Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Study Area
2.2. Virus Detection and Isolation
2.3. cDNA Synthesis
2.4. Sequence Analysis of IAV Genes
2.5. Mutational Analysis of Genes
2.6. Phylogenetic Analysis
2.7. Genotype Analyses
3. Results
3.1. Clinical Signs and Pathological Examination
3.2. Virus Detection and Isolation
3.3. Genetic Analysis of the Viral Genome of Egyptian H5N8 Viruses
3.4. Phylogenetic Analysis and Sequence Similarity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swayne, D.; Suarez, D.L. Highly pathogenic avian influenza. Rev. Sci. Tech. 2000, 19, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Samji, T. Influenza A: Understanding the viral life cycle. Yale J. Biol. Med. 2009, 82, 153. [Google Scholar]
- Abdelwhab, E.M.; Abdel-Moneim, A.S. Orthomyxoviruses. In Recent Advances in Animal Virology; Springer: Singapore, 2019; pp. 351–378. [Google Scholar]
- Bhalerao, U.; Mavi, A.K.; Manglic, S.; Sakshi; Chowdhury, S.; Kumar, U.; Rohil, V. An Updated Review on Influenza Viruses. In Emerging Human Viral Diseases; Springer: Singapore, 2023; Volume I, pp. 71–106. [Google Scholar]
- Alexander, D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000, 74, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Torrontegui Vega, O. Pathogen Dynamics in Wild Bird Species: Circulation of Avian Influenza Viruses in Natural vs. Anthropic Ecosystems and Concurrent Infections with Other Agents in Waterbirds. Ph.D. Thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Eibar, Spain, 2017. [Google Scholar]
- de Franca, M.S. Evaluation of Host and Viral Factors Involved in the Infectivity, Pathogenesis and Transmission of Avian Influenza Viruses in Wild Birds. Ph.D. Thesis, University of Georgia, Athens, Georgia, 2013. [Google Scholar]
- Lee, Y.-J.; Kang, H.-M.; Lee, E.-K.; Song, B.-M.; Jeong, J.; Kwon, Y.-K.; Kim, H.-R.; Lee, K.-J.; Hong, M.-S.; Jang, I.J.E. Novel reassortant influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 2014, 20, 1087. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Bahl, J.; Torchetti, M.K.; Killian, M.L.; Ip, H.S.; DeLiberto, T.J.; Swayne, D.E.J.E. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1283. [Google Scholar] [CrossRef]
- Lee, D.-H.; Sharshov, K.; Swayne, D.E.; Kurskaya, O.; Sobolev, I.; Kabilov, M.; Alekseev, A.; Irza, V.; Shestopalov, A. Novel reassortant clade 2.3. 4.4 avian influenza A (H5N8) virus in wild aquatic birds, Russia, 2016. Emerg. Infect. Dis. 2017, 23, 359. [Google Scholar] [CrossRef]
- Selim, A.A.; Erfan, A.M.; Hagag, N.; Zanaty, A.; Samir, A.-H.; Samy, M.; Abdelhalim, A.; Arafa, A.-S.A.; Soliman, M.A.; Shaheen, M.J.E. Highly pathogenic avian influenza virus (H5N8) clade 2.3. 4.4 infection in migratory birds, Egypt. Emerg. Infect. Dis. 2017, 23, 1048. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza; Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; et al. Avian influenza overview February–May 2021. EFSA J. 2021, 19, e06951. [Google Scholar]
- Alkie, T.N.; Cox, S.; Embury-Hyatt, C.; Stevens, B.; Pople, N.; Pybus, M.J.; Xu, W.; Hisanaga, T.; Suderman, M.; Koziuk, J. Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. Emerg. Microbes Infect. 2023, 12, 2186608. [Google Scholar] [CrossRef]
- Postel, A.; King, J.; Kaiser, F.K.; Kennedy, J.; Lombardo, M.S.; Reineking, W.; de le Roi, M.; Harder, T.; Pohlmann, A.; Gerlach, T.; et al. Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. Emerg. Microbes Infect. 2022, 11, 725–729. [Google Scholar] [CrossRef]
- Lewis, N.S.; Banyard, A.C.; Whittard, E.; Karibayev, T.; Al Kafagi, T.; Chvala, I.; Byrne, A.; Meruyert, S.; King, J.; Harder, T.; et al. Infections, Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3. 4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 2021, 10, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.M.; Verhagen, J.H.; Samy, A.; Eriksson, P.; Fife, M.; Lundkvist, Å.; Ellström, P.; Järhult, J.D. Avian influenza viruses at the wild–domestic bird interface in Egypt. Infect. Ecol. Epidemiol. 2019, 9, 1575687. [Google Scholar] [CrossRef] [PubMed]
- Kandeil, A.; Moatasim, Y.; El Taweel, A.; El Sayes, M.; Rubrum, A.; Jeevan, T.; McKenzie, P.P.; Webby, R.J.; Ali, M.A.; Kayali, G.; et al. Genetic and antigenic characteristics of highly pathogenic avian influenza A(H5N8) viruses circulating in domestic poultry in Egypt, 2017–2021. Microorganisms 2022, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, H.S.; Adel, A.; Alshaya, D.S.; Safhi, F.A.; Elmasry, D.M.; Selim, K.; Erfan, A.A.; Eid, S.; Selim, S.; El-Saadony, M.T. First isolation of influenza a subtype H5N8 in ostrich: Pathological and genetic characterization. Poult. Sci. 2022, 101, 102156. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Z.; Elhusseiny, M.H.; Zanaty, A.; Fathy, M.M.; Hagag, N.M.; Mady, W.H.; Said, D.; Elsayed, M.M.; Erfan, A.M.; Rabie, N.J.P. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3. 4.4 b in Egypt, 2021–2022. Pathogens 2023, 12, 90. [Google Scholar] [CrossRef]
- Kandeil, A.; Kayed, A.; Moatasim, Y.; Aboulhoda, B.E.; El Taweel, A.N.; Kutkat, O.; El Sayes, M.; Gomaa, M.; El-Shesheny, R.; Webby, R.J.M.P. Molecular identification and virological characteristics of highly pathogenic avian influenza A/H5N5 virus in wild birds in Egypt. Microb. Pathog. 2023, 174, 105928. [Google Scholar] [CrossRef]
- Ali, A.A.; Kotb, G.; Soliman, A.; Swede, K.S. Isolation and Identification of The Highly Pathogenic Avian Influenza H5N8 Virus Isolated From Commercial Layer Chickens in Al-Sharkia Province in Egypt During 2019–2021. Zagazig Vet. J. 2024, 52, 117–129. [Google Scholar] [CrossRef]
- Chokkakula, S.; Oh, S.; Choi, W.-S.; Kim, C.I.; Jeong, J.H.; Kim, B.K.; Park, J.-H.; Min, S.C.; Kim, E.-G.; Baek, Y.H. Mammalian adaptation risk in HPAI H5N8: A comprehensive model bridging experimental data with mathematical insights. Emerg. Microbes Infect. 2024, 13, 2339949. [Google Scholar] [CrossRef]
- Domingo, E. Introduction to Virus Origins and Their Role in Biological Evolution. Virus Popul. 2020, 1–33. [Google Scholar] [CrossRef]
- Oie, A. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Office International des Epizooties: Paris, France, 2015; pp. 1092–1106. [Google Scholar]
- Khalil, A.M.; Hatai, H.; Fujimoto, Y.; Kojima, I.; Okajima, M.; Esaki, M.; Kinoshita, K.; Ozawa, M. A lethal case of natural infection with the H5N8 highly pathogenic avian influenza virus of clade 2.3. 4.4 in a mandarin duck. Zoonotic Dis. 2022, 2, 32–36. [Google Scholar] [CrossRef]
- Okuya, K.; Esaki, M.; Tokorozaki, K.; Hasegawa, T.; Ozawa, M. Isolation and genetic characterization of multiple genotypes of both H5 and H7 avian influenza viruses from environmental water in the Izumi plain, Kagoshima prefecture, Japan during the 2021/22 winter season. Comp. Immunol. Microbiol. Infect. Dis. 2024, 109, 102182. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.; Perez, D. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
- Suttie, A.; Deng, Y.-M.; Greenhill, A.R.; Dussart, P.; Horwood, P.F.; Karlsson, E.A.J.V.G. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019, 55, 739–768. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Blixt, O.; Tumpey, T.M.; Taubenberger, J.K.; Paulson, J.C.; Wilson, I.A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006, 312, 404–410. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Tscherne, D.M.; García-Sastre, A. Virulence determinants of pandemic influenza viruses. J. Clin. Investig. 2011, 121, 6–13. [Google Scholar] [CrossRef]
- Su, Y.; Yang, H.-Y.; Zhang, B.-J.; Jia, H.-L.; Tien, P. Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Arch. Virol. 2008, 153, 2253–2261. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Wei, C.-J.; Kong, W.-P.; Wu, L.; Xu, L.; Smith, D.F.; Nabel, G.J.J.S. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 2007, 317, 825–828. [Google Scholar] [CrossRef]
- Wang, W.; Lu, B.; Zhou, H.; Suguitan Jr, A.L.; Cheng, X.; Subbarao, K.; Kemble, G.; Jin, H. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J. Virol. 2010, 84, 6570–6577. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Shinya, K.; Deng, G.; Jiang, Y.; Li, Z.; Guan, Y.; Tian, G.; Li, Y.; Shi, J.J.P. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009, 5, e1000709. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Qi, J.; Shi, Y.; Wang, M.; Smith, D.F.; Heimburg-Molinaro, J.; Zhang, Y.; Paulson, J.C.; Xiao, H.; Gao, G.F. Structure and receptor binding specificity of hemagglutinin H13 from avian influenza A virus H13N6. J. Virol. 2013, 87, 9077–9085. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Bouwman, K.M.; McBride, R.; Grant, O.C.; Woods, R.J.; Verheije, M.H.; Paulson, J.C.; de Vries, R.P. Enhanced human-type receptor binding by ferret-transmissible H5N1 with a K193T mutation. J. Virol. 2018, 92, e02016-17. [Google Scholar] [CrossRef] [PubMed]
- Wessels, U.; Abdelwhab, E.M.; Veits, J.; Hoffmann, D.; Mamerow, S.; Stech, O.; Hellert, J.; Beer, M.; Mettenleiter, T.C.; Stech, J. A dual motif in the hemagglutinin of H5N1 goose/guangdong-like highly pathogenic avian influenza virus strains is conserved from their early evolution and increases both membrane fusion pH and virulence. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.; Garten, W.; Klenk, H.-D.; Rott, R.J.V. Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology 1981, 113, 725–735. [Google Scholar] [CrossRef]
- Hurt, A.C.; Selleck, P.; Komadina, N.; Shaw, R.; Brown, L.; Barr, I.G. Susceptibility of highly pathogenic A (H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antivir. Res. 2007, 73, 228–231. [Google Scholar] [CrossRef]
- Fan, S.; Deng, G.; Song, J.; Tian, G.; Suo, Y.; Jiang, Y.; Guan, Y.; Bu, Z.; Kawaoka, Y.; Chen, H. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 2009, 384, 28–32. [Google Scholar] [CrossRef]
- Gao, W.; Zu, Z.; Liu, J.; Song, J.; Wang, X.; Wang, C.; Liu, L.; Tong, Q.; Wang, M.; Sun, H.; et al. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. J. Gen. Virol. 2019, 100, 1273–1281. [Google Scholar] [CrossRef]
- Hu, M.; Yuan, S.; Zhang, K.; Singh, K.; Ma, Q.; Zhou, J.; Chu, H.; Zheng, B.-J. PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. Virology 2017, 501, 92–101. [Google Scholar] [CrossRef]
- Xiao, C.; Ma, W.; Sun, N.; Huang, L.; Li, Y.; Zeng, Z.; Wen, Y.; Zhang, Z.; Li, H.; Li, Q.; et al. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci. Rep. 2016, 6, 19474. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. H5N1 Genetic Changes Inventory: A Tool for Influenza Surveillance and Preparedness; CDC: Atlanta, GA, USA, 2012.
- Sun, H.; Cui, P.; Song, Y.; Qi, Y.; Li, X.; Qi, W.; Xu, C.; Jiao, P.; Liao, M. PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. Front. Microbiol. 2015, 6, 73. [Google Scholar] [CrossRef]
- Li, J.; Ishaq, M.; Prudence, M.; Xi, X.; Hu, T.; Liu, Q.; Guo, D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res. 2009, 144, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, E.M.; Arai, Y.; Kawashita, N.; Daidoji, T.; Takagi, T.; Ibrahim, M.S.; Nakaya, T.; Watanabe, Y. Identification of polymerase gene mutations that affect viral replication in H5N1 influenza viruses isolated from pigeons. J. Gen. Virol. 2017, 98, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, Z.; Shi, J.; Deng, G.; Kong, H.; Tao, S.; Li, C.; Liu, L.; Guan, Y.; Chen, H. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice. J. Virol. 2016, 90, 1872–1879. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.; El Tawee, A.; Moatasim, Y.; Ata, N.; Adel, A.; El-Deeb, A.; Kandeil, A.; Ali, M.; Hussein, H. Prevalence of two distinct genotypes of highly pathogenic avian influenza A/h5N8 viruses in backyard waterfowls in upper egypt during 2018. Adv. Anim. Vet. Sci. 2023, 11, 820–831. [Google Scholar] [CrossRef]
- Kamal, R.P.; Alymova, I.V.; York, I.A. Evolution and virulence of influenza A virus protein PB1-F2. Int. J. Mol. Sci. 2017, 19, 96. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chen, G.-W.; Wang, C.-H.; Huang, C.-H.; Wang, Y.-C.; Shih, S.-R. Differential localization and function of PB1-F2 derived from different strains of influenza A virus. J. Virol. 2010, 84, 10051–10062. [Google Scholar] [CrossRef]
- McAuley, J.L.; Zhang, K.; McCullers, J. The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J. Virol. 2010, 84, 558–564. [Google Scholar] [CrossRef]
- Lee, J.; Henningson, J.; Ma, J.; Duff, M.; Lang, Y.; Li, Y.; Li, Y.; Nagy, A.; Sunwoo, S.; Bawa, B.; et al. Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. J. Gen. Virol. 2017, 98, 31–42. [Google Scholar] [CrossRef]
- Yamada, H.; Chounan, R.; Higashi, Y.; Kurihara, N.; Kido, H. Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett. 2004, 578, 331–336. [Google Scholar] [CrossRef]
- Zell, R.; Krumbholz, A.; Eitner, A.; Krieg, R.; Halbhuber, K.-J.; Wutzler, P. Prevalence of PB1-F2 of influenza A viruses. J. Gen. Virol. 2007, 88, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, D.B.; Mukatira, S.; Mehta, P.K.; Obenauer, J.C.; Su, X.; Webster, R.G.; Naeve, C.W. Persistent host markers in pandemic and H5N1 influenza viruses. J. Virol. 2007, 81, 10292–10299. [Google Scholar] [CrossRef] [PubMed]
- Yamayoshi, S.; Yamada, S.; Fukuyama, S.; Murakami, S.; Zhao, D.; Uraki, R.; Watanabe, T.; Tomita, Y.; Macken, C.; Neumann, G.J. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses. J. Virol. 2014, 88, 3127–3134. [Google Scholar] [CrossRef] [PubMed]
- DesRochers, B.L.; Chen, R.E.; Gounder, A.P.; Pinto, A.K.; Bricker, T.; Linton, C.N.; Rogers, C.D.; Williams, G.D.; Webby, R.J.; Boon, A.C.J.V. Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. Virology 2016, 494, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xu, J.; Shi, J.; Li, Y.; Chen, H. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci. Rep. 2015, 5, 10510. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Kiso, M.; Yasuhara, A.; Ito, M.; Shu, Y.; Kawaoka, Y. Enhanced replication of highly pathogenic influenza A (H7N9) virus in humans. Emerg. Infect. Dis. 2018, 24, 746. [Google Scholar] [CrossRef]
- Tada, T.; Suzuki, K.; Sakurai, Y.; Kubo, M.; Okada, H.; Itoh, T.; Tsukamoto, K. Emergence of avian influenza viruses with enhanced transcription activity by a single amino acid substitution in the nucleoprotein during replication in chicken brains. J. Virol. 2011, 85, 10354–10363. [Google Scholar] [CrossRef]
- Wasilenko, J.L.; Sarmento, L.; Pantin-Jackwood, M.J. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch. Virol. 2009, 154, 969–979. [Google Scholar] [CrossRef]
- Jiao, P.; Tian, G.; Li, Y.; Deng, G.; Jiang, Y.; Liu, C.; Liu, W.; Bu, Z.; Kawaoka, Y.; Chen, H. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008, 82, 1146–1154. [Google Scholar] [CrossRef]
- Ayllon, J.; Domingues, P.; Rajsbaum, R.; Miorin, L.; Schmolke, M.; Hale, B.G.; García-Sastre, A. A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence. J. Virol. 2014, 88, 12146–12151. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Chen, Q.; Zhang, X.; Sun, Y.; Bi, Y.; Zhang, S.; Gu, J.; Li, J.; Liu, D.; et al. Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology 2018, 519, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Y.; Jiao, P.; Wang, A.; Zhao, F.; Tian, G.; Wang, X.; Yu, K.; Bu, Z.; Chen, H. NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 2006, 80, 11115–11123. [Google Scholar] [CrossRef] [PubMed]
- Kuo, R.-L.; Krug, R.M. Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J. Virol. 2009, 83, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.E.; Gardner, S.N.; Vitalis, E.A.; Slezak, T.R. Conserved amino acid markers from past influenza pandemic strains. BMC Microbiol. 2009, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Quan, K.; Wang, D.; Du, Y.; Qin, T.; Peng, D.; Liu, X. Truncation or deglycosylation of the neuraminidase stalk enhances the pathogenicity of the H5N1 subtype avian influenza virus in mallard ducks. Front. Microbiol. 2020, 11, 583588. [Google Scholar] [CrossRef]
- Park, S.; Il Kim, J.; Lee, I.; Bae, J.-Y.; Yoo, K.; Nam, M.; Kim, J.; Sook Park, M.; Song, K.-J.; Song, J.-W. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci. Rep. 2017, 7, 10928. [Google Scholar] [CrossRef]
- Hassan, K.E.; Saad, N.; Abozeid, H.H.; Shany, S.; El-Kady, M.F.; Arafa, A.; El-Sawah, A.A.A.; Pfaff, F.; Hafez, H.M.; Beer, M.; et al. Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. Infect. Genet. Evol. 2020, 84, 104375. [Google Scholar] [CrossRef]
- Salaheldin, A.H.; Elbestawy, A.R.; Abdelkader, A.M.; Sultan, H.A.; Ibrahim, A.A.; Abd El-Hamid, H.S.; Abdelwhab, E.M. Isolation of Genetically Diverse H5N8 Avian Influenza Viruses in Poultry in Egypt, 2019-2021. Viruses 2022, 14, 1431. [Google Scholar] [CrossRef]
- Yehia, N.; Erfan, A.M.; Adel, A.; El-Tayeb, A.; Hassan, W.M.M.; Samy, A.; Abd El-Hack, M.E.; El-Saadony, M.T.; El-Tarabily, K.A.; Ahmed, K.A. Pathogenicity of three genetically distinct and highly pathogenic Egyptian H5N8 avian influenza viruses in chickens. Poult. Sci. 2022, 101, 101662. [Google Scholar] [CrossRef]
- Hassan, K.E.; El-Kady, M.F.; EL-Sawah, A.A.; Luttermann, C.; Parvin, R.; Shany, S.; Beer, M.; Harder, T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound. Emerg. Dis. 2021, 68, 21–36. [Google Scholar] [CrossRef]
- Yehia, N.; Rabie, N.; Adel, A.; Mossad, Z.; Nagshabandi, M.K.; Alharbi, M.T.; El-Saadony, M.T.; El-Tarabily, K.A.; Erfan, A. Differential replication characteristic of reassortant avian influenza A viruses H5N8 clade 2.3. 4.4 b in Madin-Darby canine kidney cell. Poult. Sci. 2023, 102, 102685. [Google Scholar] [CrossRef] [PubMed]
- Antigua, K.J.C.; Baek, Y.H.; Choi, W.S.; Jeong, J.H.; Kim, E.H.; Oh, S.; Yoon, S.W.; Kim, C.; Kim, E.G.; Choi, S.Y.; et al. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence 2022, 13, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Uhlendorff, J.; Matrosovich, T.; Klenk, H.-D.; Matrosovich, M. Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch. Virol. 2009, 154, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; Schrauwen, E.J.A.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef]
- Poucke, S.V.; Doedt, J.; Baumann, J.; Qiu, Y.; Matrosovich, T.; Klenk, H.-D.; Reeth, K.V.; Matrosovich, M. Role of Substitutions in the Hemagglutinin in the Emergence of the 1968 Pandemic Influenza Virus. J. Virol. 2015, 89, 12211–12216. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control); EURL (European Reference Laboratory for Avian Influenza); Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, É.; Staubach, C.; et al. Avian influenza overview June–September 2022. EFSA J. 2022, 20, e07597. [Google Scholar]
- Hui, E.K.-W.; Smee, D.F.; Wong, M.-H.; Nayak, D.P. Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J. Virol. 2006, 80, 5697–5707. [Google Scholar] [CrossRef]
- Momose, F.; Naito, T.; Yano, K.; Sugimoto, S.; Morikawa, Y.; Nagata, K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J. Biol. Chem. 2002, 277, 45306–45314. [Google Scholar] [CrossRef]
- Guo, F.; Luo, T.; Pu, Z.; Xiang, D.; Shen, X.; Irwin, D.M.; Liao, M.; Shen, Y. Increasing the potential ability of human infections in H5N6 avian influenza A viruses. J. Infect. 2018, 77, 349–356. [Google Scholar] [CrossRef]
- Lee, Y.-N.; Lee, D.-H.; Cheon, S.-H.; Park, Y.-R.; Baek, Y.-G.; Si, Y.-J.; Kye, S.-J.; Lee, E.-K.; Heo, G.-B.; Bae, Y.-C.; et al. Genetic characteristics and pathogenesis of H5 low pathogenic avian influenza viruses from wild birds and domestic ducks in South Korea. Sci. Rep. 2020, 10, 12151. [Google Scholar] [CrossRef]
- El-Shesheny, R.; Moatasim, Y.; Mahmoud, S.H.; Song, Y.; El Taweel, A.; Gomaa, M.; Kamel, M.N.; Sayes, M.E.; Kandeil, A.; Lam, T.T.Y.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b in Wild Birds and Live Bird Markets, Egypt. Pathogens 2023, 12, 36. [Google Scholar]
- Xu, C.; Hu, W.-B.; Xu, K.; He, Y.-X.; Wang, T.-Y.; Chen, Z.; Li, T.-X.; Liu, J.-H.; Buchy, P.; Sun, B. Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J. Gen. Virol. 2012, 93, 531–540. [Google Scholar] [PubMed]
- Spesock, A.; Malur, M.; Hossain, M.J.; Chen, L.-M.; Njaa, B.L.; Davis, C.T.; Lipatov, A.S.; York, I.A.; Krug, R.M.; Donis, R.O. The virulence of 1997 H5N1 influenza viruses in the mouse model is increased by correcting a defect in their NS1 proteins. J. Virol. 2011, 85, 7048–7058. [Google Scholar] [PubMed]
- Wang, J.; Sun, Y.; Xu, Q.; Tan, Y.; Pu, J.; Yang, H.; Brown, E.G.; Liu, J. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS ONE 2012, 7, e40752. [Google Scholar]
- Rolling, T.; Koerner, I.; Zimmermann, P.; Holz, K.; Haller, O.; Staeheli, P.; Kochs, G. Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. J. Virol. 2009, 83, 6673–6680. [Google Scholar]
- Teng, Q.; Zhang, X.; Xu, D.; Zhou, J.; Dai, X.; Chen, Z.; Li, Z. Characterization of an H3N2 canine influenza virus isolated from Tibetan mastiffs in China. Vet. Microbiol. 2013, 162, 345–352. [Google Scholar]
- Mok, C.K.P.; Lee, H.H.Y.; Lestra, M.; Nicholls, J.M.; Chan, M.C.W.; Sia, S.F.; Zhu, H.; Poon, L.L.M.; Guan, Y.; Peiris, J.S.M. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J. Virol. 2014, 88, 3568–3576. [Google Scholar]
- Chen, G.-W.; Chang, S.-C.; Mok, C.-K.; Lo, Y.-L.; Kung, Y.-N.; Huang, J.-H.; Shih, Y.-H.; Wang, J.-Y.; Chiang, C.; Chen, C.-J.; et al. Genomic Signatures of Human versus Avian Influenza A Viruses. Emerg. Infect. Dis. 2006, 12, 1353–1360. [Google Scholar]
- Lee, M.; Deng, M.; Lin, Y.; Chang, C.; Shieh, H.K.; Shiau, J.; Huang, C. Characterization of an H5N1 avian influenza virus from Taiwan. Vet. Microbiol. 2007, 124, 193–201. [Google Scholar]
- Lycett, S.J.; Ward, M.J.; Lewis, F.I.; Poon, A.F.Y.; Pond, S.L.K.; Brown, A.J.L. Detection of Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: Multivariate Analysis of Published Data. J. Virol. 2009, 83, 9901–9910. [Google Scholar]
- Li, Z.; Chen, H.; Jiao, P.; Deng, G.; Tian, G.; Li, Y.; Hoffmann, E.; Webster, R.G.; Matsuoka, Y.; Yu, K. Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model. J. Virol. 2005, 79, 12058–12064. [Google Scholar] [CrossRef] [PubMed]
- Otte, A.; Sauter, M.; Daxer, M.; McHardy, A.; Klingel, K.; Gabriel, G. Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. J. Virol. 2015, 89, 7329–7337. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, C.; Luo, J.; Li, M.; Liu, H.; Zhao, N.; Huang, J.; Zhu, X.; Ma, G.; Yuan, G.; et al. Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals. Front. Microbiol. 2017, 8, 1308. [Google Scholar] [CrossRef] [PubMed]
- Dankar, S.K.; Wang, S.; Ping, J.; Forbes, N.E.; Keleta, L.; Li, Y.; Brown, E.G. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Viro. J. 2011, 8, 1–13. [Google Scholar]
- Subbarao, K.; Shaw, M.W. Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Rev. Med. Virol. 2000, 10, 337–348. [Google Scholar] [CrossRef]
- Shaw, M.; Cooper, L.; Xu, X.; Thompson, W.; Krauss, S.; Guan, Y.; Zhou, N.; Klimov, A.; Cox, N.; Webster, R. Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans. J Med Virol. 2002, 66, 107–114. [Google Scholar] [CrossRef]
- Guilligay, D.; Tarendeau, F.; Resa-Infante, P.; Coloma, R.; Crepin, T.; Sehr, P.; Lewis, J.; Ruigrok, R.W.; Ortin, J.; Hart, D.J. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 2008, 15, 500–506. [Google Scholar] [CrossRef]
- Kuzuhara, T.; Kise, D.; Yoshida, H.; Horita, T.; Murazaki, Y.; Nishimura, A.; Echigo, N.; Utsunomiya, H.; Tsuge, H. Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J. Biol. Chem. 2009, 284, 6855–6860. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, L.; Sun, Z.; Chen, G.-W.; Wen, Y.; Jiang, S. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. 2013, 15, 432–439. [Google Scholar] [CrossRef]
- Koçer, Z.A.; Fan, Y.; Huether, R.; Obenauer, J.; Webby, R.J.; Zhang, J.; Webster, R.G.; Wu, G. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses. Sci. Rep. 2014, 4, 1–11. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Reid, A.H.; Lourens, R.M.; Wang, R.; Jin, G.; Fanning, T.G. Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Wanitchang, A.; Jengarn, J.; Jongkaewwattana, A. The N terminus of PA polymerase of swine-origin influenza virus H1N1 determines its compatibility with PB2 and PB1 subunits through a strain-specific amino acid serine 186. Virus Res. 2011, 155, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tang, G.; Huang, Y.; Yu, C.; Li, S.; Zhuang, L.; Fu, L.; Wang, S.; Li, N.; Li, X. A returning migrant worker with avian influenza A (H7N9) virus infection in Guizhou, China: A case report. J. Med. Case Rep. 2015, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Liu, H.; Kit, L.C.; Baird, S.; Nesrallah, M. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: Identification of functional themes. Proc. Natl. Acad. Sci. USA 2001, 98, 6883–6888. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, R.; Yamada, S.; Le, M.Q.; Ito, M.; Sakai-Tagawa, Y.; Kawaoka, Y. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. J. Virol. 2015, 89, 4117–4125. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, A.; Yen, H.-L.; Salomon, R.; Ozaki, H.; Hoffmann, E.; Webster, R. The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in vitro and in vivo. Arch. Virol. 2008, 153, 427–434. [Google Scholar] [CrossRef]
- Katz, J.M.; Lu, X.; Tumpey, T.M.; Smith, C.B.; Shaw, M.W.; Subbarao, K. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J. Virol. 2000, 74, 10807–10810. [Google Scholar] [CrossRef]
- Pan, C.; Jiang, S. E14-F55 combination in M2 protein: A putative molecular determinant responsible for swine-origin influenza A virus transmission in humans. PLoS Curr. 2009, 1, RRN1044. [Google Scholar] [CrossRef]
- Peralta, B.; Costes, P.; Lacroux, C.; Guérin, J.-L.; Volmer, R. Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. J. Virol. 2010, 84, 6733–6747. [Google Scholar]
Protein | Amino Acid Change(s) H5 Numbering | Detections in Egypt | Phenotypic Consequences | Ref |
---|---|---|---|---|
HA | D94N | Yes | Increased virus binding to α2–6 | [33] |
S133A | Yes (17/17) 100% | [34] | ||
S154N | Yes (17/17) 100% | [35] | ||
T156A | Yes (17/17) | [36] | ||
V182N | Yes (17/17) 100% | [37] | ||
K189R/T | Yes (1/17) K189T | [38] | ||
S107R, T108I | Yes (17/17) | [39] | ||
323 to 330 (R-X-R, K-R) | Yes PLREKRRKR/GLF | HPAI cleavage site | [40] | |
NA | I314V | Yes (17/17) | Reduced susceptibility to oseltamivir | [41] |
M | N30D | Yes (17/17) | Increased virulence in mice, chickens, and ducks | [42] |
I43M | Yes (17/17) | |||
T215A | Yes (17/17) | |||
PB2 | I292V | Yes (17/17) | Increased polymerase activity | [43] |
K389R | Yes (17/17) | [44] | ||
A588V | Yes (2/17) | [45] | ||
V598T/I | Yes (17/17) | [44] | ||
K627E | Yes (17/17) | Increased virulence in chickens | [46] | |
S715N | Yes (17/17) | Decreased virulence in mice | [47] | |
L89V, G309D | Yes (17/17) | Increased polymerase activity | [48] | |
L89V, G309D, T339K, R477G, I495V, K627E, A676T | Yes (13/17) | [48] | ||
PB1 | D3V | Yes (17/17) | [49] | |
D622G | Yes (17/17) | [50,51] | ||
P598L | Yes (17/17) | |||
PB1-F2 length | Truncation | Truncation 52 lengths | Affects viral dissemination, pathogenesis, and transmission | [52,53,54,55,56,57] |
PA | D55N | No (0/17) | Host specificity marker through statistical methods (D in avian, N in human) | [58] |
S37A | Yes (17/17) | Increased polymerase activity | [59] | |
P190S | Yes (17/17) | Decreased virulence in mice | [60] | |
N383D | Yes (17/17) | Increased polymerase activity | [61] | |
N409S | Yes (17/17) | [59] | ||
K497R | Yes (17/17) | [62] | ||
NP | M105V | Yes (17/17) | Increased virulence in chickens | [63] |
A184K | Yes (17/17) | Increased replication in avian cells and virulence in chickens, enhanced IFN response | [64] | |
NS | P42S | Yes (17/17) | Increased replication in mammalian cells, decreased interferon response | [65] |
I106M [I101M] | Yes (17/17) | [66] | ||
C138F | Yes (17/17) | [67] | ||
V149A | Yes (17/17) | Increased virulence and decreased interferon response in chickens | [68] | |
L103F, I106M [L98F, 101M] | Yes (17/17) | Increased virulence in mice | [69] | |
222–230 deletion | Yes (17/17) | Increased replication in mammalian and avian cell lines | ||
P87S | Yes (17/17) | Host specificity marker through statistical methods (S in human, P in avian) | [70] |
Flusurver Reference | Mutation | Phenotypic Effect | |
HA | A/Sichuan/26221/2014 (H5N6) | T110S, T139H, N205T, T139P, A172V, N199T, and R512K | Influence receptor recognition and potentially shift host specificity |
N110S | Host specificity shift Modifies T-cell epitope presented by MHC molecules Antibody recognition sites | ||
N205T, G16S, and I214V | Virulence Host cell receptor binding Antibody recognition sites Modify T-cell epitope presented by MHC molecules binding host protein(s) | ||
A99V, A102V, T156A, I178M, and A201E, E284G, M285V, K492E, E495A, and P505T | Antibody recognition sites | ||
A99N | Mild drug resistance and antibody recognition sites | ||
NA | A/Baikalteal/KoreaDonglim/3/2014 (H5N8) | D220H, A245S, T295M, N396D, S397L, and N396D | Antibody recognition sites Strong and mild drug resistance |
T265A | Strong drug resistance | ||
Y450H | Binding host protein(s) | ||
N46K, T295M, and T48A | The removal of N-acetylneuraminic acid (NA) glycosylation can increase the virulence and pathology of influenza A viruses in birds and mice [71,72] | ||
V106I and T329A | Mild drug resistance | ||
NP | A/duck/HongKong/24/1976 (H4N2) | T396N, A423V, and A423T | Modify T-cell epitope presented by MHC molecules |
PA | P A/Netherlands/219/2003 (H7N7) | K113R, S184N, S224A, and P653S | Modify T-cell epitope presented by MHC molecules |
K615R | Host specificity shift, virulence | ||
PB2 | A/mallard/Astrakhan/263/1982 (H14N5) | V495A, A588V, T676A, I676A, and V553I | Host specificity shift, virulence |
E558D | Modify T-cell epitope presented by MHC molecules | ||
NS1 | A/chicken/BCFAV8//2014 (H5N2) | G70K and I81V | Host specificity shift |
E227G, G232R, S205N, and R231stop | Virulence | ||
S7L, H17Y, S48T S114P, T143A, L166F, D189N, and Q218stop | Binding host protein | ||
NS2 | A/WSN//1933 (H1N1) and A/quail/Italy/1117/1965 (H10N8) | M19L and A48T | Virulence |
NS1 | A/Canada/720/2005 (H2N2) | M81V, S205N, Q218stop, R227G, K229E, and V230I | Virulence |
S7L, H17Y, Q21R V22F, R118K, T143A, L166F, N171D, and D189N | Binding host protein | ||
T215S and T215P | Host specificity shift, virulence |
Accession No. | Closest Relative | Identity (%) | |
---|---|---|---|
PB2 | EPI1902241 | A/chicken/Egypt/F17230B/2019 (H5N8) | 99% |
ON862701.1 | A/duck/Shandong/SD0263/2021 (H5N6) | 98.6% | |
EPI1814302 | A/goose/Omsk/30006/2020 (A/H5N8) segment 1 (PB2) | 98% | |
EPI1811685 | A/goose/Russian Federation/Kurgan/1345-25/2020 (A/H5N8) segment 1 (PB2) | 98% | |
ON329039.1 | A/chicken/China/2042/2020 (H9N2) | 98.6% | |
PB1 | MT261707.1 | A/duck/Egypt/A16793/2019 (H5N8) | 98.7% |
EPI2162079 | A/chicken/Kazakhstan/23/2020 (H5N8) | 98% | |
MW505413.1 | A/Cygnus columbianus/Hubei/56/2020 (H5N8) | 98.77% | |
ON862694.1 | A/duck/Shandong/SD0261/2021 (H5N6) | 98.64% | |
EPI1811626 | A/chicken/Iraq/1/2020 (H5N8) segment 2 (PB1) | 99% | |
PA | OP740951.1 | A/Aviafauna/Kazakhstan/PA/2020 (H5N8) | 99% |
EPI1881024 | A/bean goose/Hubei/BQ11/2020 (A/H5N8) segment 3 (PA) | 99% | |
EPI2162080 | A/chicken/Kazakhstan/23/2020 (A/H5N8) segment 3 (PA) | 99% | |
HA | MW137842.1 | A/Aviafauna/Kazakhstan/HA/2020 (H5N8) | 98.10% |
OP740959.1 | A/chicken/Egypt/F17229A/2019 (H5N8) | 98.30% | |
OQ711838.1 | A/Migratory bird/India/01FE975/2021 (H5N8) | 98.10% | |
EPI1942903 | A/Anser_Brachyrhynchus_Anser_Anser/Belgium/13846/2020 (A/H5N8) segment 4 (HA) | 98% | |
NP | MT261706.1 | A/duck/Egypt/A16793/2019 (H5N8) | 99.27% |
OL354983.1 | A/duck/Egypt/A19643/2021 (H5N8) | 98.93% | |
ON943055.1 | A/chicken/Kazakhstan/23/2020 (H5N8) | 98.80% | |
EPI1811629 | A/chicken/Iraq/1/2020(H5N8) segment 5 (NP) | 98% | |
NA | MW137803.1 | A/chicken/Egypt/F17230B/2019 (H5N8) | 99.15% |
MZ882181.1 | A/goose/China/21FU005/2020 (H5N8) | 99.08% | |
EPI1920391 | A/white-tailed eagle/Germany-SH/AI02170/2020 (H5N8) | 99% | |
EPI1860070 | A/anser_anser/Spain/297-1_21VIR1230-5/2021 (H5N8) | 99% | |
EPI1919630 | A/barnacle goose/Germany-SH/AI02190/2020 (H5N8) | 97% | |
MP | OP597600.1 | Shelduck/Kalmykia/1814-1/2021 (H5N5) | 98.78% |
OL353691.1 | A/chicken/Egypt/A19670/2021 (H5N8) | 98.78% | |
OP597560.1 | A/Dalmatian pelican/Astrakhan/417-1/2021 (H5N5) | 98.67% | |
EPI1920856 | A/domestic goose/Germany-MV/AI02558/2021 (H5N8) | 99% | |
EPI1848412 | A/common buzzard/Sweden/SVA210212SZ0284/KN000390/2021 | 99% | |
NS | MW505387.1 | A/Cygnus columbianus/Hubei/51/2020 (H5N8) | 98.21% |
EPI1913525 | A/chicken/Egypt/AF12/2020 (H5N8) segment 8 (NS) | 98% | |
EPI1927723 | A/pigeon/Kazakhstan/15-20-B-Talg-5/2020 (H5N8) | 99% | |
EPI2152264 | A/brown-headed gull/Tibet/N38/2021 (H5N8) segment 8 (NS) | 98% | |
OR048707.1 | A/mallard duck/Japan/KU-d89/2021 (H5N8) | 98.09% | |
MW137800.1 | A/chicken/Egypt/F17230B/2019 (H5N8) | 98.21% |
Gene | Evolutionary Ancestor | Subgroup | Subtype |
---|---|---|---|
HA | Egypt G6 | Egypt G6 | HPAI |
Local Endemic EuroII-2020 subclade Egy/ostrich/2021 | EuroII-2020 | ||
Egypt G6 A/duck/Egypt/F91/2021 | Egypt G6-like | ||
NA | Egypt G6 PA/chicken/Egypt/Elmonufia-backyard-AH/2019 | Egypt G6-like | HPAI |
Egypt G6 A/chicken/Egypt/Alex-Breeder-AH/2021 | Egypt G6-like | ||
Local Endemic EuroII-2020 Egy/ostrich/2021 | EuroII-2020 | ||
M | A/chicken/Egypt/AF12/2020 (H5N8) | Russian-like H5N8 reassortant 2016 | |
A/chicken/Kazakhstan/23/2020 | EuroII-2020 | HPAI | |
A/shelduck/Kalmykia/18141/2021 (H5N5) A/Dalmatian pelican/Astrakhan/417-1/2021 (H5N5) A/pelican/Dagestan/397-1/2021 (H5N5 | Russian reassortant H5N5 2021 | ||
NP | A/chicken/Egypt/AF12/2020 (H5N8) A/chicken/Egypt/AF14/2020 (H5N8) | European-like H5N8 reassortant 2016 | LPAI |
A/chicken/Egypt/A19670/2021 | European-like H5N8 reassortant 2020 | ||
PA | A/chicken/Kazakhstan/23/2020 A/chicken/Iraq/1/2020 | Iraqi-like virus | HPAI |
PB2 | Eurasian LPAI A/duck/Shandong/SD0261/2021 (H5N6) A/chicken/China/2042/2020 (H9N2) Egy/ostrich/2021 H5N8 | H9-like | LPAI |
PB1 | Eurasian LPAI A/duck/Shandong/SD0261/2021 (H5N6) | H9-like | LPAI |
NS | A/chicken/Egypt/A19670/2021 | Russian-like H5N8 reassortant 2016 and Russian-like H5N8 reassortant 2020 (Russian-like H5N8 reassortant 2016-like) | HPAI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, N.; Esaki, M.; Kojima, I.; Khalil, A.M.; Osuga, S.; Shahein, M.A.; Okuya, K.; Ozawa, M.; Alhatlani, B.Y. Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021–2022. Viruses 2024, 16, 1655. https://doi.org/10.3390/v16111655
Saad N, Esaki M, Kojima I, Khalil AM, Osuga S, Shahein MA, Okuya K, Ozawa M, Alhatlani BY. Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021–2022. Viruses. 2024; 16(11):1655. https://doi.org/10.3390/v16111655
Chicago/Turabian StyleSaad, Noha, Mana Esaki, Isshu Kojima, Ahmed Magdy Khalil, Shiori Osuga, Momtaz A. Shahein, Kosuke Okuya, Makoto Ozawa, and Bader Y. Alhatlani. 2024. "Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021–2022" Viruses 16, no. 11: 1655. https://doi.org/10.3390/v16111655
APA StyleSaad, N., Esaki, M., Kojima, I., Khalil, A. M., Osuga, S., Shahein, M. A., Okuya, K., Ozawa, M., & Alhatlani, B. Y. (2024). Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021–2022. Viruses, 16(11), 1655. https://doi.org/10.3390/v16111655