The Global Prevalence of HTLV-1 and HTLV-2 Infections among Immigrants and Refugees—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Risk of Bias Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Prevalence of HTLV-1 and HTLV-2
3.3. Subgroup Analyses
3.4. Assessment of Risk of Bias
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nosaka, K.; Matsuoka, M. Adult T-cell leukemia-lymphoma as a viral disease: Subtypes based on viral aspects. Cancer Sci. 2021, 112, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.D.; Ribeiro, G.S.; Anjos, R.O.; Dias, M.A.; Farre, L.; Araújo, I.; Bittencourt, A.L. The importance of the clinical classification of adult T-cell leukemia/lymphoma (ATLL) in the prognosis. PLoS Negl. Trop. Dis. 2022, 16, e0010807. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Human T-Lymphotropic Virus Type 1; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/human-t-lymphotropic-virus-type-1 (accessed on 23 July 2024).
- WHO. Human T-Lymphotropic Virus Type 1: Technical Report; World Health Organization: Geneva, Switzerland, 2020; pp. 1–67. Available online: https://apps.who.int/iris/handle/10665/339773 (accessed on 1 July 2024).
- Blanco, S.; Barile, M.E.; Frutos, M.C.; Vicente, A.C.P.; Gallego, S.V. Neurodegenerative disease in association with sexual transmission of human T-cell lymphotropic virus type 2 subtype b in Argentina. Trans. R. Soc. Trop. Med. Hyg. 2022, 6, 622–627. [Google Scholar] [CrossRef]
- Rosadas, C.; Vicente, A.C.P.; Zanella, L.; Cabral-Castro, M.J.; Peralta, J.M.; Puccioni-Sohler, M. Human T-lymphotropic virus type 2 subtype b in a patient with chronic neurological disorder. J. Neurovirol. 2014, 20, 636–639. [Google Scholar] [CrossRef]
- Silva, E.A.; Otsuki, K.; Leite, A.C.B.; Alamy, A.H.; S-Carvalho, D.; Vicente, A.C.P. HTLV-II infection associated with a chronic neurodegenerative disease: Clinical and molecular analysis. J. Med. Virol. 2002, 66, 253–257. [Google Scholar] [CrossRef]
- Stufano, A.; Jahantigh, H.R.; Cagnazzo, F.; Centrone, F.; Loconsole, D.; Chironna, M.; Lovreglio, P. Work-Related Human T-lymphotropic Virus 1 and 2 (HTLV-1/2) Infection: A Systematic Review. Viruses 2021, 13, 1753. [Google Scholar] [CrossRef] [PubMed]
- Rosadas, C.; Taylor, G.P. Mother-to-child HTLV-1 transmission: Unmet research needs. Front. Microbiol. 2019, 10, 999. [Google Scholar] [CrossRef]
- Gessain, A.; Ramassamy, J.L.; Afonso, P.V.; Cassar, O. Geographic distribution, clinical epidemiology and genetic diversity of the human oncogenic retrovirus HTLV-1 in Africa, the world’s largest endemic area. Front. Immunol. 2023, 14, 1043600. [Google Scholar] [CrossRef]
- Ngoma, A.M.; Omokoko, M.D.; Mutombo, P.B.; Mvika, E.S.; Muwonga, J.M.; Nollet, K.E.; Ohto, H. Population-based prevalence of human T-lymphotropic virus type 1 in sub-Saharan Africa: A systematic review and meta-analysis. Trop. Med. Int. Health 2019, 24, 1277–1290. [Google Scholar] [CrossRef]
- Tashiro, Y.; Matsuura, E.; Sagara, Y.; Nozuma, S.; Kodama, D.; Tanaka, M.; Koriyama, C.; Kubota, R.; Takashima, H. High prevalence of HTLV-1 carriers among the elderly population in Kagoshima, a highly endemic area in Japan. AIDS Res. Hum. Retroviruses 2022, 38, 363–369. [Google Scholar] [CrossRef]
- Hedayati-Moghaddam, M.R.; Jafarzadeh Esfehani, R.; El Hajj, H.; Bazarbachi, A. Updates on the epidemiology of the human T-cell leukemia virus type 1 infection in the countries of the Eastern Mediterranean Regional Office of the World Health Organization with special emphasis on the situation in Iran. Viruses 2022, 14, 664. [Google Scholar] [CrossRef] [PubMed]
- Chabay, P.; Lens, D.; Hassan, R.; Rodríguez Pinilla, S.M.; Valvert Gamboa, F.; Rivera, I.; Huamán Garaicoa, F.; Ranuncolo, S.M.; Barrionuevo, C.; Morales Sánchez, A.; et al. Lymphotropic viruses EBV, KSHV and HTLV in Latin America: Epidemiology and associated malignancies. A literature-based study by the RIAL-CYTED. Cancers 2020, 12, 2166. [Google Scholar] [CrossRef] [PubMed]
- Eusebio-Ponce, E.; Candel, F.J.; Paulino-Ramirez, R.; Serrano-García, I.; Anguita, E. Seroprevalence and trends of HTLV-1/2 among blood donors of Santo Domingo, Dominican Republic, 2012–2017. Rev. Esp. Quimioter. 2021, 34, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Malpica, L.; Pimentel, A.; Reis, I.M.; Gotuzzo, E.; Lekakis, L.; Komanduri, K.; Harrington, T.; Barber, G.N.; Ramos, J.C. Epidemiology, clinical features, and outcome of HTLV-1-related ATLL in an area of prevalence in the United States. Blood Adv. 2018, 2, 607–620. [Google Scholar] [CrossRef]
- Einsiedel, L.; Pham, H.; Talukder, M.R.; Taylor, K.; Wilson, K.; Kaldor, J.; Gessain, A.; Woodman, R. Very high prevalence of infection with the human T cell leukaemia virus type 1c in remote Australian Aboriginal communities: Results of a large cross-sectional community survey. PLoS Negl. Trop. Dis. 2021, 15, e0009915. [Google Scholar] [CrossRef]
- Cassar, O.; Charavay, F.; Touzain, F.; Jeannin, P.; Grangeon, J.P.; Laumond, S.; Chungue, E.; Martin, P.M.V.; Gessain, A. A Novel Human T-lymphotropic Virus Type 1c Molecular Variant in an Indigenous Individual from New Caledonia, Melanesia. PLoS Negl. Trop. Dis. 2017, 11, e0005278. [Google Scholar] [CrossRef]
- Bumbea, H.; Marçais, A.; Coriu, D.; Tanase, A.D.; Colita, A.; Bardas, A.; Lupu, A.R.; Vladareanu, A.-M.; Onisai, M.C.; Popov, V.M.; et al. Results from Treatment of a Large Cohort of ATL Patients from a Country with High HTLV1 Prevalence. Blood 2019, 134, 5288. [Google Scholar] [CrossRef]
- Abreu, I.N.; Lima, C.N.C.; Sacuena, E.R.P.; Lopes, F.T.; da Silva Torres, M.K.; Dos Santos, B.C.; de Oliveira Freitas, V.; de Figueiredo, L.G.C.P.; Pereira, K.A.S.; de Lima, A.C.R.; et al. HTLV-1/2 in indigenous peoples of the Brazilian Amazon: Seroprevalence, molecular characterization and sociobehavioral factors related to risk of infection. Viruses 2022, 15, 22. [Google Scholar] [CrossRef]
- Braço, I.L.J.; de Sá, K.S.G.; Waqasi, M.; Queiroz, M.A.F.; da Silva, A.N.R.; Cayres-Vallinoto, I.M.V.; Lima, S.S.; de Oliveira Guimarães Ishak, M.; Ishak, R.; Guerreiro, J.F.; et al. High prevalence of human T-lymphotropic virus 2 (HTLV-2) infection in villages of the Xikrin tribe (Kayapo), Brazilian Amazon region. BMC Infect. Dis. 2019, 19, 459. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.B.; Araújo, A.P.S.; Souza, A.P.C.; Gomes, C.M.; Silva-Oliveira, G.C.; Martins, L.C.; Fischer, B.; Machado, L.F.A.; Vallinoto, A.C.R.; Ishak, R.; et al. Human T-lymphotropic virus 1 and 2 among people who used illicit drugs in the state of Pará, northern Brazil. Sci. Rep. 2019, 9, 14750. [Google Scholar] [CrossRef]
- Fox, J.M.; Mutalima, N.; Molyneux, E.; Carpenter, L.M.; Taylor, G.P.; Bland, M.; Newton, R.; Martin, F. Seroprevalence of HTLV-1 and HTLV-2 amongst mothers and children in Malawi within the context of a systematic review and meta-analysis of HTLV seroprevalence in Africa. Trop. Med. Int. Health 2016, 21, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Bolter, J. Explainer: Who Is an Immigrant? Migration Policy Institute: Washington, DC, USA, 2019; Available online: https://www.migrationpolicy.org/content/explainer-who-immigrant (accessed on 1 July 2024).
- IOM. About Migration. In IOM Definition of “Migrant”; International Organization for Migration: New York, NY, USA, 2022; Available online: https://www.iom.int/about-migration (accessed on 3 June 2024).
- UNHCR. What Is a Refugee? USA for the UN Refugee Agency: Washington, DC, USA, 2023; Available online: https://www.unrefugees.org/refugee-facts/what-is-a-refugee/ (accessed on 3 June 2024).
- Baggaley, R.F.; Zenner, D.; Bird, P.; Hargreaves, S.; Griffiths, C.; Noori, T.; Friedland, J.S.; Nellums, L.B.; Pareek, M. Prevention and treatment of infectious diseases in migrants in Europe in the era of universal health coverage. Lancet Public Health 2022, 7, e876–e884. [Google Scholar] [CrossRef] [PubMed]
- Sequeira-Aymar, E.; Cruz, A.; Serra-Burriel, M.; di Lollo, X.; Gonçalves, A.Q.; Camps-Vilà, L.; Monclus-Gonzalez, M.M.; Revuelta-Muñoz, E.M.; Busquet-Solé, N.; Sarriegui-Domínguez, S.; et al. Improving the detection of infectious diseases in at-risk migrants with an innovative integrated multi-infection screening digital decision support tool (IS-MiHealth) in primary care: A pilot cluster-randomized-controlled trial. J. Travel Med. 2022, 29, taab100. [Google Scholar] [CrossRef]
- Baggaley, R.F.; Nazareth, J.; Divall, P.; Pan, D.; Martin, C.A.; Volik, M.; Seguy, N.S.; Yedilbayev, A.; Reinap, M.; Vovc, E.; et al. National policies for delivering tuberculosis, HIV and hepatitis B and C virus infection services for refugees and migrants among Member States of the WHO European Region. J. Travel Med. 2023, 30, taac136. [Google Scholar] [CrossRef]
- UNHCR. Global Trends Displacement Forced in 2021; United Nations High Commissioner for Refugees: Geneva, Switzerland, 2022; Available online: https://www.unhcr.org/unhcr-global-trends-2021-media-page.html#_ga=2.137514487.658980920.1675013689-319886997.1675013689 (accessed on 3 June 2024).
- United Nations Department of Economic and Social Affairs—Population Division. International Migration 2020 High-Lights; United Nations: New York, NY, USA, 2020; Available online: https://www.un.org/en/desa/international-migration-2020-highlights (accessed on 3 June 2024).
- Ishak, R.; Machado, L.F.A.; Cayres-Vallinoto, I.; Guimarães Ishak, M.D.O.; Vallinoto, A.C.R. Infectious agents as markers of human migration toward the Amazon Region of Brazil. Front. Microbiol. 2017, 8, 1663. [Google Scholar] [CrossRef]
- Ishak, R.; Ishak, M.D.O.G.; Azevedo, V.N.; Machado, L.F.A.; Vallinoto, I.M.C.; Queiroz, M.A.F.; Costa, G.D.L.C.; Guerreiro, J.F.; Vallinoto, A.C.R. HTLV in South America: Origins of a silent ancient human infection. Virus Evol. 2020, 6, veaa053. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Tufanaru, C.; Qureshi, R.; Mattis, P.; Mu, P. Conducting systematic reviews of association (etiology): The Joanna Briggs Institute’s approach. Int. J. Evid. Based. Healthc. 2015, 13, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Stern, C.; Aromataris, E.; Lockwood, C.; Jordan, Z. What kind of systematic review should i conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med. Res. Methodol. 2018, 18, 5. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 1–10. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; Neal, L.O.; Mcleod, L.; Delacqua, G.; Delacqua, F.; Duda, S.N.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 1 July 2024).
- Schwarzer, G. Meta: General Package for Meta-Analysis. 2021. Available online: https://cran.r-project.org/package=meta (accessed on 1 July 2024).
- Viechtbauer, W. Metafor: Meta-Analysis Package for R. 2021. Available online: https://cran.r-project.org/package=metafor (accessed on 1 July 2024).
- Stijnen, T.; Hamza, T.H.; Ozdemir, P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat. Med. 2010, 29, 3046–3067. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- WHO. World Health Organization—Processed by Our World in Data. “WHO Region” [Dataset]. World Health Organization [Original Data]. 2017. Available online: https://ourworldindata.org/grapher/who-regions (accessed on 3 June 2024).
- Gutierrez, M.; Tajada, P.; Alvarez, A.; Julian, R.D.; Baquero, M.; Soriano, V.; Holguın, A. Prevalence of HIV-1 non-B subtypes, syphilis, HTLV, and hepatitis B and C viruses among immigrant sex workers in Madrid, Spain. J. Med. Virol. 2004, 74, 521–527. [Google Scholar] [CrossRef]
- Bautista, C.T.; Pando, M.A.; Reynaga, E.; Marone, R.; Sateren, W.B.; Montan, S.M.; Sanchez, J.L.; Avila, M.M. Sexual practices, drug use behaviors, and prevalence of HIV, syphilis, hepatitis B and C, and HTLV-1/2 in immigrant and non-immigrant female sex workers in Argentina. J. Immigr. Minor. Health 2009, 11, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Ansaldi, F.; Comar, M.; D’Agaro, P.; Grainfenberghi, S.; Caimi, L.; Gargiulo, F.; Bruzzone, B.; Gasparini, R.; Icardi, G.; Perandin, F.; et al. Seroprevalence of HTLV-I and HTLV-II infection among immigrants in northern Italy. Eur. J. Epidemiol. 2003, 18, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Zehender, G.; Colasante, C.; Maddalena, C.D.; Bernini, F.; Savasi, V.; Persico, T.; Merli, S.; Ridolfo, A.; Santambrogio, S.; Moroni, M.; et al. High prevalence of human T-lymphotropic virus type 1 (HTLV-1) in immigrant male-to-female transsexual sex workers with HIV-1 infection. J. Med. Virol. 2004, 215, 207–215. [Google Scholar] [CrossRef]
- Abreu, I.N.; Lopes, F.T.; Lima, C.N.C.; Barbosa, A.D.N.; de Oliveira, L.R.; Fujishima, M.A.; Freitas, F.B.; dos Santos, M.B.; de Lima, V.N.; Cayres-Vallinoto, I.M.V.; et al. HTLV-1 and HTLV-2 infection among Warao indigenous refugees in the Brazilian Amazon: Challenges for public health in times of increasing migration. Front. Public Health 2022, 10, 833169. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 1–10. [Google Scholar] [CrossRef]
- Alessio, L.; Minichini, C.; Starace, M.; Occhiello, L.; Caroprese, M.; Di Caprio, G.; Sagnelli, C.; Gualdieri, L.; Pisaturo, M.; Onorato, L.; et al. Low prevalence of HTLV1/2 infection in a population of immigrants living in southern Italy. PLoS Negl. Trop. Dis. 2018, 12, e0006601. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.M.; León, R.; Andreu, M.; de las Parras, E.R.; Rodríguez-Díaz, J.C.; Esteban, Á.; Saugar, J.M.; Torrús, D. Serological study of Trypanosoma cruzi, Strongyloides stercoralis, HIV, human T cell lymphotropic virus (HTLV) and syphilis infections in asymptomatic Latin-American immigrants in Spain. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Toro, C.; Jimenez, V.; Rodrıguez, C.; Romero, J.D.; Rodes, B.; Holguın, A.; Alvarez, P.; Garcıa-Campello, M.; Gomez-Hernando, C.; Guelar, A.; et al. Molecular and epidemiological characteristics of blood-borne virus infections among recent immigrants in Spain. J. Med. Virol. 2006, 78, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.M.; Millac, A.; Trevino, A.; Sánchez, V.; Robledano, C.; Soriano, V.; Gutiérrez, F. Seroprevalence of HTLV infection among immigrant pregnant women in the Mediterranean coast of Spain. J. Clin. Virol. 2011, 51, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Trevino, A.; Benito, R.; Caballero, E.; Ramos, J.M.; Parra, P.; Roc, L.; Eiros, J.M.; Aguilera, A.; García, J.; Cifuentes, C.; et al. HTLV infection among foreign pregnant women living in Spain. J. Clin. Virol. 2011, 52, 119–122. [Google Scholar] [CrossRef]
- Mowbray, J.; Mawson, S.; Chawira, A.; Skidmore, S.; Boxall, E.; Desselberger, U.; Nightingale, S. Epidemiology of human T-Cell leukemia/lymphoma virus type 1 (HTLV-1) infections in a subpopulation of Afro-Caribbean origin in England. J. Med. Virol. 1989, 29, 289–295. [Google Scholar] [CrossRef]
- Meytes, D.; Schochat, B.; LeeNadel, H.; Sidi, Y.; Cerney, M.; Swanson, P.; Shaklai, M.; Kilim, Y.; Elgat, M. Serological and molecular survey for HTLV-I infection in a high-risk Middle Eastern group. Lancet 1990, 336, 1533–1535. [Google Scholar] [CrossRef]
- Buchwald, D.; Hooton, T.M.; Ashley, R.L. Prevalence of herpesvirus, human T-lymphotropic virus type 1, and treponemal infections in Southeast Asian refugees. J. Med. Virol. 1992, 38, 195–199. [Google Scholar] [CrossRef]
- Murphy, E.L.; Varney, K.F.; Miyasaki, N.T.; Moore, R.J.; Umekubo, J.; Watanabe, A.N.; Khayam-Bashi, H. Human T-lymphotropic virus type I seroprevalence among Japanese Americans. West. J. Med. 1993, 158, 480–483. [Google Scholar]
- Ho, G.Y.F.; Nomura, A.M.Y.; Nelson, K.; Lee, H.; Polk, B.F.; Blattner, W.A. Declining seroprevalence and transmission of HTLV-I in Japanese families who immigrated to Hawaii. Am. J. Epidemiol. 1991, 134, 981–987. [Google Scholar] [CrossRef]
- Frappier-Davignon, L.; Walker, M.C.; Adrien, T.; Badraoui, L.A.E.; Desrosiers, M.; O’Shaughnessy, M.V.; Affoyon, F.; Dupuy, J.-M. Anti-HIV antibodies and other serological and immunological parameters among normal Haitians in Montreal. J. Acquir. Lmmune Defic. Syndr. 1990, 3, 166–172. [Google Scholar]
- Bandeira, L.M.; Puga, M.A.M.; Weis-Torres, S.M.S.; Rezende, G.R.; Domingos, J.A.; Tanaka, T.S.O.; Cesar, G.A.; Nukuiid, Y.; Vicente, A.C.P.; Casseb, J.; et al. Human T-cell leukemia virus type 1 infection among Japanese immigrants and their descendants living in southeast Brazil: A call for preventive and control responses. PLoS Negl. Trop. Dis. 2021, 15, e0009066. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, L.M.; Uehara, S.N.O.; Asato, M.A.; Aguena, G.S.; Maedo, C.M.; Benites, N.H.; Puga, M.A.M.; Rezende, G.R.; Finotti, C.M.; Cesar, G.A.; et al. High prevalence of HTLV-1 infection among Japanese immigrants in non-endemic area of Brazil. PLoS Negl. Trop. Dis. 2015, 9, e0003691. [Google Scholar] [CrossRef]
- Vallinoto, A.C.R.; Muto, N.A.; Pontes, G.S.; Machado, L.F.A.; Azevedo, V.N.; dos Santos, S.E.B.; Ribeiro-dos-Santos, Â.K.C.; Ishak, M.O.G.; Ishak, R. Serological and molecular evidence of HTLV-I infection among Japanese immigrants living in the Amazon Region of Brazil. Jpn. J. Infect. Dis. 2004, 57, 156–159. [Google Scholar]
- Gotuzzo, E.; Yamamoto, V.; Kanna, M.; Chauca, G.; Watts, D.M. Human T-cell lymphotropic virus type I infection among Japanese immigrants in Peru. Int. J. Infect. Dis. 1996, 1, 75–77. [Google Scholar] [CrossRef]
- Tsugane, S.; Watanabe, S.; Sugimura, H.; Otsu, T.; Tobinai, K.; Shimoyama, M.; Nanri, S.; Ishii, H. Infectious states of human T lymphotropic virus type I and hepatitis B virus among Japanese immigrants in the Republic of Bolivia. Am. J. Epidemiol. 1988, 128, 1153–1161. [Google Scholar] [CrossRef]
- Rosadas, C.; Assone, T.; Yamashita, M.; Adonis, A.; Puccioni-Sohler, M.; Santos, M.; Paiva, A.; Casseb, J.; Oliveira, A.C.P.; Taylor, G.P. Health state utility values in people living with HTLV-1 and in patients with HAM/TSP: The impact of a neglected disease on the quality of life. PLoS Negl. Trop. Dis. 2020, 14, e0008761. [Google Scholar] [CrossRef] [PubMed]
- Futsch, N.; Mahieux, R.; Dutartre, H. HTLV-1, the other pathogenic yet neglected human retrovirus: From transmission to therapeutic treatment. Viruses 2018, 10, 1. [Google Scholar] [CrossRef]
- Campos, K.R.; Alves, F.A.; Lemos, M.F.; Moreira, R.C.; Marcusso, R.M.N.; Caterino-De-araujo, A. The reasons to include the serology of human t-lymphotropic virus types 1 and 2 (HTLV-1 and HTLV-2) in the clinical follow-up of patients with viral hepatitis B and C in Brazil. PLoS Negl. Trop. Dis. 2020, 14, e0008245. [Google Scholar] [CrossRef]
- Treviño, A.; Caballero, E.; de Mendoza, C.; Aguilera, A.; Pirón, M.; Soriano, V. The burden of neglected HIV-2 and HTLV-1 infections in Spain. AIDS Rev. 2015, 17, 212–219. [Google Scholar]
- Sánchez-Núñez, J.P.; De-Miguel-Balsa, E.; Soriano, V.; Lorenzo-Garrido, E.; Giménez-Richarte, A.; Otero-Rodriguez, S.; Celis-Salinas, J.C.; De-Mendoza, C.; Casapia-Morales, M.; Ramos-Rincón, J.M. Prevalence of HTLV-1/2 infection in pregnant women in Central and South America and the Caribbean: A systematic review and meta-analysis. Int. J. Infect. Dis. 2024, 143, 107018. [Google Scholar] [CrossRef] [PubMed]
- Cassar, O.; Gessain, A. Serological and molecular methods to study epidemiological aspects of human T-cell lymphotropic virus type 1 infection. Methods Mol. Biol. 2017, 1582, 3–24. [Google Scholar] [CrossRef]
- Miot, H.A. Sample size in clinical and experimental. J. Vasc. Bras. 2011, 10, 275–278. [Google Scholar] [CrossRef]
- Iwanaga, M. Epidemiology of HTLV-1 infection and ATL in Japan: An update. Front. Microbiol. 2020, 11, 1124. [Google Scholar] [CrossRef] [PubMed]
- Satake, M.; Sagara, Y.; Hamaguchi, I. Lower prevalence of anti-HTLV-1 as expected by previous models among first-time blood donors in Japan. J. Med. Virol. 2023, 95, e28606. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, T.; Shimada, S.; Noda, H.; Miyake, K. Towards the elimination of HTLV-1 infection in Japan. Lancet. Infect. Dis. 2019, 19, 15–16. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Wu, Z.; Zhang, N. Prevalence of human T-lymphotropic virus type 1 infection among blood donors in mainland China: A meta-analysis. Int. J. Infect. Dis. 2014, 25, 94–99. [Google Scholar] [CrossRef]
- Blattner, W.A.; Nomura, A.; Clark, J.W.; Ho, G.Y.; Nakao, Y.; Gallo, R.; Robert-Guroff, M. Modes of transmission and evidence for viral latency from studies of human T-cell lymphotrophic virus type I in Japanese migrant populations in Hawaii. Proc. Natl. Acad. Sci. USA 1986, 83, 4895–4898. [Google Scholar] [CrossRef]
- de Mendoza, C.; Pérez, L.; Rando, A.; Reina, G.; Aguilera, A.; Benito, R.; Eirós, J.M.; Rodríguez-Avial, I.; Ortega, D.; Pozuelo, M.J.; et al. HTLV-1-associated myelopathy in Spain. J. Clin. Virol. 2023, 169, 105619. [Google Scholar] [CrossRef]
- de Mendoza, C.; Rando, A.; Miró, E.; Pena, M.J.; Rodríguez-Avial, I.; Ortega, D.; González-Praetorius, A.; Reina, G.; Pintos, I.; Pozuelo, M.J.; et al. Adult T-cell leukemia/lymphoma in HTLV-1 non-endemic regions. J. Clin. Virol. 2023, 167, 105578. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030; WHO: Geneva, Switzerland, 2022; Available online: http://www.ifpri.org/themes/gssp/gssp.htm%0Ahttp://files/171/Cardon - 2008 - Coaching d’équipe.pdf%0Ahttp://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203%0Ahttp://mpoc.org.my/malaysian-palm-oil-industry/%0Ahttps://doi.org/10.1080/23322039.2017 (accessed on 3 June 2024).
- Soriano, V.; de Mendoza, C. Screening for HTLV-1 infection should be expanded in Europe. Int. J. Infect. Dis. 2024, 140, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Vieira, B.A.; Bidinotto, A.B.; Dartora, W.J.; Pedrotti, L.G.; de Oliveira, V.M.; Wendland, E.M. Prevalence of human T-lymphotropic virus type 1 and 2 (HTLV-1/-2) infection in pregnant women in Brazil: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 15367. [Google Scholar] [CrossRef] [PubMed]
- United Nations High Commissioner for Human Rights. Venezuela (Bolivarian Republic of). 2024. Available online: https://www.ohchr.org/en/countries/venezuela (accessed on 3 June 2024).
First Author, Year of Publication | Study Design | Region of Study (Country) | Region of Origin (WHO) | Migratory Status | Setting | Year of Study | Screening Method | Confirmatory Method | Sample Size (N) | F (%) | M (%) | Mean Age (Years) | HTLV1 (%) | HTLV2 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
European Region | ||||||||||||||
Alessio et al., 2018 [52] | Cross-sectional | Italy | African Region, Eastern Mediterranean Region, South-East Asia Region | Immigrants and refugees | City | 2012–2017 | CLIA | WB, PCR | 1498 | 10.9 | 89.0 | 26 | 0.07 | 0 |
Ramos et al., 2015 [53] | Cross-sectional | Spain | Region of the Americas | Immigrants | Hospital | 2012–2014 | CLIA | WB | 180 157 * | 68.3 | 31.7 | 38 | 0 | 0 |
Ramos et al., 2011 [55] | Cross-sectional | Spain | European Region, Region of the Americas, African Region, and others not reported/unclear | Immigrant pregnant women | Hospital | 2006–2009 | ELISA | WB | 1439 | 100 | 0 | 30.7 | 0.07 | 0.14 |
Treviño et al., 2011 [56] | Cross-sectional | Spain | South-East Asia Region, European Region, African Region, Region of the Americas, and others not reported/unclear | Immigrant pregnant women | Clinics | 2009–2010 | ELISA | WB; PCR to indeterminate WB | 3337 | 100 | 0 | 29 | 0.17 | 0.02 |
Toro et al., 2006 [54] | Cross-sectional | Spain | European Region, African Region, Region of the Americas, and others not reported/unclear | Immigrants | Hospitals and Clinic | 2002–2003 | ELISA | WB | 1303 | 62 | 38 | 29.5 | 0.7 | 0.1 |
Gutierrez et al., 2004 [46] | Cross-sectional | Spain | European Region, Region of the Americas, African Region | Immigrant sex workers | Working location | 1998–2003 | ELISA | WB | 762 | 91.7 | 8.3 | 27 | 0.2 | 0 |
Zehender et al., 2004 [49] | Case-control | Italy | African Region, Region of the Americas, and others not reported/unclear | HIV-1 positive immigrants | Clinic | 1996–2003 | ELISA | WB, PCR | 167 | 34.7 | 65.3 | 34.3 | 3.6 | 1.2 |
Italy | African Region, Region of the Americas, and others not reported/unclear | HIV-1 negative immigrant women | Clinic | 1996–2003 | ELISA | WB, PCR | 226 | 100 | 0 | 28.3 | 0.9 | 0 | ||
Ansaldi et al., 2003 [48] | Cross-sectional | Italy | Region of the Americas, European Region, African Region, and others not reported/unclear | Open-population immigrants | City | 1996–2000 | ELISA | LIA, WB, PCR | 3017 | 56.6 | 43.4 | NA | 0.3 | 0.1 |
Italy | Region of the Americas, European Region, African Region, and others not reported/unclear | Immigrant inmates | Prison | 1996–2000 | ELISA | LIA, WB, PCR | 371 | 30.7 | 69.3 | NA | 1.4 | 0.8 | ||
Mowbray et al., 1989 [57] | Cross-sectional | England | Region of the Americas, South-East Asia Region, and others not reported/unclear | Immigrants | Clinics | NA | PA, ELISA | IFA | 275 | 28.7 | 71.3 | 40 | 2.5 | NA |
Eastern Mediterranean Region | ||||||||||||||
Meytes et al., 1990 [58] | Cross-sectional | Israel | Eastern Mediterranean Region | Immigrants | Blood bank | 1988–1989 | ELISA | WB, PCR | 208 | NA | NA | NA | 11.5 | NA |
Region of the Americas (North America) | ||||||||||||||
Murphy et al., 1993 [60] | Cross-sectional | USA | Western Pacific Region | Immigrants | Clinic and laboratory | 1990 | ELISA | WB | 230 | 67.4 | 32.6 | NA | 1.3 | NA |
Buchwald et al., 1992 [59] | Cross-sectional | USA | South-East Asia Region | Refugees | Refugee clinic | NA | ELISA | WB | 193 178 * | 52 | 48 | 42 | 0.6 | NA |
Ho et al., 1991 [61] | Cross-sectional | USA | Western Pacific Region | Immigrants | Hospital | 1967–1975 | ELISA, RIA | WB | 747 | 0 | 100 | 72.5 | 11.4 | NA |
Frappier-Davignon et al.,1990 [62] | Cross-sectional | Canada | Region of the Americas | Immigrants | Home visits/telephone calls | 1982 | ELISA | IFA | 189 | 57.1 | 42.9 | 34.8 (F) 37.6 (M) | 1.0 | 0.5 |
Region of the Americas (South America) | ||||||||||||||
Abreu et al. 2022 [50] | Cross-sectional | Brazil | Region of the Americas | Indigenous refugees | City | 2020–2021 | ELISA | qPCR | 101 | 57.4 | 42.6 | 36 | 1.0 | 2.0 |
Bandeira et al., 2021 [63] | Cross-sectional | Brazil | Western Pacific Region | Immigrants | Japanese communities | 2017 | ELISA | PCR, WB | 320 | NA | NA | NA | 10.9 | 0 |
Bandeira et al., 2015 [64] | Cross-sectional | Brazil | Western Pacific Region | Immigrants | Japanese community | 2012–2013 | ELISA | WB, PCR | 24 | NA | NA | NA | 8.3 | 0 |
Bautista et al. 2009 [47] | Cross-sectional | Argentina | Region of the Americas | Immigrant female sex workers | Working locations | 2000–2002 | ELISA, PA | WB | 169 | 100 | 0 | NA | 1.8 | 0 |
Vallinoto et al., 2004 [65] | Cross-sectional | Brazil | Western Pacific Region | Immigrants | City | 1999 | ELISA | PCR | 168 | 61.9 | 38.1 | NA | 1.8 | NA |
Gotuzzo et al., 1996 [66] | Cross-sectional | Peru | Western Pacific Region | Immigrants | Clinic | 1993–1994 | ELISA | WB | 82 | NA | NA | NA | 15.8 | NA |
Tsugane et al., 1988 [67] | Cross-sectional | Bolivia | Western Pacific Region | Immigrants | Japanese communities | 1986 | PA | WB | 282 | 50.4 | 49.6 | 54.7 | 17.0 | NA |
Subgroups | Categories | N°. of Studies | Sample Size | Prevalence | I2 (%) | X2 (p-Value between Subgroups) | |
---|---|---|---|---|---|---|---|
% | 95% CI | ||||||
Decade of study | Before 1992 | 6 | 1931 | 4.88 | 1.44, 15.30 | 91 | 18.48 (<0.01) |
1992–2001 | 9 | 5140 | 1.17 | 0.38, 3.49 | 92 | ||
2002–2011 | 3 | 6079 | 0.23 | 0.02, 2.23 | 79 | ||
2012–2021 | 5 | 2100 | 0.81 | 0.03, 16.37 | 87 | ||
Sample size | <640 | 16 | 3147 | 2.62 | 1.27, 5.31 | 88 | 7.40 (<0.01) |
≥640 | 7 | 12,103 | 0.31 | 0.05, 1.76 | 98 | ||
Confirmatory methods | WB | 10 | 5349 | 1.15 | 0.24, 5.39 | 95 | 0.69 (0.88) |
WB/LIA and PCR | 9 | 9168 | 1.32 | 0.32, 5.25 | 96 | ||
PCR or qPCR | 2 | 269 | 1.49 | 0.00, 90.09 | 0 | ||
IFA | 2 | 464 | 1.94 | 0.03, 58.76 | 18 | ||
Region of study | Eastern Mediterranean Region | 1 | 208 | 11.54 | 7.53, 16.68 | * | 48.35 (<0.01) |
European Region | 13 | 12,806 | 0.52 | 0.21, 1.27 | 84 | ||
Region of Americas | 9 | 2236 | 3.83 | 1.32, 10.60 | 87 | ||
Risk group | High | 5 | 1570 | 1.05 | 0.27, 3.99 | 62 | 0.16 (0.69) |
Low | 18 | 13,680 | 1.37 | 0.51, 3.59 | 96 |
Subgroups | Categories | N°. of Studies | Sample Size | Prevalence | I2 (%) | X2 (p-Value between Subgroups) | |
---|---|---|---|---|---|---|---|
% | 95% CI | ||||||
Decade of study | Before 1992 | 1 | 189 | 0.53 | 0.01, 2.91 | * | 4.20 (0.24) |
1992–2001 | 6 | 4712 | 0.16 | 0.03, 1.04 | 49 | ||
2002–2011 | 3 | 6079 | 0.07 | 0.01, 0.56 | 0 | ||
2012–2021 | 5 | 2100 | 0.01 | 0.00, 62.93 | 0 | ||
Sample size | <640 | 9 | 1724 | 0.40 | 0.11, 1.39 | 0 | 7.99 (<0.01) |
≥640 | 6 | 11,356 | 0.06 | 0.02, 0.16 | 0 | ||
Confirmatory methods | WB | 5 | 3830 | 0.08 | 0.02, 0.39 | 0 | 14.90 (<0.01) |
WB/LIA and PCR | 8 | 8960 | 0.09 | 0.01, 0.57 | 56 | ||
PCR or qPCR | 1 | 101 | 1.98 | 0.24, 6.97 | * | ||
IFA | 1 | 189 | 0.53 | 0.01, 2.91 | * | ||
Region of study | European Region | 11 | 12,301 | 0.09 | 0.03, 0.30 | 45 | 1.17 (0.28) |
Region of Americas | 4 | 779 | 0.29 | 0.01, 6.39 | 0 | ||
Risk group | High | 5 | 1570 | 0.40 | 0.05, 2.89 | 0 | 4.74 (0.03) |
Low | 10 | 11,510 | 0.07 | 0.03, 0.15 | 0 |
Region of Origin | No. of Studies | Sample Size | Prevalence | I2 (%) | X2 (p-Value between Subgroups) | |
---|---|---|---|---|---|---|
% | 95% CI | |||||
HTLV-1 | ||||||
African Region | 9 | 5246 | 0.25 | 0.07, 0.89 | 67 | 39.39 (<0.01) |
Eastern Mediterranean Region | 2 | 351 | 0.94 | 0.00, 100.00 | 0 | |
European Region | 6 | 1632 | 0.07 | 0.01, 5.15 | 0 | |
Region of Americas | 13 | 5021 | 0.76 | 0.33, 1.70 | 75 | |
South-East Asia Region | 4 | 568 | 0.18 | 0.01, 4.09 | 0 | |
Western Pacific Region | 7 | 1853 | 7.27 | 2.94, 16.83 | 84 | |
Not Reported/Unclear | 6 | 579 | 0.00 | 0.00, 100.00 | 0 | |
HTLV-2 | ||||||
African Region | 9 | 5246 | 0.08 | 0.02, 0.24 | 0 | 0.34 (1.00) |
Eastern Mediterranean Region | 1 | 143 | 0.00 | 0.00, 100.00 | * | |
European Region | 6 | 1632 | 0.12 | 0.01, 2.14 | 0 | |
Region of Americas | 12 | 4832 | 0.12 | 0.02, 0.69 | 0 | |
South-East Asia Region | 2 | 319 | 0.00 | 0.00, 100.00 | 0 | |
Western Pacific Region | 2 | 344 | 0.0 | 0.00, 100.00 | 0 | |
Not Reported/Unclear | 5 | 564 | 0.00 | 0.00, 100.00 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, T.A.; Okita, M.T.; Guimarães, R.A.; Zara, A.L.d.S.A.; Caetano, K.A.A.; Teles, S.A.; de Matos, M.A.D.; Carneiro, M.A.d.S.; Martins, R.M.B. The Global Prevalence of HTLV-1 and HTLV-2 Infections among Immigrants and Refugees—A Systematic Review and Meta-Analysis. Viruses 2024, 16, 1526. https://doi.org/10.3390/v16101526
Marinho TA, Okita MT, Guimarães RA, Zara ALdSA, Caetano KAA, Teles SA, de Matos MAD, Carneiro MAdS, Martins RMB. The Global Prevalence of HTLV-1 and HTLV-2 Infections among Immigrants and Refugees—A Systematic Review and Meta-Analysis. Viruses. 2024; 16(10):1526. https://doi.org/10.3390/v16101526
Chicago/Turabian StyleMarinho, Thaís Augusto, Michele Tiemi Okita, Rafael Alves Guimarães, Ana Laura de Sene Amâncio Zara, Karlla Antonieta Amorim Caetano, Sheila Araújo Teles, Márcia Alves Dias de Matos, Megmar Aparecida dos Santos Carneiro, and Regina Maria Bringel Martins. 2024. "The Global Prevalence of HTLV-1 and HTLV-2 Infections among Immigrants and Refugees—A Systematic Review and Meta-Analysis" Viruses 16, no. 10: 1526. https://doi.org/10.3390/v16101526
APA StyleMarinho, T. A., Okita, M. T., Guimarães, R. A., Zara, A. L. d. S. A., Caetano, K. A. A., Teles, S. A., de Matos, M. A. D., Carneiro, M. A. d. S., & Martins, R. M. B. (2024). The Global Prevalence of HTLV-1 and HTLV-2 Infections among Immigrants and Refugees—A Systematic Review and Meta-Analysis. Viruses, 16(10), 1526. https://doi.org/10.3390/v16101526