MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus and Cells
2.2. Expression Analysis of CLDN3 and miR-181a by qRT-PCR
2.3. Over-Expression of CLDN3 in LMB-L Cells
2.4. SiRNA Transfection and LMIV Infection
2.5. Virus Titration
2.6. Permeability Assay
2.7. MiRNA-mRNA Joint Analysis
2.8. Dual-Luciferase Reporter Assays
2.9. Statistical Analysis
3. Results
3.1. The Molecular Features of CLDN3 and miR-181a
3.2. Correlation Existed among LMIV Copies, Expression of CLDN3, and miR-181a
3.3. Over-Expression of CLDN3 Inhibited LMIV Replication
3.4. Knockdown of CLDN3 Enhanced LMIV Replication
3.5. CLDN3 Regulated the Virus Titer of LMIV
3.6. Permeability Enhancement of LMB-L Cells Post LMIV Infection
3.7. MiRNA and mRNA Joint Analysis
3.8. MiR-181a Suppressed the Expression of CLDN3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Li, Y.; Fu, W.; Su, H.; Zhang, L.; Huang, C.; Weng, S.; Yu, F.; He, J.; Dong, C. Scale drop disease virus associated yellowfin seabream (Acanthopagrus latus) ascites diseases, Zhuhai, Guangdong, southern China: The First Description. Viruses 2021, 13, 1617. [Google Scholar] [CrossRef] [PubMed]
- Kerddee, P.; Dinh-Hung, N.; Dong, H.T.; Hirono, I.; Soontara, C.; Areechon, N.; Srisapoome, P.; Kayansamruaj, P. Molecular evidence for homologous strains of infectious spleen and kidney necrosis virus (ISKNV) genotype I infecting inland freshwater cultured Asian sea bass (Lates calcarifer) in Thailand. Arch. Virol. 2021, 166, 3061–3074. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Huang, Y.; Zhu, W.; Li, C.; Huang, X.; Qin, Q. Isolation and identification of Singapore grouper iridovirus Hainan strain (SGIV-HN) in China. Arch. Virol. 2019, 164, 1869–1872. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, L.; Feng, J.; Li, X.; Zhang, J. Comparative transcriptome analysis reveals potential anti-viral immune pathways of turbot (Scophthalmus maximus) subverted by megalocytivirus RBIV-C1 for immune evasion. Fish. Shellfish. Immunol. 2022, 122, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.X.; Ma, Y.P.; Hao, L. Characterization of three novel cell lines derived from the brain of spotted sea bass: Focusing on cell markers and susceptibility toward iridoviruses. Fish. Shellfish. Immunol. 2022, 130, 175–185. [Google Scholar] [CrossRef]
- Baier, F.A.; Sánchez-Taltavull, D.; Yarahmadov, T.; Castellà, C.G.; Jebbawi, F.; Keogh, A.; Tombolini, R.; Odriozola, A.; Dias, M.C.; Deutsch, U.; et al. Loss of claudin-3 impairs hepatic metabolism, biliary barrier function, and cell proliferation in the murine liver. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 745–767. [Google Scholar] [CrossRef]
- Kolosov, D.; Bui, P.; Chasiotis, H.; Kelly, S.P. Claudins in teleost fishes. Tissue. Barriers. 2013, 1, e25391. [Google Scholar] [CrossRef]
- Nakamura, S.; Irie, K.; Tanaka, H.; Nishikawa, K.; Suzuki, H.; Saitoh, Y.; Tamura, A.; Tsukita, S.; Fujiyoshi, Y. Morphologic determinant of tight junctions revealed by claudin-3 structures. Nat. Commun. 2019, 10, 816. [Google Scholar] [CrossRef]
- Helm, E.T.; Curry, S.M.; De Mille, C.M.; Schweer, W.P.; Burrough, E.R.; Gabler, N.K. Impact of viral disease hypophagia on pig jejunal function and integrity. PLoS ONE 2020, 15, e0227265. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Chen, F.; Zuo, K.; Wu, C.; Yan, Y.; Chen, W.; Lin, W.; Xie, Q. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken ileum. Viruses 2018, 10, 270. [Google Scholar] [CrossRef]
- Peng, X.; Isnard, S.; Lin, J.; Fombuena, B.; Bessissow, T.; Chomont, N.; Routy, J.P. Differences in HIV burden in the inflamed and non-inflamed colon from a person living with HIV and ulcerative colitis. J. Virus Erad. 2021, 7, 100033. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Yang, X.; Liu, X.; Wang, X.; Gao, L.; Yang, C.; Lan, R.; Bi, J.; Zhao, Q.; et al. Classical swine fever virus infection suppresses claudin-1 expression to facilitate its replication in PK-15 cells. Microb. Pathog. 2021, 157, 105012. [Google Scholar] [CrossRef] [PubMed]
- Yumine, N.; Matsumoto, Y.; Ohta, K.; Fukasawa, M.; Nishio, M. Claudin-1 inhibits human parainfluenza virus type 2 dissemination. Virology 2019, 531, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Song, T.Z.; Zheng, H.Y.; Li, Y.H.; Zheng, Y.T. Jejunal epithelial barrier disruption triggered by reactive oxygen species in early SIV infected rhesus macaques. Free. Radical. Biol. Med. 2021, 177, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Duan, H.; Xun, T.; Ci, W.; Qiu, J.; Yu, F.; Zhao, X.; Wu, L.; Li, L.; Lu, L.; et al. HIV-1 impairs human retinal pigment epithelial barrier function: Possible association with the pathogenesis of HIV-associated retinopathy. Lab. Investig. 2014, 94, 777–787. [Google Scholar] [CrossRef]
- Adamek, M.; Syakuri, H.; Harris, S.; Rakus, K.Ł.; Brogden, G.; Matras, M.; Irnazarow, I.; Steinhagen, D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Vet. Microbiol. 2013, 162, 456–470. [Google Scholar] [CrossRef]
- Syakuri, H.; Adamek, M.; Brogden, G.; Rakus, K.Ł.; Matras, M.; Irnazarow, I.; Steinhagen, D. Intestinal barrier of carp (Cyprinus carpio L.) during a cyprinid herpesvirus 3-infection: Molecular identification and regulation of the mRNA expression of claudin encoding genes. Fish. Shellfish. Immunol. 2013, 34, 305–314. [Google Scholar] [CrossRef]
- Gebert, L.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Guo, Y.E.; Steitz, J.A. Virus meets host microRNA: The destroyer, the booster, the hijacker. Mol. Cell. Biol. 2014, 34, 3780–3787. [Google Scholar] [CrossRef]
- Li, J.; Shen, J.; Zhao, Y.; Du, F.; Li, M.; Wu, X.; Chen, Y.; Wang, S.; Xiao, Z.; Wu, Z. Role of miR-181a-5p in cancer (Review). Int. J. Oncol. 2023, 63, 108. [Google Scholar] [CrossRef]
- Wu, L.; Song, W.Y.; Xie, Y.; Hu, L.L.; Hou, X.M.; Wang, R.; Gao, Y.; Zhang, J.N.; Zhang, L.; Li, W.W.; et al. miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 2018, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuan, J.; Zhang, F.; Lei, Q.; Zhang, T.; Li, K.; Guo, J.; Hong, Y.; Bu, G.; Lv, X.; et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 2019, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yuan, H.; Wang, Y.; Geng, Y.; Yun, H.; Zheng, W.; Yuan, Y.; Lv, P.; Hou, C.; Zhang, H.; et al. HBV confers innate immune evasion through triggering HAT1/acetylation of H4K5/H4K12/miR-181a-5p or KPNA2/cGAS-STING/IFN-I signaling. J. Med. Virol. 2023, 95, e28966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.C.; Zhou, Z.J.; Sun, L. pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest. Sci. Rep. 2016, 6, 28354. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent end points. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Hubatsch, I.; Ragnarsson, E.G.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef]
- Jia, K.T.; Liu, Z.Y.; Guo, C.J.; Xia, Q.; Mi, S.; Li, X.D.; Weng, S.P.; He, J.G. The potential role of microfilaments in host cells for infection with infectious spleen and kidney necrosis virus infection. Virol. J. 2013, 10, 77. [Google Scholar] [CrossRef]
- Yan, L.; Wang, P.; Zhao, C.; Zhang, B.; Zhang, B.; Guo, J.; Qiu, L. Development of a spotted sea bass (Lateolabrax maculatus) bulbus arteriosus cell line and its application to fish virology and immunology. Fish. Shellfish. Immunol. 2024, 144, 109298. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xu, S.F.; Wang, Y.W.; Jiang, Y.X.; Qin, Q.W.; Wei, S.N. Curcumin Alleviates Singapore Grouper Iridovirus-Induced Intestine Injury in Orange-Spotted Grouper (Epinephelus coioides). Antioxidants 2023, 12, 1584. [Google Scholar] [CrossRef]
- Colpitts, C.C.; Baumert, T.F. Claudins in viral infection: From entry to spread. Pflugers. Arch. 2017, 469, 27–34. [Google Scholar] [CrossRef]
- Harris, H.J.; Farquhar, M.J.; Mee, C.J.; Davis, C.; Reynolds, G.M.; Jennings, A.; Hu, K.; Yuan, F.; Deng, H.; Hubscher, S.G.; et al. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J. Virol. 2008, 82, 5007–5020. [Google Scholar] [CrossRef] [PubMed]
- Mailly, L.; Baumert, T.F. Hepatitis C virus infection and tight junction proteins: The ties that bind. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183296. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, J.; Wang, N.; Sun, Z.; Ma, Q.; Li, J.; Zhang, M.; Xu, J. Enterovirus A71 capsid protein VP1 increases blood-brain barrier permeability and virus receptor vimentin on the brain endothelial cells. J. Neurovirol. 2020, 26, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Jurisch-Yaksi, N.; Yaksi, E.; Kizil, C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020, 68, 2451–2470. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Z.-L.; Norris, E.H.; Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 2014, 5, 3413. [Google Scholar] [CrossRef]
- Sun, H.Y.; Su, Y.L.; Li, P.H.; He, J.Y.; Chen, H.J.; Wang, G.; Wang, S.W.; Huang, X.H.; Huang, Y.H.; Qin, Q.W. The Roles of Epinephelus coioides miR-122 in SGIV Infection and Replication. Mar. Biotechnol. 2021, 23, 294–307. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, J.; Cheng, W.; Cheng, X.; Lu, L.; Gui, L.; Jiang, Y.; Zhang, Y.; Xu, D. MiR-124 mediates the expression of ccBax to regulate Cyprinid herpesvirus 2 (CyHV-2)-induced apoptosis and viral replication. J. Fish. Dis. 2023, 46, 743–749. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, A.Q.; Zhang, C.; Liu, L.H.; Su, J.; Zhang, Y.A.; Tu, J. MicroRNA MiR-722 inhibits Cyprinid herpesvirus 3 replication via targeting the viral immune evasion protein ORF89, which negatively regulates IFN by degrading IRF3. J. Immunol. 2022, 209, 1918–1929. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Liu, A.Q.; Zhang, C.; Liu, L.H.; Lu, L.F.; Tu, J.; Zhang, Y.A. MicroRNA miR-155 inhibits cyprinid herpesvirus 3 replication via regulating AMPK-MAVS-IFN axis. Dev. Comp. Immunol. 2022, 129, 104335. [Google Scholar] [CrossRef]
Name | Primer Sequence (5′ → 3′) | Source | Fragment Length (bp) | Annealing Temperature (°C) | Use |
---|---|---|---|---|---|
Primers for Claudin-3 and RNA polymerase II amplification and expression | |||||
CLDN3-F | ATGTCTATAGGGCTGGAGTTGAT | URX57470.1 | 648 | 55 | Clone of Claudin-3 ORF |
CLDN3-R | TCATACATAGTCTTTCCTTTC | ||||
CLDN3-pET28a-F | GCGAATTCAGCACGGGGCAGATGCAGTGTAAG | This study | 192 | 58 | Clone of Claudin-3-pET28a |
CLDN3-pET28a-R | GCCTCGAGTACATAGTCTTTCCTTTCTAAC | ||||
CLDN3-pcDNA3.1-F | GGGCTAGCATGGCTATAGGGCTGGAGTTGATAG | This study | 645 | 58 | Clone of Claudin-3-pcDNA3.1 (+) |
CLDN3-pcDNA3.1-R | CCGCTCGAGTACATAGTCTTTCCTTTC | ||||
RNA poly II-F | ATGCCGTATGCTAACCAA | This study | 828 | 55 | Clone of RNA polymerase II ORF |
RNA poly II-R | TCAGTTGATGGTGAGCACGTC | ||||
RNA poly II-pET28a-F | CGGAATTCCCTCTCACAAGCGACGACATC | This study | 459 | 55 | Clone of RNA polymerase II-pET28a |
RNA poly II-pET28a-R | CCGCTCGAGTCCGTTGGGGTCATAGGGAG | ||||
Primers for Claudin-3 3′UTR clone for determine the interaction between miR181a and 3′-UTR of CLDN3 | |||||
CLDN3 3′-UTR-F | CCGCTCGAGACGCTAATGTTATCGTCA | This study | 372 | 62 | Clone of pmirGLO-CLDN3-3′-UTR and pmiGLO-CLDN3-3′-UTR-Mut |
CLDN3 3′UTR-R | ACGCGTCGACTGGTGCTTTTGTGCTGCC | ||||
CLDN3 3′-UTR-mut-F | ACAAAATTGAAGAAAACCTACAGTTAAAAGGC | This study | 372 | 62 | Clone of pmiGLO-CLDN3-3′-UTR-Mut |
CLDN3 3′UTR-mut-R | TTCTTCAATTTTGTACACGTGTACAAAATTGAAGAA | ||||
Primers for real-time PCR | |||||
CLDN3F (qPCR) | AGGGCCTGTGGATGACTT | This study | 123 | 60 | Claudin-3 qRT-PCR |
CLDN3R (qPCR) | GGATGGAGATAACGGTGAG | ||||
LMIV MCP-F (qPCR) | ATCAGCCAGAGCACCCAG | This study | 146 | 60 | LMIV qRT-PCR |
LMIV MCP-R (qPCR) | CTCACGCTCCTCACTTGTC | ||||
RNAploy II-F (qPCR) | GTCAGGAACTACGGCTCAGG | This study | 117 | 60 | RNA polymerase II qRT-PCR |
RNAploy II-R (qPCR) | TGTGCCTCAGTGCATTGTCT | ||||
miR181a-F (qPCR) | AACATTCAACGCTGTCGGTGAG | This study | 22 | 60 | miR181a qRT-PCR |
miR181a-R (qPCR) | AAGCAGTGGTATCAACGCAGAGTAC | ||||
U6-F (qPCR) | TTTGGAACGCTTCACGAATTTGC | This study | 70 | 60 | U6 gene qRT-PCR |
U6-R (qPCR) | GGAACGATACAGAGAAGATTAGCA |
Name | Sense (5′ → 3′) | Anti-Sense (5′ → 3′) |
---|---|---|
CLDN3-176 | GGCAGAUGCAGUGUAAGGUdTdT | ACCUUACACUGCAUCUGCCdTdT |
CLDN3-623 | GGUUAGAAAGGAAAGACUAdTdT | UAGUCUUUCCUUUCUAACCdTdT |
siRNA-control | UUCUCCGAACGUGUCACGUdTdT | ACGUGACACGUUCGGAGAAdTdT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Xu, J.; Hao, L.; Wang, G.; Huang, W.; Liu, Z. MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses 2024, 16, 1589. https://doi.org/10.3390/v16101589
Ma Y, Xu J, Hao L, Wang G, Huang W, Liu Z. MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses. 2024; 16(10):1589. https://doi.org/10.3390/v16101589
Chicago/Turabian StyleMa, Yanping, Jingjing Xu, Le Hao, Gang Wang, Wen Huang, and Zhenxing Liu. 2024. "MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells" Viruses 16, no. 10: 1589. https://doi.org/10.3390/v16101589
APA StyleMa, Y., Xu, J., Hao, L., Wang, G., Huang, W., & Liu, Z. (2024). MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses, 16(10), 1589. https://doi.org/10.3390/v16101589