Evaluation of a Commercial Rapid Molecular Point-of-Care Assay for Differential Diagnosis Between SARS-CoV-2 and Flu A/B Infections in a Pediatric Setting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000-19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115, Erratum in Lancet Child Adolesc. Health 2022, 6, e4. [Google Scholar] [CrossRef] [PubMed]
- Global Health Estimates: Leading Causes of Death [Internet]. World Health Organization. 2020. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 11 April 2024).
- da Silva, S.J.R.; do Nascimento, J.C.F.; Germano Mendes, R.P.; Guarines, K.M.; Targino Alves da Silva, C.; da Silva, P.G.; de Magalhães, J.J.F.; Vigar, J.R.J.; Silva-Júnior, A.; Kohl, A.; et al. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect. Dis. 2022, 8, 1758–1814. [Google Scholar] [CrossRef] [PubMed]
- Why Is COVID-19 Data Being Presented as Weekly Statistics? [Internet]. World Health Organization. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 11 April 2024).
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.; Ebrahimpour, S. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef]
- Dhanasekaran, V.; Sullivan, S.; Edwards, K.M.; Xie, R.; Khvorov, A.; Valkenburg, S.A.; Cowling, B.J.; Barr, I.G. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat. Commun. 2022, 13, 1721. [Google Scholar] [CrossRef]
- Kubale, J.T.; Frutos, A.M.; Balmaseda, A.; Cerpas, C.; Saborio, S.; Ojeda, S.; Barilla, C.; Sanchez, N.; Vasquez, G.; Moreira, H.; et al. High Co-circulation of Influenza and Severe Acute Respiratory Syndrome Coronavirus 2. Open Forum Infect. Dis. 2022, 9, ofac642. [Google Scholar] [CrossRef]
- Widyasari, K.; Kim, S.; Kim, S.; Lim, C.S. Performance Evaluation of STANDARD Q COVID/FLU Ag Combo for Detection of SARS-CoV-2 and Influenza A/B. Diagnostics 2022, 13, 32. [Google Scholar] [CrossRef]
- Siordia, J.A., Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J. Clin. Virol. 2020, 127, 104357. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Leli, C.; Ferrara, L.; Bottino, P.; Bara, C.; Megna, I.; Penpa, S.; Felici, E.; Maconi, A.; Rocchetti, A. Application of a SARS-CoV-2 Antigen Rapid Immunoassay Based on Active Microfluidic Technology in a Setting of Children and Young Adults. Viruses 2023, 16, 41. [Google Scholar] [CrossRef]
- Iliescu, F.S.; Ionescu, A.M.; Gogianu, L.; Simion, M.; Dediu, V.; Chifiriuc, M.C.; Pircalabioru, G.G.; Iliescu, C. Point-of-Care Testing-The Key in the Battle against SARS-CoV-2 Pandemic. Micromachines 2021, 12, 1464. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Cha, J.H.; Kim, J.; Kim, K.J.; Nam, M.; Nam, M.H.; Kim, D.W.; Cho, Y.; Lee, C.K.; Yun, S.G. Evaluation of Multiplex Rapid Antigen Test for the Detection of SARS-CoV-2 and Influenza A/B in Respiratory Samples. Clin. Lab. 2024, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiao, L.; Yao, J.; Yu, N.; Mu, X.; Huang, S.; Hu, B.; Li, W.; Qiu, F.; Zeng, F.; et al. Epidemiological and clinical characteristics of respiratory viruses in 4403 pediatric patients from multiple hospitals in Guangdong, China. BMC Pediatr. 2021, 21, 284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tabatabai, J.; Ihling, C.M.; Manuel, B.; Rehbein, R.M.; Schnee, S.V.; Hoos, J.; Pfeil, J.; Grulich-Henn, J.; Schnitzler, P. Viral Etiology and Clinical Characteristics of Acute Respiratory Tract Infections in Hospitalized Children in Southern Germany (2014–2018). Open Forum Infect. Dis. 2023, 10, ofad110. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Gogtay, N. Biostatistics Series Module 7: The Statistics of Diagnostic Tests. Indian J. Dermatol. 2017, 62, 18–24. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Carroll, K.C.; Hicken, R.; Berry, G.J.; Manji, R.; Smith, E.; Rakeman, J.L.; Fowler, R.C.; Leelawong, M.; Butler-Wu, S.M.; et al. Multicenter Evaluation of the Cepheid Xpert Xpress SARS-CoV-2/Flu/RSV Test. J. Clin. Microbiol. 2021, 59, e02955-20. [Google Scholar] [CrossRef]
- Teixeira, W.; Pallás-Tamarit, Y.; Juste-Dolz, A.; Sena-Torralba, A.; Gozalbo-Rovira, R.; Rodríguez-Díaz, J.; Navarro, D.; Carrascosa, J.; Gimenez-Romero, D.; Maquieira, Á.; Morais, S. An all-in-one point-of-care testing device for multiplexed detection of respiratory infections. Biosens. Bioelectron. 2022, 213, 114454. [Google Scholar] [CrossRef]
- Bottino, P.; Pizzo, V.; Castaldo, S.; Scomparin, E.; Bara, C.; Cerrato, M.; Sisinni, S.; Penpa, S.; Roveta, A.; Gerbino, M.; et al. Clinical Evaluation and Comparison of Two Microfluidic Antigenic Assays for Detection of SARS-CoV-2 Virus. Microorganisms 2023, 11, 2709. [Google Scholar] [CrossRef]
- Dinnes, J.; Sharma, P.; Berhane, S.; van Wyk, S.S.; Nyaaba, N.; Domen, J.; Taylor, M.; Cunningham, J.; Davenport, C.; Cochrane COVID-19 Diagnostic Test Accuracy Group; et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2022, 7, CD013705. [Google Scholar] [CrossRef]
- Lim, H.J.; Lee, J.Y.; Baek, Y.H.; Park, M.Y.; Youm, D.J.; Kim, I.; Kim, M.J.; Choi, J.; Sohn, Y.H.; Park, J.E.; et al. Evaluation of Multiplex Rapid Antigen Tests for the Simultaneous Detection of SARS-CoV-2 and Influenza A/B Viruses. Biomedicines 2023, 11, 3267. [Google Scholar] [CrossRef]
- Alp, A. Hasta Başı Moleküler Testlerde Son Gelişmeler [Recent Advances in Molecular Point of Care Tests]. Mikrobiyol. Bul. 2022, 56, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Barnacle, J.R.; Houston, H.; Baltas, I.; Takata, J.; Kavallieros, K.; Vaughan, N.; Amin, A.K.; Aali, S.A.; Moore, K.; Milner, P.; et al. Diagnostic accuracy of the Abbott ID NOW SARS-CoV-2 rapid test for the triage of acute medical admissions. J. Hosp. Infect. 2022, 123, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Stokes, W.; Venner, A.A.; Buss, E.; Tipples, G.; Berenger, B.M. Prospective population-level validation of the Abbott ID NOW severe acute respiratory syndrome coronavirus 2 device implemented in multiple settings for testing asymptomatic and symptomatic individuals. Clin. Microbiol. Infect. 2023, 29, 247–252. [Google Scholar] [CrossRef]
- Ramachandran, A.; Noble, J.; Deucher, A.; Miller, S.; Tang, P.W.; Wang, R.C. Performance of Abbott ID-Now rapid nucleic amplification test for laboratory identification of COVID-19 in asymptomatic emergency department patients. J. Am. Coll. Emerg. Phys. Open. 2021, 2, e12592. [Google Scholar] [CrossRef]
- Bandarra, S.; Neto, C.; Gil, F.; Monteiro, L.; Brum, L. ID NOW: A NAAT System Solution for the Rapid and Accurate Detection of SARS-CoV-2 with VTM Sampling. Med. Sci. Forum 2023, 22, 13. [Google Scholar] [CrossRef]
- Young, S.; Taylor, S.N.; Cammarata, C.L.; Varnado, K.G.; Roger-Dalbert, C.; Montano, A.; Griego-Fullbright, C.; Burgard, C.; Fernandez, C.; Eckert, K.; et al. Clinical Evaluation of BD Veritor SARS-CoV-2 Point-of-Care Test Performance Compared to PCR-Based Testing and versus the Sofia 2 SARS Antigen Point-of-Care Test. J. Clin. Microbiol. 2020, 59, e02338-20. [Google Scholar] [CrossRef]
- Farfour, E.; Yung, T.; Baudoin, R.; Vasse, M. Evaluation of Four Fully Integrated Molecular Assays for the Detection of Respiratory Viruses during the Co-Circulation of SARS-CoV-2, Influenza and RSV. J. Clin. Med. 2022, 11, 3942. [Google Scholar] [CrossRef]
- Abdullah, A.; Sam, I.-C.; Ong, Y.J.; Theo, C.H.; Pukhari, M.H.; Chan, Y.F. Comparative Evaluation of a Standard M10 Assay with Xpert Xpress for the Rapid Molecular Diagnosis of SARS-CoV-2, Influenza A/B Virus, and Respiratory Syncytial Virus. Diagnostics 2023, 13, 3507. [Google Scholar] [CrossRef]
- Bandarra, S.; Neto, C.; Monteiro, L.; Brum, L. Performance of ID NOW Influenza A&B 2. Med. Sci. Forum 2023, 22, 28. [Google Scholar] [CrossRef]
- Kepka, Z.; Briksi, A.; Hubáček, P.; Zajac, M.; Dřevínek, P. Characteristics of the ID-NOW™ test for the rapid detection of SARS-CoV-2. Epidemiol. Mikrobiol. Imunol. 2023, 72, 3–8. [Google Scholar] [PubMed]
- Mitamura, K.; Yamazaki, M.; Ichikawa, M.; Yasumi, Y.; Shiozaki, K.; Tokushima, M.; Abe, T.; Kawakami, C. Clinical usefulness of a rapid molecular assay, ID NOW™ influenza A & B 2, in adults. J. Infect. Chemother. 2021, 27, 450–454. [Google Scholar] [CrossRef] [PubMed]
Sign/Symptom | Total (n = 194) | 0–3 Years (n = 101) | >3 Years (n = 93) |
---|---|---|---|
N (%) | N (%) | N (%) | |
Asymptomatic | 15 (7.7) | 6 (3.1) | 9 (4.6) |
Symptomatic | 179 (92.3) | 95 (49.0) | 84 (43.3) |
Body temperature ≥ 37.5 °C | 158 (81.4) | 80 (41.2) | 78 (40.2) |
Cough | 130 (67.0) | 75 (38.7) | 55 (28.4) |
Rhinorrhea | 52 (26.8) | 36 (18.6) | 16 (8.2) |
Nausea/sickness | 51 (26.3) | 20 (10.3) | 31 (16.0) |
Dyspnea | 48 (24.7) | 31 (16.0) | 17 (8.8) |
Diarrhea | 13 (6.7) | 8 (4.1) | 5 (2.6) |
Asthenia | 6 (3.1) | 3 (1.5) | 3 (1.5) |
Headache | 5 (2.6) | 0 (0.0) | 5 (2.6) |
Muscle pain | 5 (2.6) | 1 (0.5) | 4 (1.0) |
Conjunctivitis | 5 (2.6) | 3 (1.5) | 2 (1.0) |
Not specified | 44 (22.7) | 23 (11.9) | 21 (10.8) |
Biochemical parameters | 0–3 years (n = 78) | >3 years (n = 74) | |
C-reactive protein | 1.0 (0.3–3.4) | 1.8 (0.4–5.6) | mg/dL |
White blood cell count | 10.6 (7.1–14.0) | 9.7 (6.1–13.7) | ×103/μL |
Neutrophils | 50 (42–61) | 73 (58–83) | % |
Lymphocytes | 35 (25–43) | 17 (9–26) | % |
Monocytes | 7.4 (5.5–10.6) | 4.9 (3.4–7.1) | % |
Eosinophils | 0.5 (0.2–1.3) | 0.35 (0.1–0.7) | % |
Basophils | 0.4 (0.30–0.60) | 0.3 (0.2–0.6) | % |
RT-qPCR | ||||
---|---|---|---|---|
Positive (%) | Negative (%) | Total (%) | ||
ID NOW | Whole population (n = 194) | |||
Positive (%) | 7 (3.6) | 2 (1.0) | 9 (4.6) | |
Negative (%) | 7 (3.6) | 178 (91.8) | 185 (95.4) | |
Total (%) | 14 (7.2) | 180 (92.8) | 194 (100) | |
0–3 years (n = 101) | ||||
Positive (%) | 4 (4.0) | 2 (1.9) | 6 (5.9) | |
Negative (%) | 3 (3.0) | 92 (91.1) | 95 (94.1) | |
Total (%) | 7 (7.0) | 94 (93.0) | 101 (100) | |
>3 years (n = 93) | ||||
Positive (%) | 3 (3.2) | 0 (0.0) | 3 (3.2) | |
Negative (%) | 4 (4.3) | 86 (92.5) | 90 (96.8) | |
Total (%) | 7.5 (7.5) | 86 (92.5) | 93 (100) | |
Test performances | ||||
% | 95% CI | |||
Whole population (n = 194) | ||||
PA | 50.0 | 23.0–77.0 | ||
NA | 98.9 | 96.0–99.9 | ||
PPV | 77.8 | 44.5–93.9 | ||
NPV | 96.2 | 93.8–97.7 | ||
LR+ | 45.0 | 10.3–196.6 | ||
LR− | 0.5 | 0.30–0.85 | ||
Accuracy | 95.5% | 91.4–97.9 | ||
0–3 years (n = 101) | ||||
PA | 57.1 | 18.4–90.1 | ||
NA | 97.9 | 92.5–99.7 | ||
PPV | 66.7 | 30.6–90.1 | ||
NPV | 96.8 | 92.9–98.6 | ||
LR+ | 26.9 | 5.9–122.0 | ||
LR− | 0.4 | 0.2–1.0 | ||
Accuracy | 95.0% | 88.8–98.4 | ||
>3 years (n = 93) | ||||
PA | 42.9 | 9.9–81.6 | ||
NA | 100 | 95.8–100 | ||
PPV | 100 | 29.2–100 | ||
NPV | 95.6 | 91.9–97.6 | ||
LR+ | NA | N/A | ||
LR− | 0.6 | 0.3–1.1 | ||
Accuracy | 95.7 | 89.3–98.8 |
RT-qPCR | ||||
---|---|---|---|---|
Positive (%) | Negative (%) | Total (%) | ||
ID NOW | Whole population (n = 194) | |||
Positive (%) | 27 (13.9) | 0 (0.0) | 27 (13.9) | |
Negative (%) | 3 (1.5) | 164 (84.5) | 167 (86.1) | |
Total (%) | 30 (15.5) | 164 (84.5) | 194 (100) | |
0–3 years (n = 101) | ||||
Positive (%) | 13 (12.9) | 0 (0.0) | 13 (12.9) | |
Negative (%) | 3 (3.0) | 85 (84.2) | 88 (87.1) | |
Total (%) | 16 (15.8) | 85 (84.2) | 101 (100) | |
>3 years (n = 93) | ||||
Positive (%) | 14 (15.1) | 0 (0.0) | 14 (15.1) | |
Negative (%) | 0 (0.0) | 79 (84.9) | 79 (84.9) | |
Total (%) | 14 (15.1) | 79 (84.9) | 93 (100) | |
Test performances | ||||
% | 95% CI | |||
Whole population (n = 194) | ||||
PA | 90.0 | 73.5–97.9 | ||
NA | 100 | 97.8–100 | ||
PPV | 100 | 87.2–100 | ||
NPV | 98.2 | 94.9–99.3 | ||
LR+ | N/A | |||
LR- | 0.1 | 0.03–0.29 | ||
Accuracy | 98.4 | 95.5–99.7 | ||
0–3 years (n = 101) | ||||
PA | 81.3 | 54.4–96.0 | ||
NA | 100 | 95.8–100 | ||
PPV | 100 | 75.3–100 | ||
NPV | 96.6 | 91.1–98.7 | ||
LR+ | N/A | |||
LR− | 0.2 | 0.1–0.5 | ||
Accuracy | 97.0 | 91.6–99.4 | ||
>3 years (n = 93) | ||||
PA | 100 | 76.8–100 | ||
NA | 100 | 95.4–100 | ||
PPV | 100 | 76.8–100 | ||
NPV | 100 | 95.4–100 | ||
LR+ | N/A | |||
LR− | 0.0 | |||
Accuracy | 100 | 96.1–100 |
RT-qPCR | ||||
---|---|---|---|---|
Positive (%) | Negative (%) | Total (%) | ||
ID NOW | Whole population (n = 194) | |||
Positive (%) | 27 (13.9) | 1 (0.5) | 28 (14.4) | |
Negative (%) | 0 (0.0) | 166 (85.6) | 166 (85.6) | |
Total (%) | 27 (13.9) | 167 (86.1) | 194 (100) | |
0–3 years (n = 101) | ||||
Positive (%) | 3 (3.0) | 0 (0.0) | 3 (3.0) | |
Negative (%) | 0 (0.0) | 98 (97.0) | 98 (97.0) | |
Total (%) | 3 (3.0) | 98 (97.0) | 101 (100) | |
>3 years (n = 93) | ||||
Positive (%) | 24 (25.8) | 1 (1.1) | 25 (26.9) | |
Negative (%) | 0 (0.0) | 68 (73.1) | 68 (73.1) | |
Total (%) | 24 (25.8) | 69 (74.2) | 93 (100) | |
Test performances | ||||
% | 95% CI | |||
Whole population (n = 194) | ||||
PA | 100 | 87.2–100 | ||
NA | 99.4 | 96.7–100 | ||
PPV | 96.4 | 79.3–99.5 | ||
NPV | 100 | 97.8–100 | ||
LR+ | 167 | 23.7–1178.6 | ||
LR− | 0.0 | |||
Accuracy | 99.5 | 97.2–99.9 | ||
0–3 years (n = 101) | ||||
PA | 100 | 29.2–100 | ||
NA | 100 | 96.3–100 | ||
PPV | 100 | 29.2–100 | ||
NPV | 100 | 96.3–100 | ||
LR+ | N/A | |||
LR− | 0.0 | |||
Accuracy | 100 | 96.4–100 | ||
>3 years (n = 93) | ||||
PA | 100 | 85.8–100 | ||
NA | 98.6 | 92.2–100 | ||
PPV | 96.0 | 77.4–99.4 | ||
NPV | 100 | 94.7–100 | ||
LR+ | 69.0 | 9.9–482.9 | ||
LR− | 0.00 | |||
Accuracy | 98.9 | 94.1–99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottino, P.; Massarino, C.; Leli, C.; Scomparin, E.; Bara, C.; Gotta, F.; Cornaglia, E.; Felici, E.; Gentile, M.; Ranzan, S.; et al. Evaluation of a Commercial Rapid Molecular Point-of-Care Assay for Differential Diagnosis Between SARS-CoV-2 and Flu A/B Infections in a Pediatric Setting. Viruses 2024, 16, 1638. https://doi.org/10.3390/v16101638
Bottino P, Massarino C, Leli C, Scomparin E, Bara C, Gotta F, Cornaglia E, Felici E, Gentile M, Ranzan S, et al. Evaluation of a Commercial Rapid Molecular Point-of-Care Assay for Differential Diagnosis Between SARS-CoV-2 and Flu A/B Infections in a Pediatric Setting. Viruses. 2024; 16(10):1638. https://doi.org/10.3390/v16101638
Chicago/Turabian StyleBottino, Paolo, Costanza Massarino, Christian Leli, Elisabetta Scomparin, Cristina Bara, Franca Gotta, Elisa Cornaglia, Enrico Felici, Michela Gentile, Sara Ranzan, and et al. 2024. "Evaluation of a Commercial Rapid Molecular Point-of-Care Assay for Differential Diagnosis Between SARS-CoV-2 and Flu A/B Infections in a Pediatric Setting" Viruses 16, no. 10: 1638. https://doi.org/10.3390/v16101638
APA StyleBottino, P., Massarino, C., Leli, C., Scomparin, E., Bara, C., Gotta, F., Cornaglia, E., Felici, E., Gentile, M., Ranzan, S., Francese, A., Ugo, F., Penpa, S., Roveta, A., Maconi, A., & Rocchetti, A. (2024). Evaluation of a Commercial Rapid Molecular Point-of-Care Assay for Differential Diagnosis Between SARS-CoV-2 and Flu A/B Infections in a Pediatric Setting. Viruses, 16(10), 1638. https://doi.org/10.3390/v16101638