]
- Orbell, G.; Young, S.; Munday, J. Cutaneous sarcoids in captive African lions associated with feline sarcoid-associated papillomavirus infection. Vet. Pathol. 2011, 48, 1176–1179. [Google Scholar] [CrossRef] [PubMed]
- Pfister, H.; Fink, B.; Thomas, C. Extrachromosomal bovine papillomavirus type 1 DNA in hamster fibromas and fibrosarcomas. Virology 1981, 115, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Robl, M.G.; Olson, C. Oncogenic Action of Bovine Papilloma Virus in Hamsters1. Cancer Res. 1968, 28, 1596–1604. [Google Scholar] [PubMed]
- Boiron, M.; Levy, J.P.; Thomas, M.; Friedmann, J.C.; Bernard, J. Some Properties of Bovine Papilloma Virus. Nature 1964, 201, 423–424. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, J.; Reszka, A.; Williams, E.; Reichmann, M. An oral papillomavirus that infected one coyote and three dogs. Vet. Pathol. 1991, 28, 87–88. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Cuccaro, B.; De Tullio, R.; Alberti, A.; Cutarelli, A.; De Carlo, E.; Roperto, S. Possible etiological association of ovine papillomaviruses with bladder tumors in cattle. Virus. Res. 2023, 328, 199084. [Google Scholar] [CrossRef] [PubMed]
- Savini, F.; Gallina, L.; Prosperi, A.; Puleio, R.; Lavazza, A.; Di Marco, P.; Tumino, S.; Moreno, A.; Lelli, D.; Guercio, A.; et al. Bovine Papillomavirus 1 Gets Out of the Flock: Detection in an Ovine Wart in Sicily. Pathogens 2020, 9, 429. [Google Scholar] [CrossRef]
- Russo, V.; Roperto, F.; De Biase, D.; Cerino, P.; Urraro, C.; Munday, J.S.; Roperto, S. Bovine Papillomavirus Type 2 Infection Associated with Papillomatosis of the Amniotic Membrane in Water Buffaloes (Bubalus bubalis). Pathogens 2020, 9, 262. [Google Scholar] [CrossRef]
- Reid, S.; Smith, K.; Jarrett, W. Detection, cloning and characterisation of papillomaviral DNA present in sarcoid tumours of Equus asinus. Vet. Rec. 1994, 135, 430–432. [Google Scholar] [CrossRef]
- Savini, F.; Dal Molin, E.; Gallina, L.; Casà, G.; Scagliarini, A. Papillomavirus in healthy skin and mucosa of wild ruminants in the Italian Alps. J. Wildl. Dis. 2016, 52, 82–87. [Google Scholar] [CrossRef]
- Chen, L.; Liu, B.; Yang, J.; Jin, Q. DBatVir: The database of bat-associated viruses. Database 2014, 2014, bau021. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Tomita, Y.; Okada, M.; Shirasawa, H. Complete genome and phylogenetic position of bovine papillomavirus type 7. J. Gen. Virol. 2007, 88, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Lawson, B.; Robinson, R.A.; Fernandez, J.R.; John, S.K.; Benitez, L.; Tolf, C.; Risely, K.; Toms, M.P.; Cunningham, A.A.; Williams, R.A.J. Spatio-temporal dynamics and aetiology of proliferative leg skin lesions in wild British finches. Sci. Rep. 2018, 8, 14670. [Google Scholar] [CrossRef] [PubMed]
- Dunay, E.; Rukundo, J.; Atencia, R.; Cole, M.F.; Cantwell, A.; Emery Thompson, M.; Rosati, A.G.; Goldberg, T.L. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS ONE 2023, 18, e0288007. [Google Scholar] [CrossRef] [PubMed]
- Van Ranst, M.; Fuse, A.; Fiten, P.; Beuken, E.; Pfister, H.; Burk, R.D.; Opdenakker, G. Human papillomavirus type 13 and pygmy chimpanzee papillomavirus type 1: Comparison of the genome organizations. Virology 1992, 190, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Root, J.J.; Hopken, M.W.; Gidlewski, T.; Piaggio, A.J. Cottontail Rabbit Papillomavirus Infection in a Desert cottontail (Sylvilagus audubonii) from Colorado, USA. J. Wildl. Dis. 2013, 49, 1060–1062. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; van Doorslaer, K.; DeSalle, R.; Wood, C.E.; Kaplan, J.R.; Wagner, J.D.; Burk, R.D. Genomic diversity and interspecies host infection of α12 Macaca fascicularis papillomaviruses (MfPVs). Virology 2009, 393, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Literák, I.; Tomita, Y.; Ogawa, T.; Shirasawa, H.; Šmid, B.; Novotný, L.; Adamec, M. Papillomatosis in a European bison. J. Wildl. Dis. 2006, 42, 149–153. [Google Scholar] [CrossRef]
- Munday, J.S.; Fairley, R.; Lowery, I. Detection of Ovis aries papillomavirus type 2 DNA sequences in a sarcoid-like mass in the mouth of a pig. Vet. Microbiol. 2020, 248, 108801. [Google Scholar] [CrossRef]
- Gysens, L.; Vanmechelen, B.; Maes, P.; Martens, A.; Haspeslagh, M. Complete genomic characterization of bovine papillomavirus type 1 and 2 strains infers ongoing cross-species transmission between cattle and horses. Vet. J. 2023, 298–299, 106011. [Google Scholar] [CrossRef]
- Bogaert, L.; Martens, A.; Van Poucke, M.; Ducatelle, R.; De Cock, H.; Dewulf, J.; De Baere, C.; Peelman, L.; Gasthuys, F. High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet. Microbiol. 2008, 129, 58–68. [Google Scholar] [CrossRef]
- Bengis, R.; Van Heerden, J.; Venter, E.; Bosman, A.; Van Dyk, E.; Williams, J.; Van Wilpe, E. Detection and characterisation of papillomavirus in skin lesions of giraffe and sable antelope in South Africa. J. South Afr. Vet. Assoc. 2011, 82, 80–85. [Google Scholar]
- Löhr, C.V.; Juan-Sallés, C.; Rosas-Rosas, A.; García, A.P.; Garner, M.M.; Teifke, J.P. Sarcoids in captive zebras (Equus burchellii): Association with bovine papillomavirus type 1 infection. J. Zoo Wildl. Med. 2005, 36, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Gallina, L.; Savini, F.; Casà, G.; Bertoletti, I.; Bianchi, A.; Gibelli, L.R.; Lelli, D.; Lavazza, A.; Scagliarini, A. Epitheliotropic infections in wildlife ruminants from the Central Alps and Stelvio National Park. Front. Vet. Sci. 2020, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Cutarelli, A.; Cuccaro, B.; Catoi, C.; De Carlo, E.; Roperto, S. Evidence of a novel cross-species transmission by ovine papillomaviruses. Transbound Emerg. Dis. 2022, 69, 3850–3857. [Google Scholar] [CrossRef]
- Davies, N.; Johnson, S.; Louis, E.E.; Mittermeier, R.A.; Nash, S.D.; Rajaobelina, S.; Ratsimbazafy, J.; Razafindramanana, J.; Schwitzer, C. Lemurs of Madagascar: A Strategy for Their Conservation 2013–2016; (IUCN) International Union for Conservation of Nature; Bristol Zoo Gardens; Conservation International; IUCN Species Survival Commission (SSC); Primate Specialist Group: Bristol, UK, 2013. [Google Scholar]
- Mittermeier, R.A.; Wilson, D.E. Handbook of the Mammals of the World—Volume 3: Primates; LYNX Nature Book: Spain, Barcelona, 2013. [Google Scholar]
- Rylands, A.B.; Mittermeier, R.A. Primate taxonomy: Species and conservation. Evol. Anthropol. Issues News Rev. 2014, 23, 8–10. [Google Scholar] [CrossRef]
- Perez, S.I.; Tejedor, M.F.; Novo, N.M.; Aristide, L. Divergence Times and the Evolutionary Radiation of New World Monkeys (Platyrrhini, Primates): An Analysis of Fossil and Molecular Data. PLoS ONE 2013, 8, e68029. [Google Scholar] [CrossRef]
- Paietta, E.N.; Kraberger, S.; Custer, J.M.; Vargas, K.L.; Van Doorslaer, K.; Yoder, A.D.; Varsani, A. Identification of diverse papillomaviruses in captive black-and-white ruffed lemurs (Varecia variegata). Arch. Virol. 2022, 168, 13. [Google Scholar] [CrossRef]
- Borgerson, C.; Eppley, T.M.; Patel, E.; Johnson, S.; Louis, E.E.; Razafindramanana, J. Varecia rubra. The IUCN Red List of Threatened Species. 2020. Available online: https://www.iucnredlist.org/species/22920/115574598 (accessed on 18 November 2023).
- Louis, E.E.; Sefczek, T.M.; Raharivololona, B.; King, T.; Morelli, T.L.; Baden, A. Varecia variegata. The IUCN Red List of Threatened Species. 2020. Available online: https://www.iucnredlist.org/species/22918/115574178 (accessed on 18 November 2023).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Tisza, M.J.; Belford, A.K.; Domínguez-Huerta, G.; Bolduc, B.; Buck, C.B. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol. 2021, 7, veaa100. [Google Scholar] [CrossRef] [PubMed]
- Van Doorslaer, K.; Li, Z.; Xirasagar, S.; Maes, P.; Kaminsky, D.; Liou, D.; Sun, Q.; Kaur, R.; Huyen, Y.; McBride, A.A. The Papillomavirus Episteme: A major update to the papillomavirus sequence database. Nucleic Acids Res. 2017, 45, D499–D506. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27, 1164–1165. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Roman, A.; Munger, K. The papillomavirus E7 proteins. Virology 2013, 445, 138–168. [Google Scholar] [CrossRef] [PubMed]
- Vega, R.; Hopper, J.; Kitchener, A.C.; Catinaud, J.; Roullet, D.; Robsomanitrandrasana, E.; Hollister, J.D.; Roos, C.; King, T. The mitochondrial DNA diversity of captive ruffed lemurs (Varecia spp.): Implications for conservation. Oryx 2023, 57, 649–658. [Google Scholar] [CrossRef]
- Schwitzer, C.; King, T.; Robsomanitrandrasana, E.; Chamberlan, C.; Rasolofoharivelo, T. Integrating ex situ and in situ conservation of lemurs. In Lemurs of Madagascar: A Strategy for Their Conservation; Research Gate: Berlin, Germany, 2013; Volume 2016, pp. 146–152. [Google Scholar]
- Groves, C. Primate Taxonomy; Smithsonian Institution Press: Washington, DC, USA, 2001. [Google Scholar]
- Vasey, N.; Tattersall, I. Do ruffed lemurs form a hybrid zone? Distribution and discovery of Varecia, with systematic and conservation implications. Am. Mus. Novit. 2002, 2002, 1–26. [Google Scholar] [CrossRef]
- Hekkala, E.R.; Rakotondratsima, M.; Vasey, N. Habitat and distribution of the ruffed lemur, Varecia, north of the Bay of Antongil in northeastern Madagascar. Primate Conserv. 2007, 22, 89–95. [Google Scholar] [CrossRef]
NHP Superfamily | Approx. Number of Extant Species | Species with PV Sequences (Partial and Complete) in NCBI | Number of Complete PV Genomes Available in NCBI |
---|---|---|---|
Ceboidea (New World Monkeys) | >100 | Alouatta caraya Alouatta guariba Callithrix penicillata Saimiri sciureus Sapajus sp. | 8 |
Cercopithecoidea (Old World Monkeys) | >130 | Colobus guereza Macaca fascicularis Macaca fuscata Macaca mulatta Papio hamadryas Piliocolobus tephrosceles | 23 |
Hominoidea (Apes, excludes humans) | ~25 | Gorilla gorilla Pan paniscus Pan troglodytes | 4 |
Lemuroidea (Lemurs) | >100 | Varecia variegata Varecia rubra | 6 |
Lorisoidea (Lorisids & Galagos) | >25 | - | 0 |
Tarsioidea (Tarsiers) | >10 | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paietta, E.N.; Kraberger, S.; Regney, M.; Custer, J.M.; Ehmke, E.; Yoder, A.D.; Varsani, A. Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs (Varecia rubra). Viruses 2024, 16, 37. https://doi.org/10.3390/v16010037
Paietta EN, Kraberger S, Regney M, Custer JM, Ehmke E, Yoder AD, Varsani A. Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs (Varecia rubra). Viruses. 2024; 16(1):37. https://doi.org/10.3390/v16010037
Chicago/Turabian StylePaietta, Elise N., Simona Kraberger, Melanie Regney, Joy M. Custer, Erin Ehmke, Anne D. Yoder, and Arvind Varsani. 2024. "Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs (Varecia rubra)" Viruses 16, no. 1: 37. https://doi.org/10.3390/v16010037
APA StylePaietta, E. N., Kraberger, S., Regney, M., Custer, J. M., Ehmke, E., Yoder, A. D., & Varsani, A. (2024). Interspecies Papillomavirus Type Infection and a Novel Papillomavirus Type in Red Ruffed Lemurs (Varecia rubra). Viruses, 16(1), 37. https://doi.org/10.3390/v16010037