Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viral Isolates and Banked Clinical Samples
2.2. Extraction of Nucleic Acid and rRT-PCR
2.3. LOD Measurement of 5-Sample and 10-Sample Fecal Pools
2.4. Evaluation of Effect of 5-Sample and 10-Sample Fecal Pooling on SARS-CoV-2 rRT-PCR
2.5. Simulation of 5-Sample Pooling
2.6. BMT of 5-Sample Pools
2.7. Stability of SARS-CoV-2 Genome in Positive Fecal PBS Suspensions
3. Results
3.1. LOD Measurement of 5-Sample Pooling and 10-Sample Pooling
3.2. Effect of 5-Sample and 10-Sample Fecal Pooling on SARS-CoV-2 Real-Time RT-PCR
3.3. Simulation of 5-Sample Pooling
3.4. BMT of 5-Sample Pooling
3.5. Stability of SARS-CoV-2 Positive Fecal PBS Suspensions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Number of COVID-19 Cases Reported to WHO. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 1 April 2024).
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar, C.; et al. SARS-CoV-2 in animals: Susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J. 2023, 21, e07822. [Google Scholar]
- Ramasamy, S.; Gontu, A.; Neerukonda, S.; Ruggiero, D.; Morrow, B.; Gupta, S.; Amirthalingam, S.; Hardham, J.M.; Lizer, J.T.; Yon, M.; et al. SARS-CoV-2 Prevalence and Variant Surveillance among Cats in Pittsburgh, Pennsylvania, USA. Viruses 2023, 15, 1493. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Aldana, D.K.; Garcia-Barco, A.; Jimenez-Diaz, S.D.; Bonilla-Aldana, J.L.; Cardona-Trujillo, M.C.; Munoz-Lara, F.; Zambrano, L.I.; Salas-Matta, L.A.; Rodriguez-Morales, A.J. SARS-CoV-2 natural infection in animals: A systematic review of studies and case reports and series. Vet. Q. 2021, 41, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Abiko, K.; Mandai, M.; Yaegashi, N.; Konishi, I. Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals. Vet. Q. 2020, 40, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, A.A.; Richardson, K.L.; Ghai, R.R.; Pope, B.; Yeadon, J.; Culp, B.; Behravesh, C.B.; Liu, L.; Brown, J.A.; Boyer, L.V. Probable Transmission of SARS-CoV-2 from African Lion to Zoo Employees, Indiana, USA, 2021. Emerg. Infect. Dis. 2023, 29, 1102–1108. [Google Scholar] [CrossRef]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Sila, T.; Sunghan, J.; Laochareonsuk, W.; Surasombatpattana, S.; Kongkamol, C.; Ingviya, T.; Siripaitoon, P.; Kositpantawong, N.; Kanchanasuwan, S.; Hortiwakul, T.; et al. Suspected Cat-to-Human Transmission of SARS-CoV-2, Thailand, July-September 2021. Emerg. Infect. Dis. 2022, 28, 1485–1488. [Google Scholar] [CrossRef]
- Dorfman, R. The detection of defective members of large populations. Ann. Math. Stat. 1943, 14, 436–440. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Patel, P.; Hutchinson, A.; Ethridge, S.F.; Parker, M.M. Evaluation of pooling strategies for acute HIV-1 infection screening using nucleic acid amplification testing. J. Clin. Microbiol. 2011, 49, 3667–3668. [Google Scholar] [CrossRef]
- Taylor, S.M.; Juliano, J.J.; Trottman, P.A.; Griffin, J.B.; Landis, S.H.; Kitsa, P.; Tshefu, A.K.; Meshnick, S.R. High-throughput pooling and real-time PCR-based strategy for malaria detection. J. Clin. Microbiol. 2010, 48, 512–519. [Google Scholar] [CrossRef]
- Van, T.T.; Miller, J.; Warshauer, D.M.; Reisdorf, E.; Jernigan, D.; Humes, R.; Shult, P.A. Pooling nasopharyngeal/throat swab specimens to increase testing capacity for influenza viruses by PCR. J. Clin. Microbiol. 2012, 50, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Sponheim, A.; Munoz-Zanzi, C.; Fano, E.; Polson, D.; Pieters, M. Pooled-sample testing for detection of Mycoplasma hyopneumoniae during late experimental infection as a diagnostic tool for a herd eradication program. Prev. Vet. Med. 2021, 189, 105313. [Google Scholar] [CrossRef] [PubMed]
- de Salazar, A.; Aguilera, A.; Trastoy, R.; Fuentes, A.; Alados, J.C.; Causse, M.; Galan, J.C.; Moreno, A.; Trigo, M.; Perez-Ruiz, M.; et al. Sample pooling for SARS-CoV-2 RT-PCR screening. Clin. Microbiol. Infect. 2020, 26, 1687.e1–1687.e5. [Google Scholar] [CrossRef] [PubMed]
- Hueda-Zavaleta, M.; Copaja-Corzo, C.; Benites-Zapata, V.A.; Cardenas-Rueda, P.; Maguina, J.L.; Rodriguez-Morales, A.J. Diagnostic performance of RT-PCR-based sample pooling strategy for the detection of SARS-CoV-2. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 11. [Google Scholar] [CrossRef]
- Jain, V.; Sherwani, N.; Monga, N.; Sahu, A. Effectiveness of sample pooling strategies for diagnosis of SARS-CoV-2: Specimen pooling vs. RNA elutes pooling. Indian J. Med. Microbiol. 2023, 42, 34–38. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Ibrahim, E.; Thakre, B.; Teddy, J.G.; Raheja, P.; Ganesan, S.; Zaher, W.A. Evaluation of pooling of samples for testing SARS-CoV-2 for mass screening of COVID-19. BMC Infect. Dis. 2021, 21, 360. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef]
- Daou, M.; Kannout, H.; Khalili, M.; Almarei, M.; Alhashami, M.; Alhalwachi, Z.; Alshamsi, F.; Tahseen Al Bataineh, M.; Azzam Kayasseh, M.; Al Khajeh, A.; et al. Analysis of SARS-CoV-2 viral loads in stool samples and nasopharyngeal swabs from COVID-19 patients in the United Arab Emirates. PLoS ONE 2022, 17, e0274961. [Google Scholar] [CrossRef]
- Allender, M.C.; Adkesson, M.J.; Langan, J.N.; Delk, K.W.; Meehan, T.; Aitken-Palmer, C.; McEntire, M.M.; Killian, M.L.; Torchetti, M.; Morales, S.A.; et al. Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound. Emerg. Dis. 2022, 69, e3060–e3075. [Google Scholar] [CrossRef]
- Wang, L.; Gyimesi, Z.S.; Killian, M.L.; Torchetti, M.; Olmstead, C.; Fredrickson, R.; Terio, K.A. Detection of SARS-CoV-2 clade B.1.2 in three snow leopards. Transbound. Emerg. Dis. 2022, 69, e3346–e3351. [Google Scholar] [CrossRef]
- Bartlett, S.L.; Koeppel, K.N.; Cushing, A.C.; Bellon, H.F.; Almagro, V.; Gyimesi, Z.S.; Thies, T.; Hard, T.; Denitton, D.; Fox, K.Z.; et al. Global Retrospective Review of Severe Acute Respiratory Syndrome SARS CoV-2 Infections in Nondomestic Felids: March 2020-February 2021. J. Zoo Wildl. Med. 2023, 54, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, S.L.; Diel, D.G.; Wang, L.; Zec, S.; Laverack, M.; Martins, M.; Caserta, L.C.; Killian, M.L.; Terio, K.; Olmstead, C.; et al. SARS-CoV-2 Infection and Longitudinal Fecal Screening in Malayan Tigers (Panthera Tigris Jacksoni), Amur Tigers (Panthera Tigris Altaica), and African Lions (Panthera Leo Krugeri) at the Bronx Zoo, New York, USA. J. Zoo Wildl. Med. 2021, 51, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Sakthivel, S.K.; Whitaker, B.; Murray, J.; Kamili, S.; Lynch, B.; Malapati, L.; Burke, S.A.; Harcourt, J.; et al. US CDC Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Leonardi-Cattolica, A.; Kayastha, S.; Miller, M. Fecal Sample Pooling for SARS-CoV-2 Real-Time RT-PCR Screening. Available online: https://www.protocols.io/view/fecal-sample-pooling-for-sars-cov-2-real-time-rt-p-yxmvm3oobl3p/v1 (accessed on 17 January 2024).
- USDA Avian Sample Collection for Influenza A and Newcastle Disease. Available online: https://www.aphis.usda.gov/sites/default/files/WIAV0020.pdf (accessed on 4 January 2024).
- Bovine Viral Diarrhea (BVD) Ear Notch Screen Pooled Testing. Available online: https://vdl.umn.edu/tests-fees/bovine-viral-diarrhea-bvd-ear-notch-screen-pooled-testing (accessed on 4 January 2024).
- Cherif, A.; Grobe, N.; Wang, X.; Kotanko, P. Simulation of Pool Testing to Identify Patients With Coronavirus Disease 2019 Under Conditions of Limited Test Availability. JAMA Netw. Open 2020, 3, e2013075. [Google Scholar] [CrossRef]
- Morais, O.; Alves, M.R.; Ramos, C.; Ferreira, F.; Fernandes, P. The Matrix Effect in the RT-PCR Detection of SARS-CoV-2 Using Saliva without RNA Extraction. Diagnostics 2022, 12, 1547. [Google Scholar] [CrossRef]
- Coryell, M.P.; Iakiviak, M.; Pereira, N.; Murugkar, P.P.; Rippe, J.; Williams, D.B.; Heald-Sargent, T.; Sanchez-Pinto, L.N.; Chavez, J.; Hastie, J.L.; et al. A method for detection of SARS-CoV-2 RNA in healthy human stool: A validation study. Lancet Microbe 2021, 2, e259–e266. [Google Scholar] [CrossRef]
Sample # | Individual | 5-Pool | 10-Pool | 5-Pool Ct Loss | 10-Pool Ct Loss |
---|---|---|---|---|---|
S1 | 17.05 | 19.42 | 20.46 | 2.37 | 3.41 |
S2 | 18.66 | 21.38 | 22.44 | 2.72 | 3.78 |
S3 | 18.88 | 21.44 | 22.41 | 2.56 | 3.54 |
S4 | 20.71 | 23.23 | 24.27 | 2.52 | 3.55 |
S5 | 21.54 | 24.06 | 25.06 | 2.52 | 3.52 |
S6 | 22.25 | 25.15 | 26.01 | 2.90 | 3.75 |
S7 | 22.50 | 24.85 | 25.82 | 2.34 | 3.32 |
S8 | 23.64 | 26.48 | 27.41 | 2.84 | 3.77 |
S9 | 23.73 | 26.14 | 27.16 | 2.41 | 3.44 |
S10 | 24.67 | 27.45 | 28.31 | 2.78 | 3.64 |
S11 | 24.90 | 27.19 | 28.35 | 2.28 | 3.45 |
S12 | 24.94 | 27.66 | 28.80 | 2.71 | 3.85 |
S13 | 27.55 | 29.78 | 31.33 | 2.23 | 3.77 |
S14 | 28.05 | 30.49 | 31.78 | 2.44 | 3.73 |
S15 | 28.29 | 30.84 | 32.06 | 2.54 | 3.77 |
S16 | 28.41 | 31.02 | 32.4 | 2.61 | 3.98 |
S17 | 28.49 | 30.75 | 31.66 | 2.26 | 3.17 |
S18 | 28.59 | 30.72 | 31.81 | 2.13 | 3.21 |
S19 | 29.15 | 31.42 | 32.66 | 2.27 | 3.51 |
S20 | 30.49 | 32.53 | 34.08 | 2.04 | 3.59 |
S21 | 30.66 | 32.70 | 33.64 | 2.04 | 2.98 |
S22 | 31.16 | 33.7 | 35.42 | 2.54 | 4.26 |
S23 | 31.21 | 33.88 | 34.62 | 2.67 | 3.42 |
S24 | 31.30 | 34.18 | 34.78 | 2.88 | 3.49 |
S25 | 31.41 | 33.45 | 34.51 | 2.04 | 3.10 |
S26 | 32.00 | 34.80 | 34.91 | 2.80 | 2.91 |
S27 | 32.12 | 34.43 | 37.77 | 2.32 | 5.66 |
S28 | 32.34 | 34.62 | 35.87 | 2.28 | 3.53 |
S29 | 32.4 | 34.55 | 35.3 | 2.14 | 2.89 |
S30 | 33.27 | 36.16 | 35.81 | 2.89 | 2.53 |
S31 | 33.66 | 35.40 | 37.13 | 1.75 | 3.47 |
S32 | 33.66 | 35.66 | 37.1 | 2 | 3.44 |
S33 | 33.80 | 37.84 | ND | 4.04 | - |
S34 | 35.02 | 37 | 37.65 | 1.98 | 2.63 |
S35 | 35.25 | 37.79 | ND | 2.54 | - |
S36 | 35.34 | 37.48 | 38.58 | 2.15 | 3.25 |
S37 | 36.03 | ND | 38.82 | - | 2.79 |
S38 | 36.04 | 37.03 | ND | 1 | - |
S39 | 36.06 | 37.1 | 38.14 | 1.04 | 2.08 |
S40 | 37.63 | 38.51 | ND | 0.88 | - |
S41 | 36.50 | ND | ND | - | - |
S42 | 37.09 | ND | ND | - | - |
S43 | 37.14 | ND | ND | - | - |
S44 | 37.16 | ND | ND | - | - |
S45 | 37.61 | ND | ND | - | - |
S46 | 37.79 | ND | ND | - | - |
S47 | 38.73 | ND | ND | - | - |
S48 | 39.36 | ND | ND | - | - |
S49 | 39.65 | ND | ND | - | - |
Average Ct value loss | 2.35 | 3.45 |
5-Pool# | Pool Ct | Individual Ct | Ct Loss | ||||
---|---|---|---|---|---|---|---|
P1 | 28.75 | 26.20 | - | - | - | - | 2.55 |
P2 | 32.11 | 29.65 | - | - | - | - | 2.45 |
P3 | 22.03 | 19.60 | - | - | - | - | 2.44 |
P4 * | 34.90 | 33.01 | 34.10 | - | - | - | 1.89 |
P5 | 0.00 | - | - | - | - | - | |
P6 | 0.00 | - | - | - | - | - | |
P7 & | 33.59 | 31.81 | 34.74 | 32.72 | - | - | 1.78 |
P8 | 33.55 | 31.27 | - | - | - | - | 2.29 |
P9 | 30.17 | 27.55 | - | - | - | - | 2.62 |
P10 | 27.70 | 25.33 | - | - | - | - | 2.37 |
P11 | 0.00 | - | - | - | - | - | |
P12 * | 30.15 | 27.75 | 31.67 | - | - | - | 2.39 |
P13 | 0.00 | - | - | - | - | - | |
P14 | 0.00 | - | - | - | - | - | |
P15 | 38.66 | 37.21 | - | - | - | - | 1.45 |
P16 | 34.12 | 31.71 | - | - | - | - | 2.41 |
P17 | 0.00 | - | - | - | - | - | |
P18 * | 25.32 | 23.13 | 30.67 | - | - | - | 2.19 |
P19 | 37.02 | 34.10 | - | - | - | - | 2.92 |
P20 & | 29.97 | 27.44 | 31.94 | 30.75 | - | - | 2.52 |
P21 | 0.00 | - | - | - | - | - | |
P22 | 0.00 | - | - | - | - | - | |
P23 * | 23.09 | 21.63 | 22.17 | - | - | - | 1.46 |
P24 | 29.78 | 27.31 | - | - | - | - | 2.47 |
P25 | 0.00 | - | - | - | - | - | |
P26 | 35.07 | 31.69 | - | - | - | - | 3.37 |
P27 | 32.05 | 28.92 | - | - | - | - | 3.13 |
P28 | 0.00 | - | - | - | - | - | |
P29 * | 25.71 | 23.11 | 33.55 | - | - | - | 2.61 |
P30 | 19.47 | 17.54 | - | - | - | - | 1.93 |
Average Ct loss | 2.36 |
Day 1 | Day 2 | Total | |||||
---|---|---|---|---|---|---|---|
Matrix | Variant | Spike Levels | # False Positives | # False Negatives | # False Positives | # False Negatives | ROD |
PBS | WA-1 | Blank | 0/2 | - | 0/2 | - | 0/4 |
High | - | 0/3 | - | 0/3 | 6/6 | ||
Low | - | 0/3 | - | 0/3 | 6/6 | ||
Omicron | Blank | 0/2 | - | 0/2 | - | 0/4 | |
High | - | 0/3 | - | 0/3 | 6/6 | ||
Low | - | 0/3 | - | 0/3 | 6/6 | ||
Fecal | WA-1 | Blank | 0/2 | - | 0/2 | - | 0/4 |
High | - | 0/3 | - | 0/3 | 6/6 | ||
Low | - | 0/3 | - | 0/3 | 6/6 | ||
Omicron | Blank | 0/2 | - | 0/2 | - | 0/4 | |
High | - | 0/3 | - | 0/3 | 6/6 | ||
Low | - | 0/3 | - | 0/3 | 6/6 |
Sample Day 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Feces Group | Feces Test Samples | Ct | Average Ct | PBS Groups | PBS Test Samples | Ct | Average Ct | Ct Difference: Feces vs. PBS |
Group-2 | WA-1 Blank | 0.00 | Group-33 | WA-1 Blank | 0.00 | |||
Group-5 | WA-1 Blank | 0.00 | Group-37 | WA-1 Blank | 0.00 | |||
Group-1 | WA-1 Low | 37.83 | 37.5 | Group-34 | WA-1 Low | 33.50 | 33.7 | 3.81 |
Group-4 | WA-1 Low | 37.32 | Group-35 | WA-1 Low | 34.03 | |||
Group-6 | WA-1 Low | 37.61 | Group-39 | WA-1 Low | 33.79 | |||
Group-3 | WA-1 High | 34.83 | 34.8 | Group-36 | WA-1 High | 31.33 | 30.8 | 3.99 |
Group-7 | WA-1 High | 34.48 | Group-38 | WA-1 High | 30.66 | |||
Group-8 | WA-1 High | 35.29 | Group-40 | WA-1 High | 30.65 | |||
Group-10 | Omicron—Blank | 0.00 | Group-42 | Omicron—Blank | 0.00 | |||
Group-13 | Omicron—Blank | 0.00 | Group-45 | Omicron—Blank | 0.00 | |||
Group-9 | Omicron—Low | 37.18 | 36.8 | Group-41 | Omicron—Low | 34.26 | 34.5 | 2.32 |
Group-12 | Omicron—Low | 36.98 | Group-44 | Omicron—Low | 34.62 | |||
Group-15 | Omicron—Low | 36.47 | Group-47 | Omicron—Low | 34.79 | |||
Group-11 | Omicron—High | 32.46 | 32.6 | Group-43 | Omicron—High | 31.13 | 31.0 | 1.67 |
Group-14 | Omicron—High | 32.82 | Group-46 | Omicron—High | 30.70 | |||
Group-16 | Omicron—High | 32.81 | Group-48 | Omicron—High | 31.25 | |||
Sample Day 2 | ||||||||
Feces Group | Feces Test Samples | Ct | Average Ct | PBS | PBS | Ct | Average Ct | Ct Difference: Feces vs. PBS |
Group-17 | WA-1 Blank | 0.00 | Group-50 | WA-1 Blank | 0.00 | |||
Group-22 | WA-1 Blank | 0.00 | Group-51 | WA-1 Blank | 0.00 | |||
Group-19 | WA-1 Low | 36.13 | 35.5 | Group-54 | WA-1 Low | 32.55 | 32.5 | 2.93 |
Group-20 | WA-1 Low | 35.35 | Group-52 | WA-1 Low | 32.89 | |||
Group-23 | WA-1 Low | 35.06 | Group-56 | WA-1 Low | 32.31 | |||
Group-18 | WA-1 High | 33.12 | 32.8 | Group-49 | WA-1 High | 29.80 | 29.6 | 3.19 |
Group-21 | WA-1 High | 32.80 | Group-53 | WA-1 High | 29.54 | |||
Group-24 | WA-1 High | 32.69 | Group-55 | WA-1 High | 29.70 | |||
Group-25 | Omicron—Blank | 0.00 | Group-57 | Omicron—Blank | 0.00 | |||
Group-26 | Omicron—Blank | 0.00 | Group-58 | Omicron—Blank | 0.00 | |||
Group-27 | Omicron—Low | 36.31 | 36.2 | Group-59 | Omicron—Low | 33.07 | 33.4 | 2.80 |
Group-28 | Omicron—Low | 35.68 | Group-60 | Omicron—Low | 33.72 | |||
Group-30 | Omicron—Low | 36.78 | Group-62 | Omicron—Low | 33.77 | |||
Group-29 | Omicron—High | 32.57 | 32.2 | Group-61 | Omicron—High | 30.37 | 30.21 | 1.98 |
Group-31 | Omicron—High | 31.69 | Group-63 | Omicron—High | 30.34 | |||
Group-32 | Omicron—High | 32.52 | Group-64 | Omicron—High | 29.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi-Cattolica, A.; Kayastha, S.; Miller, M.; Guag, J.; Tkachenko, A.; Lowe, J.; Allender, M.; Terio, K.; Wang, L. Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals. Viruses 2024, 16, 1651. https://doi.org/10.3390/v16111651
Leonardi-Cattolica A, Kayastha S, Miller M, Guag J, Tkachenko A, Lowe J, Allender M, Terio K, Wang L. Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals. Viruses. 2024; 16(11):1651. https://doi.org/10.3390/v16111651
Chicago/Turabian StyleLeonardi-Cattolica, Antonio, Sandipty Kayastha, Megan Miller, Jake Guag, Andriy Tkachenko, James Lowe, Matthew Allender, Karen Terio, and Leyi Wang. 2024. "Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals" Viruses 16, no. 11: 1651. https://doi.org/10.3390/v16111651
APA StyleLeonardi-Cattolica, A., Kayastha, S., Miller, M., Guag, J., Tkachenko, A., Lowe, J., Allender, M., Terio, K., & Wang, L. (2024). Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals. Viruses, 16(11), 1651. https://doi.org/10.3390/v16111651