Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Infectious Molecular Clone (IMC) Construction
2.2. Virus Stock Generation and Particle Infectivity
2.3. Viral Replication Capacity Determination
2.4. Reverse Transcriptase (RT) Activity Quantitation by Real-Time PCR
2.5. Statistical Analysis
2.6. Sensitivity to Broadly Neutralizing Antibodies (bNAbs)
2.7. Coreceptor Usage
2.8. GenBank Submission
3. Results
3.1. Infectious Molecular Clone Construction
3.2. Phenotypic Analysis of IMC-Derived Subtype A and AC Recombinant Viruses
3.3. Non-Consensus Amino Acid Substitutions in Gag Increase Virus Replicative Capacity
3.4. Broadly Neutralizing Antibody (bNAb) Potency and Breadth Against Subtype A and AC Recombinant Viruses
3.5. Co-Receptor Usage Is Conserved in the Virus Panel
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAIDS. Unaids Data; UNAIDS: Geneva, Switzerland, 2022. [Google Scholar]
- Hauser, A.; Kusejko, K.; Johnson, L.F.; Wandeler, G.; Riou, J.; Goldstein, F.; Egger, M.; Kouyos, R.D. Bridging the gap between HIV epidemiology and antiretroviral resistance evolution: Modelling the spread of resistance in South Africa. PLoS Comput. Biol. 2019, 15, e1007083. [Google Scholar] [CrossRef]
- Hamers, R.L.; Sigaloff, K.C.; Wensing, A.M.; Wallis, C.L.; Kityo, C.; Siwale, M.; Mandaliya, K.; Ive, P.; Botes, M.E.; Wellington, M.; et al. Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: Implications for second-line ART strategies. Clin. Infect. Dis. 2012, 54, 1660–1669. [Google Scholar] [CrossRef]
- Desire, N.; Cerutti, L.; Le Hingrat, Q.; Perrier, M.; Emler, S.; Calvez, V.; Descamps, D.; Marcelin, A.G.; Hue, S.; Visseaux, B. Characterization update of HIV-1 M subtypes diversity and proposal for subtypes A and D sub-subtypes reclassification. Retrovirology 2018, 15, 80. [Google Scholar] [CrossRef]
- Robertson, D.L.; Anderson, J.P.; Bradac, J.A.; Carr, J.K.; Foley, B.; Funkhouser, R.K.; Gao, F.; Hahn, B.H.; Kalish, M.L.; Kuiken, C.; et al. HIV-1 nomenclature proposal. Science 2000, 288, 55–57. [Google Scholar] [CrossRef]
- Korber, B.; Gaschen, B.; Yusim, K.; Thakallapally, R.; Kesmir, C.; Detours, V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 2001, 58, 19–42. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Vallari, A.; McArthur, C.; Sthreshley, L.; Cloherty, G.A.; Berg, M.G.; Rodgers, M.A. Brief Report: Complete Genome Sequence of CG-0018a-01 Establishes HIV-1 Subtype L. J. Acquir. Immune Defic. Syndr. 2020, 83, 319–322. [Google Scholar] [CrossRef]
- McCutchan, F.E.; Salminen, M.O.; Carr, J.K.; Burke, D.S. HIV-1 genetic diversity. Aids 1996, 10, S13–S20. [Google Scholar]
- Giovanetti, M.; Ciccozzi, M.; Parolin, C.; Borsetti, A. Molecular Epidemiology of HIV-1 in African Countries: A Comprehensive Overview. Pathogens 2020, 9, 1072. [Google Scholar] [CrossRef]
- Lau, K.A.; Wong, J.J. Current Trends of HIV Recombination Worldwide. Infect. Dis. Rep. 2013, 5 (Suppl. S1). [Google Scholar] [CrossRef]
- Butler, I.F.; Pandrea, I.; Marx, P.A.; Apetrei, C. HIV genetic diversity: Biological and public health consequences. Curr. HIV Res. 2007, 5, 23–45. [Google Scholar] [CrossRef]
- Lal, R.B.; Chakrabarti, S.; Yang, C. Impact of genetic diversity of HIV-1 on diagnosis, antiretroviral therapy & vaccine development. Indian. J. Med. Res. 2005, 121, 287–314. [Google Scholar]
- Apetrei, C.; Hahn, B.; Rambaut, A.; Wolinsky, S.; Brister, J.R.; Keele, B.; Faser, C. (Eds.) HIV Sequence Compendium 2021; Theoretical Biology and Biophysics: Los Alamos, NM, USA, 2021. [Google Scholar]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Kirtley, S.; Gouws-Williams, E.; Ghys, P.D.; on behalf of the WHO-UNAIDS Network for HIV Isolation and Characterisation. Global and regional epidemiology of HIV-1 recombinants in 1990-2015: A systematic review and global survey. Lancet HIV 2020, 7, e772–e781. [Google Scholar] [CrossRef]
- Umviligihozo, G.; Muok, E.; Nyirimihigo Gisa, E.; Xu, R.; Dilernia, D.; Herard, K.; Song, H.; Qin, Q.; Bizimana, J.; Farmer, P.; et al. Increased Frequency of Inter-Subtype HIV-1 Recombinants Identified by Near Full-Length Virus Sequencing in Rwandan Acute Transmission Cohorts. Front. Microbiol. 2021, 12, 734929. [Google Scholar] [CrossRef]
- Derdeyn, C.A.; Decker, J.M.; Bibollet-Ruche, F.; Mokili, J.L.; Muldoon, M.; Denham, S.A.; Heil, M.L.; Kasolo, F.; Musonda, R.; Hahn, B.H.; et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004, 303, 2019–2022. [Google Scholar] [CrossRef]
- Salazar-Gonzalez, J.F.; Bailes, E.; Pham, K.T.; Salazar, M.G.; Guffey, M.B.; Keele, B.F.; Derdeyn, C.A.; Farmer, P.; Hunter, E.; Allen, S.; et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 2008, 82, 3952–3970. [Google Scholar] [CrossRef]
- Shaw, G.M.; Hunter, E. HIV transmission. Cold Spring Harb. Perspect. Med. 2012, 2, a006965. [Google Scholar] [CrossRef]
- Yue, L.; Pfafferott, K.J.; Baalwa, J.; Conrod, K.; Dong, C.C.; Chui, C.; Rong, R.; Claiborne, D.T.; Prince, J.L.; Tang, J.; et al. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog. 2015, 11, e1004565. [Google Scholar] [CrossRef]
- Deymier, M.J.; Claiborne, D.T.; Ende, Z.; Ratner, H.K.; Kilembe, W.; Allen, S.; Hunter, E. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning. Virology 2014, 468–470, 454–461. [Google Scholar] [CrossRef]
- Luthuli, B.; Gounder, K.; Deymier, M.J.; Dong, K.L.; Balazs, A.B.; Mann, J.K.; Ndung’u, T. Generation and characterization of infectious molecular clones of transmitted/founder HIV-1 subtype C viruses. Virology 2023, 583, 14–26. [Google Scholar] [CrossRef]
- Ochsenbauer, C.; Edmonds, T.G.; Ding, H.; Keele, B.F.; Decker, J.; Salazar, M.G.; Salazar-Gonzalez, J.F.; Shattock, R.; Haynes, B.F.; Shaw, G.M.; et al. Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J. Virol. 2012, 86, 2715–2728. [Google Scholar] [CrossRef]
- Salazar-Gonzalez, J.F.; Salazar, M.G.; Keele, B.F.; Learn, G.H.; Giorgi, E.E.; Li, H.; Decker, J.M.; Wang, S.; Baalwa, J.; Kraus, M.H.; et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 2009, 206, 1273–1289. [Google Scholar] [CrossRef]
- Balinda, S.N.; Kapaata, A.; Xu, R.; Salazar, M.G.; Mezzell, A.T.; Qin, Q.; Herard, K.; Dilernia, D.; Kamali, A.; Ruzagira, E.; et al. Characterization of Near Full-Length Transmitted/Founder HIV-1 Subtype D and A/D Recombinant Genomes in a Heterosexual Ugandan Population (2006–2011). Viruses 2022, 14, 334. [Google Scholar] [CrossRef]
- Deymier, M.J.; Ende, Z.; Fenton-May, A.E.; Dilernia, D.A.; Kilembe, W.; Allen, S.A.; Borrow, P.; Hunter, E. Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-alpha Resistance. PLoS Pathog. 2015, 11, e1005154. [Google Scholar] [CrossRef]
- Prince, J.L.; Claiborne, D.T.; Carlson, J.M.; Schaefer, M.; Yu, T.; Lahki, S.; Prentice, H.A.; Yue, L.; Vishwanathan, S.A.; Kilembe, W.; et al. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog. 2012, 8, e1003041. [Google Scholar] [CrossRef]
- Claiborne, D.T.; Prince, J.L.; Hunter, E. A restriction enzyme based cloning method to assess the in vitro replication capacity of HIV-1 subtype C Gag-MJ4 chimeric viruses. J. Vis. Exp. 2014, 51506. [Google Scholar] [CrossRef]
- Fernandez, N.; Hayes, P.; Makinde, J.; Hare, J.; King, D.; Xu, R.; Rehawi, O.; Mezzell, A.T.; Kato, L.; Mugaba, S.; et al. Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front. Immunol. 2022, 13, 1029029. [Google Scholar] [CrossRef]
- Vermeire, J.; Naessens, E.; Vanderstraeten, H.; Landi, A.; Iannucci, V.; Van Nuffel, A.; Taghon, T.; Pizzato, M.; Verhasselt, B. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS ONE 2012, 7, e50859. [Google Scholar] [CrossRef]
- Pizzato, M.; Erlwein, O.; Bonsall, D.; Kaye, S.; Muir, D.; McClure, M.O. A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J. Virol. Methods 2009, 156, 1–7. [Google Scholar] [CrossRef]
- Rong, R.; Li, B.; Lynch, R.M.; Haaland, R.E.; Murphy, M.K.; Mulenga, J.; Allen, S.A.; Pinter, A.; Shaw, G.M.; Hunter, E.; et al. Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog. 2009, 5, e1000594. [Google Scholar] [CrossRef]
- Carlson, J.M.; Schaefer, M.; Monaco, D.C.; Batorsky, R.; Claiborne, D.T.; Prince, J.; Deymier, M.J.; Ende, Z.S.; Klatt, N.R.; DeZiel, C.E.; et al. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 2014, 345, 1254031. [Google Scholar] [CrossRef]
- Naidoo, V.L.; Mann, J.K.; Noble, C.; Adland, E.; Carlson, J.M.; Thomas, J.; Brumme, C.J.; Thobakgale-Tshabalala, C.F.; Brumme, Z.L.; Brockman, M.A.; et al. Mother-to-Child HIV Transmission Bottleneck Selects for Consensus Virus with Lower Gag-Protease-Driven Replication Capacity. J. Virol. 2017, 91, e00518-17. [Google Scholar] [CrossRef]
- Wright, J.K.; Brumme, Z.L.; Carlson, J.M.; Heckerman, D.; Kadie, C.M.; Brumme, C.J.; Wang, B.; Losina, E.; Miura, T.; Chonco, F.; et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: Associations with HLA type and clinical parameters. J. Virol. 2010, 84, 10820–10831. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Shaw, G.M.; Korber, B.; Kelsoe, G.; Sodroski, J.; Hahn, B.H.; Borrow, P.; McMichael, A.J. HIV-Host Interactions: Implications for Vaccine Design. Cell Host Microbe 2016, 19, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Wagh, K.; Seaman, M.S.; Zingg, M.; Fitzsimons, T.; Barouch, D.H.; Burton, D.R.; Connors, M.; Ho, D.D.; Mascola, J.R.; Nussenzweig, M.C.; et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathog. 2018, 14, e1006860. [Google Scholar]
- Thali, M.; Moore, J.P.; Furman, C.; Charles, M.; Ho, D.D.; Robinson, J.; Sodroski, J. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J. Virol. 1993, 67, 3978–3988. [Google Scholar] [CrossRef] [PubMed]
- Stefic, K.; Bouvin-Pley, M.; Essat, A.; Visdeloup, C.; Moreau, A.; Goujard, C.; Chaix, M.L.; Braibant, M.; Meyer, L.; Barin, F. Sensitivity to Broadly Neutralizing Antibodies of Recently Transmitted HIV-1 Clade CRF02_AG Viruses with a Focus on Evolution over Time. J. Virol. 2019, 93, e01492-18. [Google Scholar] [CrossRef]
- Huang, J.; Kang, B.H.; Ishida, E.; Zhou, T.; Griesman, T.; Sheng, Z.; Wu, F.; Doria-Rose, N.A.; Zhang, B.; McKee, K.; et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity 2016, 45, 1108–1121. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.Y.; Li, Y.; Hogerkorp, C.M.; Schief, W.R.; Seaman, M.S.; Zhou, T.; Schmidt, S.D.; Wu, L.; Xu, L.; et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010, 329, 856–861. [Google Scholar] [CrossRef]
- Zhou, T.; Georgiev, I.; Wu, X.; Yang, Z.Y.; Dai, K.; Finzi, A.; Kwon, Y.D.; Scheid, J.F.; Shi, W.; Xu, L.; et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 2010, 329, 811–817. [Google Scholar] [CrossRef]
- Diskin, R.; Scheid, J.F.; Marcovecchio, P.M.; West, A.P., Jr.; Klein, F.; Gao, H.; Gnanapragasam, P.N.; Abadir, A.; Seaman, M.S.; Nussenzweig, M.C.; et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 2011, 334, 1289–1293. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, H.; Fang, M.; Li, Y.; Wang, H.; Shi, S.; Li, Z.; Wu, J.; Han, X.; Shi, X.; et al. Broadly resistant HIV-1 against CD4-binding site neutralizing antibodies. PLoS Pathog. 2019, 15, e1007819. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.M.; Phogat, S.K.; Chan-Hui, P.Y.; Wagner, D.; Phung, P.; Goss, J.L.; Wrin, T.; Simek, M.D.; Fling, S.; Mitcham, J.L.; et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009, 326, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Pancera, M.; Shahzad-Ul-Hussan, S.; Doria-Rose, N.A.; McLellan, J.S.; Bailer, R.T.; Dai, K.; Loesgen, S.; Louder, M.K.; Staupe, R.P.; Yang, Y.; et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat. Struct. Mol. Biol. 2013, 20, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Pejchal, R.; Doores, K.J.; Walker, L.M.; Khayat, R.; Huang, P.S.; Wang, S.K.; Stanfield, R.L.; Julien, J.P.; Ramos, A.; Crispin, M.; et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 2011, 334, 1097–1103. [Google Scholar] [CrossRef]
- Walker, L.M.; Huber, M.; Doores, K.J.; Falkowska, E.; Pejchal, R.; Julien, J.P.; Wang, S.K.; Ramos, A.; Chan-Hui, P.Y.; Moyle, M.; et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011, 477, 466–470. [Google Scholar] [CrossRef]
- Sok, D.; Doores, K.J.; Briney, B.; Le, K.M.; Saye-Francisco, K.L.; Ramos, A.; Kulp, D.W.; Julien, J.P.; Menis, S.; Wick-ramasinghe, L.; et al. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 2014, 6, 236ra63. [Google Scholar] [CrossRef]
- Krumm, S.A.; Mohammed, H.; Le, K.M.; Crispin, M.; Wrin, T.; Poignard, P.; Burton, D.R.; Doores, K.J. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology 2016, 13, 8. [Google Scholar] [CrossRef]
- Huang, J.; Ofek, G.; Laub, L.; Louder, M.K.; Doria-Rose, N.A.; Longo, N.S.; Imamichi, H.; Bailer, R.T.; Chakrabarti, B.; Sharma, S.K.; et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 2012, 491, 406–412. [Google Scholar] [CrossRef]
- Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7552–7557. [Google Scholar] [CrossRef]
- Alexander, M.; Lynch, R.; Mulenga, J.; Allen, S.; Derdeyn, C.A.; Hunter, E. Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry. J. Virol. 2010, 84, 4100–4104. [Google Scholar] [CrossRef]
- Schuitemaker, H.; Koot, M.; Kootstra, N.A.; Dercksen, M.W.; de Goede, R.E.; van Steenwijk, R.P.; Lange, J.M.; Schattenkerk, J.K.; Miedema, F.; Tersmette, M. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: Progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J. Virol. 1992, 66, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- El-Badry, E.; Macharia, G.; Claiborne, D.; Brooks, K.; Dilernia, D.A.; Goepfert, P.; Kilembe, W.; Allen, S.; Gilmour, J.; Hunter, E.; et al. Better Viral Control despite Higher CD4(+) T Cell Activation during Acute HIV-1 Infection in Zambian Women Is Linked to the Sex Hormone Estradiol. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [PubMed]
- Macharia, G.N.; Yue, L.; Staller, E.; Dilernia, D.; Wilkins, D.; Song, H.; McGowan, E.; King, D.; Fast, P.; Imami, N.; et al. Infection with multiple HIV-1 founder variants is associated with lower viral replicative capacity, faster CD4+ T cell decline and increased immune activation during acute infection. PLoS Pathog. 2020, 16, e1008853. [Google Scholar] [CrossRef] [PubMed]
- Goepfert, P.A.; Lumm, W.; Farmer, P.; Matthews, P.; Prendergast, A.; Carlson, J.M.; Derdeyn, C.A.; Tang, J.; Kaslow, R.A.; Bansal, A.; et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J. Exp. Med. 2008, 205, 1009–1017. [Google Scholar] [CrossRef]
- Mann, J.K.; Barton, J.P.; Ferguson, A.L.; Omarjee, S.; Walker, B.D.; Chakraborty, A.; Ndung’u, T. The fitness landscape of HIV-1 gag: Advanced modeling approaches and validation of model predictions by in vitro testing. PLoS Comput. Biol. 2014, 10, e1003776. [Google Scholar] [CrossRef]
- Claiborne, D.T.; Prince, J.L.; Scully, E.; Macharia, G.; Micci, L.; Lawson, B.; Kopycinski, J.; Deymier, M.J.; Vanderford, T.H.; Nganou-Makamdop, K.; et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc. Natl. Acad. Sci. USA 2015, 112, E1480–E1489. [Google Scholar] [CrossRef]
- Wright, J.K.; Naidoo, V.L.; Brumme, Z.L.; Prince, J.L.; Claiborne, D.T.; Goulder, P.J.; Brockman, M.A.; Hunter, E.; Ndung’u, T. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity. J. Virol. 2012, 86, 3193–3199. [Google Scholar] [CrossRef]
- Corey, L.; Gilbert, P.B.; Juraska, M.; Montefiori, D.C.; Morris, L.; Karuna, S.T.; Edupuganti, S.; Mgodi, N.M.; deCamp, A.C.; Rudnicki, E.; et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N. Engl. J. Med. 2021, 384, 1003–1014. [Google Scholar] [CrossRef]
- Frattari, G.S.; Caskey, M.; Sogaard, O.S. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr. Opin. HIV AIDS 2023, 18, 157–163. [Google Scholar] [CrossRef]
- Rossignol, E.; Alter, G.; Julg, B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J. Infect. Dis. 2021, 223 (Suppl. 2), 22–31. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Huang, Y.; deCamp, A.C.; Karuna, S.; Zhang, Y.; Magaret, C.A.; Giorgi, E.E.; Korber, B.; Edlefsen, P.T.; Ros-senkhan, R.; et al. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 2022, 28, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Baalwa, J.; Wang, S.; Parrish, N.F.; Decker, J.M.; Keele, B.F.; Learn, G.H.; Yue, L.; Ruzagira, E.; Ssemwanga, D.; Kamali, A.; et al. Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones. Virology 2013, 436, 33–48. [Google Scholar] [CrossRef] [PubMed]
PCID a | EDI b | VL c | Sequence Type d | Subtype | Cloning Strategy | IMC Vector |
---|---|---|---|---|---|---|
175005 | 14 | 2,090,040 | TF | A1 | TF amplicon | pBlue |
175010 | 73 | 148,220 | TF | A1 | TF amplicon | pBlue |
175011 | 50 | 184,270 | TF | A1C | Synthesized Con | pUC57 |
175012 | 53 | 1,398,004 | TF | A1C | TF amplicon | pBlue |
175014 | 46 | 806,290 | TF | A1 | TF amplicon | pBlue |
175019 | 10 | 3,000,000 | TF | A1 | TF amplicon | pBlue |
175020 | 46 | 134,472 | EV | A1 | Synthesized | pUC57 |
175027 | 67 | 425,000 | TF (P1) | A1 | Synthesized TF | pUC57 |
175038 | 21 | 730,000 | TF | A1 | TF amplicon | pCR XL TOPO |
175042 | 10 | 152,000,000 | TF | A1 | TF amplicon | pBlue |
175053 | 15 | 1,876,000 | TF | A1C | Synthesized TF | pUC57 |
175059 | 17 | 7,290,000 | TF | A1 | TF amplicon | pBlue |
175065 | 14 | 31,700,000 | TF | A1 | TF amplicon | pBlue |
175071 | 41 | 4,702,444 | TF(P2) | A1 | Synthesized TF | pUC57 |
175074 | 37 | 219,920 | TF (P1) | A1 | TF amplicon | pBlue |
175089 | 13 | 223,440 | TF | A1C | Synthesized TF | pUC57 |
175090 | 15 | 2,920,000 | TF (P1) | A1 | Synthesized TF | pUC57 |
175092 | 25 | 3,940,000 | TF | A1 | TF amplicon | pBlue |
175093 | 15 | 3,760,000 | TF | A1 | TF amplicon | pBlue |
175094 | 16 | 4,400,000 | TF | A1 | Synthesized TF | pUC57 |
Codon | Amino Acid | Consensus Amino Acid | Sequences With/Without Residue | Sequences with Residue | Mean RC without Residue | Mean RC with Residue | p_Value |
---|---|---|---|---|---|---|---|
7 | I | V | 17 | 3 | 1.319853 | 2.987937 | 0.04035 |
9 | R | S | 18 | 2 | 1.370372 | 3.367312 | 0.04211 |
11 | E | G | 18 | 2 | 1.370372 | 3.367312 | 0.04211 |
20 | K | R | 18 | 2 | 1.370372 | 3.367312 | 0.04211 |
22 | K | R | 18 | 2 | 1.370372 | 3.367312 | 0.04211 |
30 | R | R | 4 | 16 | 2.827091 | 1.255809 | 0.02188 |
47 | D | N | 17 | 3 | 1.330663 | 2.926681 | 0.04035 |
49 | S | S | 6 | 14 | 2.823382 | 1.032931 | 0.01171 |
62 | E | E | 7 | 13 | 2.494512 | 1.072287 | 0.04556 |
69 | Q | K | 14 | 6 | 1.094515 | 2.679684 | 0.02002 |
73 | E | E | 2 | 18 | 3.367312 | 1.370372 | 0.04211 |
79 | F | Y | 11 | 9 | 2.185593 | 0.817755 | 0.00566 |
107 | I | I | 8 | 12 | 2.419958 | 1.003471 | 0.03871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, L.; Xu, R.; Mclnally, S.; Qin, Q.; Rhodes, J.W.; Muok, E.; Umviligihozo, G.; Brooks, K.; Zhang, J.; Qin, Z.; et al. Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort. Viruses 2024, 16, 1706. https://doi.org/10.3390/v16111706
Yue L, Xu R, Mclnally S, Qin Q, Rhodes JW, Muok E, Umviligihozo G, Brooks K, Zhang J, Qin Z, et al. Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort. Viruses. 2024; 16(11):1706. https://doi.org/10.3390/v16111706
Chicago/Turabian StyleYue, Ling, Rui Xu, Samantha Mclnally, Qianhong Qin, Jake W. Rhodes, Erick Muok, Gisele Umviligihozo, Kelsie Brooks, Jiayi Zhang, Zhaohui Qin, and et al. 2024. "Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort" Viruses 16, no. 11: 1706. https://doi.org/10.3390/v16111706
APA StyleYue, L., Xu, R., Mclnally, S., Qin, Q., Rhodes, J. W., Muok, E., Umviligihozo, G., Brooks, K., Zhang, J., Qin, Z., Bizimana, J., Hare, J., Price, M. A., Allen, S. A., Karita, E., & Hunter, E. (2024). Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort. Viruses, 16(11), 1706. https://doi.org/10.3390/v16111706