Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piantadosi, A.; Solomon, I.H. Powassan Virus Encephalitis. Infect. Dis. Clin. N. Am. 2022, 36, 671–688. [Google Scholar] [CrossRef]
- Kemenesi, G.; Bányaic, K. Tick-Borne Flaviviruses, with a Focus on Powassan Virus. Clin. Microbiol. Rev. 2019, 32, e00106-17. [Google Scholar] [CrossRef] [PubMed]
- ArboNET. Arboviral Diseases Branch Centers for Disease Control and Prevention Powassan Virus Statistics and Maps. Available online: https://www.cdc.gov/powassan/data-maps/historic-data.html (accessed on 17 October 2024).
- Clinical Testing and Diagnosis for Powassan Virus Disease. Available online: https://www.cdc.gov/powassan/hcp/diagnosis-testing/index.html (accessed on 15 September 2024).
- Piantadosi, A.; Kanjilal, S. Diagnostic Approach for Arboviral Infections in the United States. J. Clin. Microbiol. 2020, 58, e01926-19. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, R.K.; Staples, J.E.; Gill, C.M.; Fischer, M.; Khan, E.; Laven, J.J.; Panella, A.; Velez, J.O.; Hughes, H.R.; Brault, A.; et al. Severe Arboviral Neuroinvasive Disease in Patients on Rituximab Therapy: A Review. Clin. Infect. Dis. 2022, 76, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Farrington, M.; Elenz, J.; Ginsberg, M.; Chiu, C.; Miller, S.; Pangonis, S.F. Powassan Virus Infection Detected by Metagenomic Next-Generation Sequencing, Ohio, USA. Emerg. Infect. Dis. 2023, 29, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, A.; Kanjilal, S.; Ganesh, V.; Khanna, A.; Hyle, E.P.; Rosand, J.; Bold, T.; Metsky, H.C.; Lemieux, J.; Leone, M.J.; et al. Rapid Detection of Powassan Virus in a Patient with Encephalitis by Metagenomic Sequencing. Clin. Infect. Dis. 2018, 66, 789–792. [Google Scholar] [CrossRef]
- Johnson, I.M.; Scheckel, C.; Parikh, S.A.; Enzler, M.; Fugate, J.; Call, T.G. Fatal Powassan Virus Encephalitis in Patients with Chronic Lymphocytic Leukemia. Blood Cancer J. 2022, 12, 143. [Google Scholar] [CrossRef]
- Klontz, E.H.; Solomon, I.H.; Turbett, S.E.; Lemieux, J.E.; Branda, J.A. Cerebrospinal Fluid Metagenomics Has Greatest Added Value as a Test for Powassan Virus among Patients in New England with Suspected Central Nervous System Infection. Diagn. Microbiol. Infect. Dis. 2024, 108, 116169. [Google Scholar] [CrossRef]
- McMinn, R.J.; Langsjoen, R.M.; Bombin, A.; Robich, R.M.; Ojeda, E.; Normandin, E.; Goethert, H.K.; Lubelczyk, C.B.; Schneider, E.; Cosenza, D.; et al. Phylodynamics of Deer Tick Virus in North America. Virus Evol. 2023, 9, vead008. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Brackney, D.E.; Dupuis, A.P.; Robich, R.M.; Fauver, J.R.; Brito, A.F.; Williams, S.C.; Anderson, J.F.; Lubelczyk, C.B.; Lange, R.E.; et al. Phylogeographic Reconstruction of the Emergence and Spread of Powassan Virus in the Northeastern United States. Proc. Natl. Acad. Sci. USA 2023, 120, e2218012120. [Google Scholar] [CrossRef]
- Normandin, E.; Solomon, I.H.; Zamirpour, S.; Lemieux, J.; Freije, C.A.; Mukerji, S.S.; Tomkins-Tinch, C.; Park, D.; Sabeti, P.C.; Piantadosi, A. Powassan Virus Neuropathology and Genomic Diversity in Patients with Fatal Encephalitis. Open Forum Infect. Dis. 2020, 7, ofaa392. [Google Scholar] [CrossRef] [PubMed]
- Leonova, G.N.; Kondratov, I.G.; Ternovoi, V.A.; Romanova, E.V.; Protopopova, E.V.; Chausov, E.V.; Pavlenko, E.V.; Ryabchikova, E.I.; Belikov, S.I.; Loktev, V.B. Characterization of Powassan Viruses from Far Eastern Russia. Arch. Virol. 2009, 154, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Mandl, C.W.; Holzmann, H.; Kunz, C.; Heinz, F.X. Complete Genomic Sequence of Powassan Virus: Evaluation of Genetic Elements in Tick-Borne versus Mosquito-Borne Flaviviruses. Virology 1993, 194, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, N.P.; Wang, H.; Dupuis, M.; Hull, R.; Ebel, G.D.; Gilmore, E.J.; Faust, P.L. Fatal Case of Deer Tick Virus Encephalitis. N. Engl. J. Med. 2009, 360, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Feder, H.M.; Telford, S.; Goethert, H.K.; Wormser, G.P. Powassan Virus Encephalitis Following Brief Attachment of Connecticut Deer Ticks. Clin. Infect. Dis. 2021, 73, E2350–E2354. [Google Scholar] [CrossRef]
- Solomon, I.H.; Spera, K.M.; Ryan, S.L.; Helgager, J.; Andrici, J.; Zaki, S.R.; Vaitkevicius, H.; Leon, K.E.; Wilson, M.R.; DeRisi, J.L.; et al. Fatal Powassan Encephalitis (Deer Tick Virus, Lineage II) in a Patient with Fever and Orchitis Receiving Rituximab. JAMA Neurol. 2018, 75, 746–750. [Google Scholar] [CrossRef]
- Cavanaugh, C.E.; Muscat, P.L.; Telford, S.R.; Goethert, H.; Pendlebury, W.; Elias, S.P.; Robich, R.; Welch, M.; Lubelczyk, C.B.; Smith, R.P. Fatal Deer Tick Virus Infection in Maine. Clin. Infect. Dis. 2017, 65, 1043–1046. [Google Scholar] [CrossRef]
- El Khoury, M.Y.; Camargo, J.F.; White, J.L.; Backenson, B.P.; Dupuis, A.P.; Escuyer, K.L.; Kramer, L.; George, K.S.; Chatterjee, D.; Prusinski, M.; et al. Potential Role of Deer Tick Virus in Powassan Encephalitis Cases in Lyme Disease-Endemic Areas of New York, USA. Emerg. Infect. Dis. 2013, 19, 1926–1933. [Google Scholar] [CrossRef]
- El Khoury, M.Y.; Hull, R.C.; Bryant, P.W.; Escuyer, K.L.; St George, K.; Wong, S.J.; Nagaraja, A.; Kramer, L.; Dupuis, A.P.; Purohit, T.; et al. Diagnosis of Acute Deer Tick Virus Encephalitis. Clin. Infect. Dis. 2013, 56, 40–47. [Google Scholar] [CrossRef]
- Miller, S.; Naccache, S.N.; Samayoa, E.; Messacar, K.; Arevalo, S.; Federman, S.; Stryke, D.; Pham, E.; Fung, B.; Bolosky, W.J.; et al. Laboratory Validation of a Clinical Metagenomic Sequencing Assay for Pathogen Detection in Cerebrospinal Fluid. Genome Res. 2019, 29, 831–842. [Google Scholar] [CrossRef]
- Piantadosi, A.; Shariatzadeh, N.; Bombin, A.; Arkun, K.; Alexandrescu, S.; Kleinschmidt-Demasters, B.K.; Solomon, I.H. Double-Stranded RNA Immunohistochemistry as a Screening Tool for Viral Encephalitis. Am. J. Clin. Pathol. 2023, 160, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability Article Fast Track. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Nguyen, L.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Thi Hoang, D.; Chernomor, O.; von Haeseler, A.; Quang Minh, B.; Sy Vinh, L.; Rosenberg, M.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2017, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, A.; Mukerji, S.S.; Ye, S.; Leone, M.J.; Freimark, L.M.; Park, D.; Adams, G.; Lemieux, J.; Kanjilal, S.; Solomon, I.H.; et al. Enhanced Virus Detection and Metagenomic Sequencing in Patients with Meningitis and Encephalitis. mBio 2021, 12, e0114321. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Xia, H.; Haller, S.L.; Azar, S.R.; Liu, Y.; Liu, J.; Muruato, A.E.; Chen, R.; Rossi, S.L.; Wakamiya, M.; et al. A Zika Virus Envelope Mutation Preceding the 2015 Epidemic Enhances Virulence and Fitness for Transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 20190–20197. [Google Scholar] [CrossRef]
- Brault, A.C.; Huang, C.Y.-H.; Langevin, S.A.; Kinney, R.M.; Bowen, R.A.; Ramey, W.N.; Panella, N.A.; Holmes, E.C.; Powers, A.M.; Miller, B.R.; et al. A Single Positively Selected West Nile Viral Mutation Confers Increased Virogenesis in American Crows Aaron. Nat. Genet. 2000, 39, 97–103. [Google Scholar]
- Xia, H.; Luo, H.; Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Medeiros, D.B.A.; Zou, J.; Xie, X.; Giraldo, M.I.; Vasconcelos, P.F.C.; et al. An Evolutionary NS1 Mutation Enhances Zika Virus Evasion of Host Interferon Induction. Nat. Commun. 2012, 9, 414. [Google Scholar] [CrossRef]
- Moudy, R.M.; Meola, M.A.; Morin, L.L.L.; Ebel, G.D.; Kramer, L.D. A Newly Emergent Genotype of West Nile Virus Is Transmitted Earlier and More Efficiently by Culex Mosquitoes. Am. J. Trop. Med. Hyg. 2007, 77, 365–370. [Google Scholar] [CrossRef]
- Telford, S.; Armstrong, P.; Paula, K.; Foppa, I.; Olmeda Garvia, S.; Wilson, M.; Spielman, A. A New Tick-Borne Encephalitis-like Virus Infecting New England Deer Ticks, Ixodes Dammini. Emerg. Infect. Dis. 1997, 3, 165–170. [Google Scholar] [CrossRef]
- Tokarz, R.; Tagliafierro, T.; Cucura, D.M.; Rochlin, I.; Sameroff, S.; Lipkin, W.I. Detection of Anaplasma and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay. mSphere 2017, 2, e00151-17. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, A.P.; Peters, R.J.; Prusinski, M.A.; Falco, R.C.; Ostfeld, R.S.; Kramer, L.D. Isolation of Deer Tick Virus (Powassan Virus, Lineage II) from Ixodes Scapularis and Detection of Antibody in Vertebrate Hosts Sampled in the Hudson Valley, New York State. Parasites Vectors 2013, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Aliota, M.T.; Dupuis, A.P.; Wilczek, M.P.; Peters, R.J.; Ostfeld, R.S.; Kramer, L.D. The Prevalence of Zoonotic Tick-Borne Pathogens in Ixodes Scapularis Collected in the Hudson Valley, New York State. Vector-Borne Zoonotic Dis. 2014, 14, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Brackney, D.E.; Nofchissey, R.A.; Fitzpatrick, K.A.; Brown, I.K.; Ebel, G.D. Short Report: Stable Prevalence of Powassan Virus in Ixodes Scapularis in a Northern Wisconsin Focus. Am. J. Trop. Med. Hyg. 2008, 79, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Calvente, E.; Rollinson, E.; Koon, D.S.K.; Chinnici, N. Tick-Borne Pathogens in Questing Blacklegged Ticks (Acari: Ixodidae) from Pike County, Pennsylvania. J. Med. Entomol. 2022, 59, 1793–1804. [Google Scholar] [CrossRef]
- Yuan, Q.; Llanos-Soto, S.G.; Gangloff-Kaufmann, J.L.; Lampman, J.M.; Frye, M.J.; Benedict, M.C.; Tallmadge, R.L.; Mitchell, P.K.; Anderson, R.R.; Cronk, B.D.; et al. Active Surveillance of Pathogens from Ticks Collected in New York State Suburban Parks and Schoolyards. Zoonoses Public Health 2020, 67, 684–696. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Shi, P.Y. Flavivirus NS4B Protein: Structure, Function, and Antiviral Discovery. Antivir. Res. 2022, 207, 105423. [Google Scholar] [CrossRef]
- Lange, R.E.; Dupuis II, A.P.; Prusinski, M.A.; Maffei, J.G.; Koetzner, C.A.; Ngo, K.; Backenson, B.; Oliver, J.; Vogels, C.B.F.; Grubaugh, N.D.; et al. Identification and Characterization of Novel Lineage 1 Powassan Virus Strains in New York State. Emerg. Microbes Infect. 2023, 12, 2155585. [Google Scholar] [CrossRef]
- Smith, R.P.; Lacombe, E.H.; Rand, P.W.; Dearborn, R. Diversity of Tick Species Biting Humans in an Emerging Area for Lyme Disease. Am. J. Public Health 1992, 82, 66–69. [Google Scholar] [CrossRef]
Human Infection | Location | Year | Clade | Closest Tick Genome | Nucleotide Identity (%) | Protein Identity (%) | Citation |
---|---|---|---|---|---|---|---|
OR130294 | ME | 2022 | Lineage I | HM440563 | 96.41 | 98.95 | This study |
OR130288 | MA | 2022 | Lineage II NE | OL704271 | 99.84 | 99.97 | This study |
OR130289 | MA | 2019 | Lineage II NE | OL704356 | 99.79 | 99.82 | This study, [1,10] |
OR130290 | MA | 2020 | Lineage II NE | OP265695 | 100 1 | 100 1 | This study, [10] |
OR130291 | MA | 2021 | Lineage II NE | OL704190 | 99.34 | 99.56 | This study, [10] |
OR130292 | ME | 2022 | Lineage II NE | OP265694 | 100 1 | 100 1 | This study, [10] |
OR130293 | MA | 2022 | Lineage II NE | OL704295 | 99.39 | 99.80 | This study, [10] |
OR130296 | ME | 2016 | Lineage II NE | OL704276 | 99.90 1 | 99.89 1 | This study |
OR130295 | WI | 2018 | Lineage II MW | OP823481 | 99.50 1 | 99.85 1 | This study |
OL695841 | MN | 2020 | Lineage II MW | OP823481 | 99.35 | 99.74 | This study |
HQ231414 | RUS | 2006 | Lineage I | MG652438 | 99.92 | 99.94 | Unpublished |
HQ231415 | RUS | 2006 | Lineage I | MG652438 | 99.92 | 99.91 | Unpublished |
EU543649 | RUS | 2006 | Lineage I | MG652438 | 99.92 | 99.85 | [14] |
EU670438 | RUS | 1991 | Lineage I | MG652438 | 99.92 | 99.94 | [14] |
L06436 | CAN | 1958 | Lineage I | OP823407 | 99.98 | 99.91 | [15] |
MW001304 | MA | 2016 | Lineage II NE | OP823438 | 99.70 | 99.88 | [1,13,18] |
MW001306 | MA | 2019 | Lineage II NE | OP823438 | 99.75 | 99.80 | [13] |
MT996002 | MA | 2018 | Lineage II NE | OL704356 | 99.87 | 99.91 | [13] |
MF688929 | NH | 2016 | Lineage II NE | OP265694 | 99.89 1 | 99.82 1 | [8,10,27] |
Lineage I | Lineage II NE | Lineage II MW | |
---|---|---|---|
Lineage I | 94% | 85% | 85% |
Lineage II NE | 85% | 99% | 94% |
Lineage II MW | 85% | 94% | 99% |
Primer Set | ≤1 Mismatch in All Components | Target | Ref. |
---|---|---|---|
Forward-1: ACCATAACAAACATGAAAGTCCAACT Forward-2: CCATCACAAACATGAAAGTCCAACT Reverse-1: TGAGTCTGCTGGTCCGATGAC Reverse-2: CTGTGAGTCAGCTGGTCCTATGAC Probe: 6FAM-CCTTCCATCATGCGGAT-MGB | Lineage I: 92% Lineage II Midwest: 100% Lineage II Northeast: 100% All lineages: 98% | NS5 | [21] Assay performed by NYSDOH |
Forward: GCATG+A3:G12GTCGGATGAACAGAA Reverse: GAGCGCTCTTCATCCACCA Probe: N/A | Lineage I: 83% Lineage II Midwest: 100% Lineage II Northeast: 100% All lineages: 96% | NS5 | [8] |
POW-1: TGGATGACAACAGAAGACATGC POW-2: GCTCTCTAGCTTGAGCTCCCA Probe: N/A | Lineage I: 100% Lineage II Midwest: 100% Lineage II Northeast: 88% All lineages: 94% | E | [32] |
Forward: CACCAGGAGTTAGGCCATTT Reverse: AGATTGCCAATCTTCTTCCT Reverse: AGATTGCCAATTGTCTTCCC Probe: 6FAM-TCCTCCCGAGTTATGCCCGG-BHQ1 | Lineage I: 92% Lineage II Midwest: 100% Lineage II Northeast: 64% All lineages: 78% | 3′ UTR | This study. Assay performed by CDC |
Forward: GTGATGTGGCAGCGCACC Reverse: CTGCGTCGGGAGCGACCA Probe: Texas Red-CCTACTGCGGCAGCACACACAGTG-BHQ | Lineage I: 0% Lineage II Midwest: 100% Lineage II Northeast: 88% All lineages: 67% | 3′ UTR | [33] |
Forward: GATCATGAGAGCGGTGAGTGACT Reverse: GGATCTCACCTTTGCTATGAATTCA Probe: 6FAM-TGAGCACCTTCACAGCCGAGCCAG-TAMRA | Lineage I: 0% Lineage II Midwest: 44% Lineage II Northeast: 100% All lineages: 63% | NS5 | [34] |
Forward: AGAATGGCCATGACAGACACAA Reverse: AGCCAGTCACTCACHGCTCTCAT Probe: ?-GCCCAAGAGCCRCAGCCAGG-? | Lineage I: 100% Lineage II Midwest: 0% Lineage II Northeast: 64% All lineages: 61% | NS5 | [35] |
Forward: GATCATGAGAGCGGTGAGTGACT Reverse: GGATCTCACCTTTGCTATGAATTCA Probe: 6FAM-TGAGCACCTTCACAGCCGAGCCAG-TAMRA | Lineage I: 0% Lineage II Midwest: 33% Lineage II Northeast: 100% All lineages: 61% | NS5 | [36] |
Forward: GAAGCTGGGTGAGTTTGGAG Reverse: CCTGAGCAACCAACCAAGAT Probe: N/A | Lineage I: 0% Lineage II Midwest: 0% Lineage II Northeast: 100% All lineages: 54% | NS5 | [37] |
Forward: GTGCCAAGTTTGAATGCGAGGAAG Reverse: GAACGGGGCCCAGCGAGAGTGAC Probe: N/A | Lineage I: 0% Lineage II Midwest: 0% Lineage II Northeast: 96% All lineages: 52% | NS5 | [38] |
Forward: CGACCAGCAACGAGCCC Reverse: GCCAAAGAATCCCCAGCAT Probe: 6FAM-CCAAAGGGCTTCGTGCTGTCGC-BHQ1 | Lineage I: 100% Lineage II Midwest: 0% Lineage II Northeast: 0% All lineages: 26% | Capsid | This study. Assay performed by CDC |
Forward: CAAGCCACACCATCGATAATGA Reverse: CGTTTGCTCACTATATCCAGGTATTC Probe: 6FAM-CTTTTCCTGCCGGTTACTCTCGCCG-BHQ1 | Lineage I: 0% Lineage II Midwest: 100% Lineage II Northeast: 0% All lineages: 20% | NS5 | This study. Assay performed by CDC |
Forward: GCAGTTTACGGTGGCATCC Reverse: CGTCAGCGACACATCTCCAT Probe: 6FAM-AGTGATCCTGCGGCTCGGCG-BHQ1 | Lineage I: 75% Lineage II Midwest: 0% Lineage II Northeast: 0% All lineages: 20% | E | This study. Assay performed by CDC |
Forward: CATAGCRAAGGTGAGATCCAA Reverse: CTTTCGAGCTCCAYTTRTT Probe: 6FAM-AGCTCTGGGCGCATGGTYGGATGAACA-TAMRA | Lineage I: 0% Lineage II Midwest: 0% Lineage II Northeast: 0% All lineages: 0% | NS5 | [34] |
ENV-A: GTCGACGACGAGGTGCACGCATCTTGA POW-6: TTGTGTTTCCAGGGCAGCGCCA Probe: N/A | Lineage I: 0% Lineage II Midwest: 0% Lineage II Northeast: 0% All lineages: 0% | NS5 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klontz, E.H.; Chowdhury, N.; Holbrook, N.; Solomon, I.H.; Telford, S.R., 3rd; Aliota, M.T.; Vogels, C.B.F.; Grubaugh, N.D.; Helgager, J.; Hughes, H.R.; et al. Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses 2024, 16, 1653. https://doi.org/10.3390/v16111653
Klontz EH, Chowdhury N, Holbrook N, Solomon IH, Telford SR 3rd, Aliota MT, Vogels CBF, Grubaugh ND, Helgager J, Hughes HR, et al. Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses. 2024; 16(11):1653. https://doi.org/10.3390/v16111653
Chicago/Turabian StyleKlontz, Erik H., Navid Chowdhury, Nolan Holbrook, Isaac H. Solomon, Sam R. Telford, 3rd, Matthew T. Aliota, Chantal B. F. Vogels, Nathan D. Grubaugh, Jeffrey Helgager, Holly R. Hughes, and et al. 2024. "Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development" Viruses 16, no. 11: 1653. https://doi.org/10.3390/v16111653
APA StyleKlontz, E. H., Chowdhury, N., Holbrook, N., Solomon, I. H., Telford, S. R., 3rd, Aliota, M. T., Vogels, C. B. F., Grubaugh, N. D., Helgager, J., Hughes, H. R., Velez, J., Piantadosi, A., Chiu, C. Y., Lemieux, J., & Branda, J. A. (2024). Analysis of Powassan Virus Genome Sequences from Human Cases Reveals Substantial Genetic Diversity with Implications for Molecular Assay Development. Viruses, 16(11), 1653. https://doi.org/10.3390/v16111653