Spectrum of Non-Nucleoside Reverse Transcriptase Inhibitor-Associated Drug Resistance Mutations in Persons Living with HIV-1 Receiving Rilpivirine
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Overton, E.T.; Richmond, G.; Rizzardini, G.; Jaeger, H.; Orrell, C.; Nagimova, F.; Bredeek, F.; García Deltoro, M.; Swindells, S.; Andrade-Villanueva, J.F.; et al. Long-Acting Cabotegravir and Rilpivirine Dosed Every 2 Months in Adults with HIV-1 Infection (ATLAS-2M), 48-Week Results: A Randomised, Multicentre, Open-Label, Phase 3b, Non-Inferiority Study. Lancet 2021, 396, 1994–2005. [Google Scholar] [CrossRef] [PubMed]
- Rizzardini, G.; Overton, E.T.; Orkin, C.; Swindells, S.; Arasteh, K.; Górgolas Hernández-Mora, M.; Pokrovsky, V.; Girard, P.-M.; Oka, S.; Andrade-Villanueva, J.F.; et al. Long-Acting Injectable Cabotegravir + Rilpivirine for HIV Maintenance Therapy: Week 48 Pooled Analysis of Phase 3 ATLAS and FLAIR Trials. J. Acquir. Immune Defic. Syndr. 2020, 85, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.E.; Grant, P.M.; Shafer, R.W. Modifying Antiretroviral Therapy in Virologically Suppressed HIV-1-Infected Patients. Drugs 2016, 76, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Llibre, J.M.; Hung, C.-C.; Brinson, C.; Castelli, F.; Girard, P.-M.; Kahl, L.P.; Blair, E.A.; Angelis, K.; Wynne, B.; Vandermeulen, K.; et al. Efficacy, Safety, and Tolerability of Dolutegravir-Rilpivirine for the Maintenance of Virological Suppression in Adults with HIV-1: Phase 3, Randomised, Non-Inferiority SWORD-1 and SWORD-2 Studies. Lancet 2018, 391, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Cutrell, A.G.; Schapiro, J.M.; Perno, C.F.; Kuritzkes, D.R.; Quercia, R.; Patel, P.; Polli, J.W.; Dorey, D.; Wang, Y.; Wu, S.; et al. Exploring Predictors of HIV-1 Virologic Failure to Long-Acting Cabotegravir and Rilpivirine: A Multivariable Analysis. AIDS 2021, 35, 1333–1342. [Google Scholar] [CrossRef]
- Orkin, C.; Schapiro, J.M.; Perno, C.F.; Kuritzkes, D.R.; Patel, P.; DeMoor, R.; Dorey, D.; Wang, Y.; Han, K.; Van Eygen, V.; et al. Expanded Multivariable Models to Assist Patient Selection for Long-Acting Cabotegravir + Rilpivirine Treatment: Clinical Utility of a Combination of Patient, Drug Concentration, and Viral Factors Associated with Virologic Failure. Clin. Infect. Dis. 2023, 77, 1423–1431. [Google Scholar] [CrossRef]
- Rimsky, L.; Vingerhoets, J.; Van Eygen, V.; Eron, J.; Clotet, B.; Hoogstoel, A.; Boven, K.; Picchio, G. Genotypic and Phenotypic Characterization of HIV-1 Isolates Obtained from Patients on Rilpivirine Therapy Experiencing Virologic Failure in the Phase 3 ECHO and THRIVE Studies: 48-Week Analysis. J. Acquir. Immune Defic. Syndr. 2012, 59, 39–46. [Google Scholar] [CrossRef]
- Rhee, S.-Y.; Clutter, D.; Hare, C.B.; Tchakoute, C.T.; Sainani, K.; Fessel, W.J.; Hurley, L.; Slome, S.; Pinsky, B.A.; Silverberg, M.J.; et al. Virological Failure and Acquired Genotypic Resistance Associated with Contemporary Antiretroviral Treatment Regimens. Open Forum Infect. Dis. 2020, 7, ofaa316. [Google Scholar] [CrossRef]
- Porter, D.P.; Kulkarni, R.; Fralich, T.; Miller, M.D.; White, K.L. Characterization of HIV-1 Drug Resistance Development through Week 48 in Antiretroviral Naive Subjects on Rilpivirine/Emtricitabine/Tenofovir DF or Efavirenz/Emtricitabine/Tenofovir DF in the STaR Study (GS-US-264-0110). J. Acquir. Immune Defic. Syndr. 2014, 65, 318–326. [Google Scholar] [CrossRef]
- Rossetti, B.; Incardona, F.; Di Teodoro, G.; Mommo, C.; Saladini, F.; Kaiser, R.; Sönnerborg, A.; Lengauer, T.; Zazzi, M. EuResist Network Cohort Profile: A European Multidisciplinary Network for the Fight against HIV Drug Resistance (EuResist Network). Trop. Med. Infect. Dis. 2023, 8, 243. [Google Scholar] [CrossRef]
- Shafer, R.W.; Jung, D.R.; Betts, B.J.; Xi, Y.; Gonzales, M.J. Human Immunodeficiency Virus Reverse Transcriptase and Protease Sequence Database. Nucleic Acids Res. 2000, 28, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.-Y.; Sankaran, K.; Varghese, V.; Winters, M.A.; Hurt, C.B.; Eron, J.J.; Parkin, N.; Holmes, S.P.; Holodniy, M.; Shafer, R.W. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation. J. Virol. 2016, 90, 6058–6070. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoets, J.; Tambuyzer, L.; Azijn, H.; Hoogstoel, A.; Nijs, S.; Peeters, M.; de Béthune, M.-P.; De Smedt, G.; Woodfall, B.; Picchio, G. Resistance Profile of Etravirine: Combined Analysis of Baseline Genotypic and Phenotypic Data from the Randomized, Controlled Phase III Clinical Studies. AIDS 2010, 24, 503. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Bauman, J.D.; Clark, A.D.; Frenkel, Y.V.; Lewi, P.J.; Shatkin, A.J.; Hughes, S.H.; Arnold, E. High-Resolution Structures of HIV-1 Reverse Transcriptase/TMC278 Complexes: Strategic Flexibility Explains Potency against Resistance Mutations. Proc. Natl. Acad. Sci. USA 2008, 105, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- van Wyk, J.; Orkin, C.; Rubio, R.; Bogner, J.; Baker, D.; Khuong-Josses, M.-A.; Parks, D.; Angelis, K.; Kahl, L.P.; Matthews, J.; et al. Brief Report: Durable Suppression and Low Rate of Virologic Failure 3 Years After Switch to Dolutegravir + Rilpivirine 2-Drug Regimen: 148-Week Results From the SWORD-1 and SWORD-2 Randomized Clinical Trials. J. Acquir. Immune Defic. Syndr. 2020, 85, 325–330. [Google Scholar] [CrossRef]
- Thompson, M.A.; Aberg, J.A.; Hoy, J.F.; Telenti, A.; Benson, C.; Cahn, P.; Eron, J.J.; Günthard, H.F.; Hammer, S.M.; Reiss, P.; et al. Antiretroviral Treatment of Adult HIV Infection: 2012 Recommendations of the International Antiviral Society–USA Panel. JAMA 2012, 308, 387–402. [Google Scholar] [CrossRef]
- Azijn, H.; Tirry, I.; Vingerhoets, J.; de Béthune, M.-P.; Kraus, G.; Boven, K.; Jochmans, D.; Van Craenenbroeck, E.; Picchio, G.; Rimsky, L.T. TMC278, a next-Generation Nonnucleoside Reverse Transcriptase Inhibitor (NNRTI), Active against Wild-Type and NNRTI-Resistant HIV-1. Antimicrob. Agents Chemother. 2010, 54, 718–727. [Google Scholar] [CrossRef]
- Brenner, B.G.; Oliveira, M.; Ibanescu, R.-I.; Routy, J.-P.; Thomas, R. Doravirine Responses to HIV-1 Viruses Bearing Mutations to NRTIs and NNRTIs under in Vitro Selective Drug Pressure. J. Antimicrob. Chemother. 2023, 78, 1921–1928. [Google Scholar] [CrossRef]
- Brenner, B.G.; Oliveira, M.; Ibanescu, R.-I.; Routy, J.-P.; Thomas, R. Cell Culture Selections Reveal Favourable Drug Resistance Profiles for Doravirine and Islatravir. J. Antimicrob. Chemother. 2021, 76, 2137–2142. [Google Scholar] [CrossRef]
- Feng, M.; Wang, D.; Grobler, J.A.; Hazuda, D.J.; Miller, M.D.; Lai, M.-T. In Vitro Resistance Selection with Doravirine (MK-1439), a Novel Nonnucleoside Reverse Transcriptase Inhibitor with Distinct Mutation Development Pathways. Antimicrob. Agents Chemother. 2015, 59, 590–598. [Google Scholar] [CrossRef]
- Mulato, A.; Hansen, D.; Thielen, A.; Porter, D.; Stepan, G.; White, K.; Daeumer, M.; Cihlar, T.; Yant, S.R. Rapid In Vitro Evaluation of Antiretroviral Barrier to Resistance at Therapeutic Drug Levels. AIDS Res. Hum. Retroviruses 2016, 32, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Zhou, J.; Nagarajan, P.; Tzou, P.; Shafer, R. Comprehensive Database of HIV Mutations Selected During Antiretroviral In Vitro Passage Experiments. Antivir. Res. 2024, 230, 105988. [Google Scholar] [CrossRef] [PubMed]
- Wensing, A.M.; Calvez, V.; Ceccherini, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2022 Update of the Drug Resistance Mutations in HIV-1. Top. Antivir. Med. 2022, 30, 559. [Google Scholar] [PubMed]
- Hu, Z.; Kuritzkes, D.R. Interaction of Reverse Transcriptase (RT) Mutations Conferring Resistance to Lamivudine and Etravirine: Effects on Fitness and RT Activity of Human Immunodeficiency Virus Type 1. J. Virol. 2011, 85, 11309–11314. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.; Babaoglu, K.; Lansdon, E.B.; Rimsky, L.; Van Eygen, V.; Picchio, G.; Svarovskaia, E.; Miller, M.D.; White, K.L. The HIV-1 Reverse Transcriptase M184I Mutation Enhances the E138K-Associated Resistance to Rilpivirine and Decreases Viral Fitness. J. Acquir. Immune Defic. Syndr. 2012, 59, 47–54. [Google Scholar] [CrossRef]
- Singh, A.K.; De Wijngaert, B.; Bijnens, M.; Uyttersprot, K.; Nguyen, H.; Martinez, S.E.; Schols, D.; Herdewijn, P.; Pannecouque, C.; Arnold, E.; et al. Cryo-EM Structures of Wild-Type and E138K/M184I Mutant HIV-1 RT/DNA Complexed with Inhibitors Doravirine and Rilpivirine. Proc. Natl. Acad. Sci. USA 2022, 119, e2203660119. [Google Scholar] [CrossRef]
- Xu, H.-T.; Colby-Germinario, S.P.; Huang, W.; Oliveira, M.; Han, Y.; Quan, Y.; Petropoulos, C.J.; Wainberg, M.A. Role of the K101E Substitution in HIV-1 Reverse Transcriptase in Resistance to Rilpivirine and Other Nonnucleoside Reverse Transcriptase Inhibitors. Antimicrob. Agents Chemother. 2013, 57, 5649–5657. [Google Scholar] [CrossRef]
- Xu, H.-T.; Oliveira, M.; Asahchop, E.L.; McCallum, M.; Quashie, P.K.; Han, Y.; Quan, Y.; Wainberg, M.A. Molecular Mechanism of Antagonism between the Y181C and E138K Mutations in HIV-1 Reverse Transcriptase. J. Virol. 2012, 86, 12983–12990. [Google Scholar] [CrossRef]
- McClung, R.P.; Oster, A.M.; Ocfemia, M.C.B.; Saduvala, N.; Heneine, W.; Johnson, J.A.; Hernandez, A.L. Transmitted Drug Resistance Among Human Immunodeficiency Virus (HIV)-1 Diagnoses in the United States, 2014–2018. Clin. Infect. Dis. 2022, 74, 1055–1062. [Google Scholar] [CrossRef]
- Miranda, M.N.S.; Pingarilho, M.; Pimentel, V.; Martins, M.D.R.O.; Kaiser, R.; Seguin-Devaux, C.; Paredes, R.; Zazzi, M.; Incardona, F.; Abecasis, A.B. Trends of Transmitted and Acquired Drug Resistance in Europe From 1981 to 2019: A Comparison Between the Populations of Late Presenters and Non-Late Presenters. Front. Microbiol. 2022, 13, 846943. [Google Scholar] [CrossRef]
- Lai, M.-T.; Feng, M.; Falgueyret, J.-P.; Tawa, P.; Witmer, M.; DiStefano, D.; Li, Y.; Burch, J.; Sachs, N.; Lu, M.; et al. In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor. Antimicrob. Agents Chemother. 2014, 58, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Melikian, G.L.; Rhee, S.-Y.; Varghese, V.; Porter, D.; White, K.; Taylor, J.; Towner, W.; Troia, P.; Burack, J.; Dejesus, E.; et al. Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Cross-Resistance: Implications for Preclinical Evaluation of Novel NNRTIs and Clinical Genotypic Resistance Testing. J. Antimicrob. Chemother. 2014, 69, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Stanford HIV Drug Resistance Database Genotype-Phenotype Regression Analysis. 2024. Available online: https://hivdb.stanford.edu/pages/genopheno.regression.NNRTI.Html (accessed on 28 October 2024).
- Yoshinaga, T.; Miki, S.; Kawauchi-Miki, S.; Seki, T.; Fujiwara, T. Barrier to Resistance of Dolutegravir in Two-Drug Combinations. Antimicrob. Agents Chemother. 2019, 63, e02104-18. [Google Scholar] [CrossRef] [PubMed]
EIDB (n = 280) | HIVDB (n = 115) | Total (n = 395) | |
---|---|---|---|
Age 1 | |||
Median | 43 | NA | NA |
Range | 18–71 | NA | NA |
% Male 1 | |||
61% | NA | NA | |
Countries 2 | |||
Italy (45.0%) | United States (46.1%) | Italy (31.9%) | |
Portugal (15.7%) | Unknown (46.0%) | United States (13.4%) | |
Germany (14.3%) | Russia (3.5%) | Unknown (13.4%) | |
Sweden (9.7%) | Netherlands (3.5%) | Portugal (11.1%) | |
Luxembourg (6.4%) | Germany (0.9%) | Germany (10.4%) | |
Poland (4.6%) | Sweden (6.8%) | ||
Russia (4.3%) | Luxembourg (4.6%) | ||
Poland (3.3%) | |||
Russia (4.1%) | |||
Netherlands (1.0%) | |||
Year of the sample | |||
Median | 2017 | 2011 | 2016 |
Range | 2011–2023 | 2009–2023 | 2009–2023 |
Subtypes | |||
B | 53.9% | 80.0% | 61.5% |
A | 11.8% | 3.5% | 9.4% |
CRF02_AG | 8.9% | 1.7% | 6.8% |
C | 7.1% | 5.2% | 6.6% |
G | 8.2% | 0.0% | 5.8% |
Other | 10.1% | 9.6% | 9.9% |
Source of the samples | |||
Plasma | 67.5% | 100.0% | 77.0% |
PBMC | 22.9% | 16.2% | |
Whole Blood | 5.7% | 4.1% | |
Unknown | 3.9% | 2.7% | |
ART-Naïve before RPV-containing regimen | |||
Yes | 14.3% | 73.9% | 19.7% |
No | 62.1% | 24.3% | 49.9% |
Unknown | 23.6% | 1.8% | 30.4% |
Genotypic resistance tests available prior to RPV-containing regimen | |||
Yes | 22.5% | 47.0% | 29.6% |
No/Unknown | 77.5% | 53.0% | 70.4% |
Virologically suppressed before RPV-containing regimen | |||
Yes | 23.6% | 10.4% | 31.7% |
No | 41.1% | 71.3% | 51.1% |
Unknown | 35.3% | 18.3% | 17.2% |
RPV-containing regimen | |||
TDF/FTC/RPV (60.0%) | TDF/FTC/RPV (83.5%) | TDF/FTC/RPV (66.8%) | |
TAF/FTC/RPV (19.3%) | CAB/RPV (7.0%) | TAF/FTC/RPV (13.7%) | |
DTG/RPV (4.3%) | DTG/RPV (4.3%) | DTG/RPV (4.3%) | |
ABC/3TC/RPV (3.2%) | Other ARVs/RPV (5.2%) | ABC/3TC/RPV (2.3%) | |
3TC/RPV (1.8%) | CAB/RPV (2.0%) | ||
Other ARVs/RPV (11.4%) | 3TC/RPV (1.3%) | ||
Other ARVs/RPV (9.6%) |
Mutation | Prevalence in 180 PLWH with ≥1 NNRTI-Associated DRM | Prevalence in ART-Naïve PLWH in HIVDB 1 | HIVDB RPV Mutation Penalty Score 2 |
---|---|---|---|
E138K | 32.2% | 0.1% | 45 |
V90I | 25.0% | 1.6% | ** |
K101E | 17.8% | 0.3% | 45 |
Y181C | 17.2% | 0.4% | 45 |
E138A | 13.9% | 2.3% | 15 |
H221Y | 12.2% | 0.2% | 15 |
K103N | 10.6% | 1.8% | 0 |
V108I | 9.4% | 0.3% | 0 |
V106I | 7.8% | 2.1% | 5 |
L100I | 7.2% | 0.1% | 60 |
M230L | 5.6% | 0.03% | 60 |
Y181I | 5.0% | 0.02% | 60 |
E138Q | 4.4% | 0.07% | 15 |
K101P | 4.4% | 0.03% | 60 |
A98G | 3.9% | 0.3% | 15 |
Y188L | 2.8% | 0.1% | 60 |
E138G | 2.8% | 0.3% | 15 |
F227C | 2.2% | 0.004% | 45 |
V179D | 2.2% | 1.6% | 10 |
V179F | 1.7% | 0.01% | 15 |
V106A | 1.7% | 0.005% | 0 |
V179E | 1.7% | 1.2% | 10 |
P225H | 1.1% | 0.1% | 0 |
K238T | 1.1% | 0.1% | 0 |
F227L | 1.1% | 0.04% | 0 |
K238N | 1.1% | 0.06% | 0 |
K103S | 0.6% | 0.08% | 0 |
K101T | 0.6% | 0.01% | * |
L234I | 0.6% | 0.01% | 0 |
M230I | 0.6% | 0.01% | 30 |
Y188H | 0.6% | 0.02% | 0 |
V179L | 0.6% | 0.009% | 15 |
G190Q | 0.6% | 0.002% | 45 |
G190S | 0.6% | 0.04% | 15 |
E138R | 0.6% | 0.004% | 15 |
Y188F | 0.6% | 0.01% | 30 |
F227Y | 0.6% | 0.03% | * |
G190A | 0.6% | 0.4% | 15 |
V179T | 0.6% | 0.5% | ** |
V179M | 0.6% | 0.01% | * |
K101H | 0.6% | 0.03% | 10 |
K101N | 0.6% | 0.01% | * |
L100V | 0.6% | 0.01% | 15 |
G190E | 0.6% | 0.02% | 60 |
Mutation A | Mutation B | A and B | A Only | B Only | Neither A Nor B | Rho | p 1 |
---|---|---|---|---|---|---|---|
Positive Correlations 1 | |||||||
V179F | Y181C | 3 | 0 | 28 | 149 | 0.29 | 0.0001 |
H221Y | Y181C | 10 | 12 | 21 | 137 | 0.28 | 0.0001 |
M230L | Y181C | 6 | 4 | 25 | 145 | 0.28 | 0.0002 |
K101E | Y181C | 12 | 19 | 19 | 130 | 0.26 | 0.0005 |
Negative Correlations 1 | |||||||
E138K | Y181C | 2 | 55 | 29 | 94 | −0.25 | 0.0007 |
E138K | K103N | 1 | 56 | 18 | 105 | −0.20 | 0.008 |
Mutation | Prevalence Among 374 RPV Recipients 1 | Prevalence in 7705 NRTI-Experienced, NNRTI-Naïve Persons in HIVDB | Prevalence Ratio (RPV/NRTI-Experienced, NNRTI-Naïve) | p |
---|---|---|---|---|
L100F | 0.3% | 0.01% | 20.6 | 0.09 |
V108A | 0.3% | 0.01% | 18.8 | 0.1 |
T139I | 0.8% | 0.09% | 9.4 | 0.009 |
I178V | 3.5% | 1.2% | 3.0 | 0.0009 |
P225S | 0.3% | 0.0% | inf | 0.05 |
M230V | 0.3% | 0.0% | inf | 0.05 |
Y232C | 0.3% | 0.02% | 16.7 | 0.1 |
T240I | 0.5% | 0.0% | inf | 0.004 |
T240M | 0.3% | 0.0% | inf | 0.06 |
T240S | 0.3% | 0.02% | 15.8 | 0.1 |
T240A | 0.5% | 0.08% | 6.4 | 0.06 |
Pos 2 | WT | Mutations | Distance (Angstroms) | RT Atom | RPV Atom | Chain |
---|---|---|---|---|---|---|
101 | K | E, H, N, T, P | 2.7 | O | N4 | A |
234 | L | I | 3.3 | O | N5 | A |
181 | Y | C, I | 3.4 | CD2 | C2 | A |
188 | Y | F, H, L | 3.5 | CE2 | C22 | A |
227 | F | C, L, Y | 3.5 | CE1 | N5 | A |
100 | L | V, I, F | 3.5 | CB | N4 | A |
138 | E | A, G, K, Q, R | 3.6 | OE1 | C9 | B |
103 | K | N, S | 3.6 | CG | C15 | A |
225 | P | H, S | 3.7 | CB | N5 | A |
179 | V | D, E, F, I, M, T | 3.8 | CG2 | C8 | A |
106 | V | A, I | 4.0 | CG2 | C13 | A |
190 | G | A, E, Q, S | 4.4 | N | C8 | A |
238 | K | N, T | 6.0 | O | C14 | A |
230 | M | I, L, V | 6.5 | N | N6 | A |
108 | V | A, I | 6.8 | CG2 | N6 | A |
139 | T | I | 6.8 | CG2 | C10 | B |
232 | Y | C | 7.3 | O | N6 | A |
178 | I | V | 7.5 | C | C10 | A |
98 | A | G | 8.6 | C | N2 | A |
221 | H | Y | 9.2 | CE1 | N6 | A |
240 | T | A, I, M, S | 9.8 | N | N5 | A |
90 | V | I | 11.0 | O | C7 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagarajan, P.; Zhou, J.; Di Teodoro, G.; Incardona, F.; Seguin-Devaux, C.; Kaiser, R.; Abecasis, A.B.; Gomes, P.; Tao, K.; Zazzi, M.; et al. Spectrum of Non-Nucleoside Reverse Transcriptase Inhibitor-Associated Drug Resistance Mutations in Persons Living with HIV-1 Receiving Rilpivirine. Viruses 2024, 16, 1715. https://doi.org/10.3390/v16111715
Nagarajan P, Zhou J, Di Teodoro G, Incardona F, Seguin-Devaux C, Kaiser R, Abecasis AB, Gomes P, Tao K, Zazzi M, et al. Spectrum of Non-Nucleoside Reverse Transcriptase Inhibitor-Associated Drug Resistance Mutations in Persons Living with HIV-1 Receiving Rilpivirine. Viruses. 2024; 16(11):1715. https://doi.org/10.3390/v16111715
Chicago/Turabian StyleNagarajan, Pavithra, Jinru Zhou, Giulia Di Teodoro, Francesca Incardona, Carole Seguin-Devaux, Rolf Kaiser, Ana B. Abecasis, Perpetua Gomes, Kaiming Tao, Maurizio Zazzi, and et al. 2024. "Spectrum of Non-Nucleoside Reverse Transcriptase Inhibitor-Associated Drug Resistance Mutations in Persons Living with HIV-1 Receiving Rilpivirine" Viruses 16, no. 11: 1715. https://doi.org/10.3390/v16111715
APA StyleNagarajan, P., Zhou, J., Di Teodoro, G., Incardona, F., Seguin-Devaux, C., Kaiser, R., Abecasis, A. B., Gomes, P., Tao, K., Zazzi, M., & Shafer, R. W., on behalf of the EuResist Network. (2024). Spectrum of Non-Nucleoside Reverse Transcriptase Inhibitor-Associated Drug Resistance Mutations in Persons Living with HIV-1 Receiving Rilpivirine. Viruses, 16(11), 1715. https://doi.org/10.3390/v16111715