Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents
Abstract
:1. Introduction
2. Material and Methods
2.1. Rodent Trapping and Sample Collection
2.2. VirCapSeq-VERT High-Throughput Sequencing
2.3. Bioinformatic Analyses
3. Results
3.1. Murine Adenovirus from Zambia
3.2. Rodent Chaphamaparvoviruses from Zambia
3.3. Rodent Jeilongviruses from Zambia
3.4. Murine Aichivirus from Zambia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briese, T.; Paweska, J.T.; McMullan, L.K.; Hutchison, S.K.; Street, C.; Palacios, G.; Khristova, M.L.; Weyer, J.; Swanepoel, R.; Egholm, M.; et al. Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa. PLOS Pathog. 2009, 5, e1000455. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P. A Short History of Lassa Fever: The First 10–15 Years after Discovery. Curr. Opin. Virol. 2019, 37, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Sewlall, N.H.; Ksiazek, T.G.; Blumberg, L.H.; Hale, M.J.; Lipkin, W.I.; Weyer, J.; Nichol, S.T.; Rollin, P.E.; McMullan, L.K.; et al. Nosocomial Outbreak of Novel Arenavirus Infection, Southern Africa. Emerg. Infect. Dis. 2009, 15, 1598–1602. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Thomas, Y.; Moonga, L.; Nakamura, I.; Ohnuma, A.; Hang’ombe, B.M.; Takada, A.; Mweene, A.S.; Sawa, H. Molecular Surveillance and Phylogenetic Analysis of Old World Arenaviruses in Zambia. J. Gen. Virol. 2012, 93, 2247–2251. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Muleya, W.; Ishii, A.; Orba, Y.; Hang’ombe, B.M.; Mweene, A.S.; Moonga, L.; Thomas, Y.; Kimura, T.; Sawa, H. Molecular Epidemiology of Paramyxoviruses in Zambian Wild Rodents and Shrews. J. Gen. Virol. 2014, 95, 325–330. [Google Scholar] [CrossRef]
- Munjita, S.M.; Moonga, G.; Mukubesa, A.N.; Ndebe, J.; Mubemba, B.; Vanaerschot, M.; Tato, C.; Tembo, J.; Kapata, N.; Chitanga, S.; et al. Luna Virus and Helminths in Wild Mastomys Natalensis in Two Contrasting Habitats in Zambia: Risk Factors and Evidence of Virus Dissemination in Semen. Pathogens 2022, 11, 1345. [Google Scholar] [CrossRef]
- Rima, B.; Balkema-Buschmann, A.; Dundon, W.G.; Duprex, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.; Lee, B.; Rota, P.; et al. ICTV Virus Taxonomy Profile: Paramyxoviridae. J. Gen. Virol. 2019, 100, 1593–1594. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Bletsa, M.; Laenen, L.; Lopes, A.R.; Vergote, V.; Beller, L.; Deboutte, W.; Korva, M.; Avšič Županc, T.; Goüy De Bellocq, J.; et al. Discovery and Genome Characterization of Three New Jeilongviruses, a Lineage of Paramyxoviruses Characterized by Their Unique Membrane Proteins. BMC Genom. 2018, 19, 617. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Meurs, S.; Zisi, Z.; Goüy De Bellocq, J.; Bletsa, M.; Lemey, P.; Maes, P. Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus Jeilongvirus. Microbiol. Resour. Announc. 2021, 10, e00325-21. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Meurs, S.; Horemans, M.; Loosen, A.; Joly Maes, T.; Laenen, L.; Vergote, V.; Koundouno, F.R.; Magassouba, N.; Konde, M.K.; et al. The Characterization of Multiple Novel Paramyxoviruses Highlights the Diverse Nature of the Subfamily Orthoparamyxovirinae. Virus Evol. 2022, 8, veac061. [Google Scholar] [CrossRef]
- Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022: This Article Is Part of the ICTV Virus Taxonomy Profiles Collection. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef] [PubMed]
- Philippa, J.D.W.; Martina, B.E.E.; Kuiken, T.; Van De Bildt, M.W.G.; Osterhaus, A.D.M.E.; Leighton, F.A.; Daoust, P.Y.; Nielsen, O.; Pagliarulo, M.; Schwantje, H.; et al. Antibodies to Selected Pathogens in Free-ranging Terrestrial Carnivores and Marine Mammals in Canada. Vet. Rec. 2004, 155, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Borkenhagen, L.K.; Fieldhouse, J.K.; Seto, D.; Gray, G.C. Are Adenoviruses Zoonotic? A Systematic Review of the Evidence. Emerg. Microbes Infect. 2019, 8, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Benkő, M.; Harrach, B.; Kremer, E.J. Do Nonhuman Primate or Bat Adenoviruses Pose a Risk for Human Health? Future Microbiol. 2014, 9, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Klempa, B.; Krüger, D.H.; Auste, B.; Stanko, M.; Krawczyk, A.; Nickel, K.F.; Überla, K.; Stang, A. A Novel Cardiotropic Murine Adenovirus Representing a Distinct Species of Mastadenoviruses. J. Virol. 2009, 83, 5749–5759. [Google Scholar] [CrossRef] [PubMed]
- Hemmi, S.; Vidovszky, M.Z.; Ruminska, J.; Ramelli, S.; Decurtins, W.; Greber, U.F.; Harrach, B. Genomic and Phylogenetic Analyses of Murine Adenovirus 2. Virus Res. 2011, 160, 128–135. [Google Scholar] [CrossRef]
- Kumakamba, C.; N’Kawa, F.; Kingebeni, P.M.; Losoma, J.A.; Lukusa, I.N.; Muyembe, F.; Mulembakani, P.; Makuwa, M.; LeBreton, M.; Gillis, A.; et al. Analysis of Adenovirus DNA Detected in Rodent Species from the Democratic Republic of the Congo Indicates Potentially Novel Adenovirus Types. New Microbes New Infect. 2020, 34, 100640. [Google Scholar] [CrossRef]
- Ochola, G.O.; Li, B.; Obanda, V.; Ommeh, S.; Ochieng, H.; Yang, X.-L.; Onyuok, S.O.; Shi, Z.-L.; Agwanda, B.; Hu, B. Discovery of Novel DNA Viruses in Small Mammals from Kenya. Virol. Sin. 2022, 37, 491–502. [Google Scholar] [CrossRef]
- Pauly, M.; Akoua-Koffi, C.; Buchwald, N.; Schubert, G.; Weiss, S.; Couacy-Hymann, E.; Anoh, A.E.; Mossoun, A.; Calvignac-Spencer, S.; Leendertz, S.A.; et al. Adenovirus in Rural Côte D‘Ivoire: High Diversity and Cross-Species Detection. EcoHealth 2015, 12, 441–452. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.-M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef]
- Roediger, B.; Lee, Q.; Tikoo, S.; Cobbin, J.C.A.; Henderson, J.M.; Jormakka, M.; O’Rourke, M.B.; Padula, M.P.; Pinello, N.; Henry, M.; et al. An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell 2018, 175, 530–543.e24. [Google Scholar] [CrossRef] [PubMed]
- Lee, Q.; Padula, M.P.; Pinello, N.; Williams, S.H.; O’Rourke, M.B.; Fumagalli, M.J.; Orkin, J.D.; Song, R.; Shaban, B.; Brenner, O.; et al. Murine and Related Chapparvoviruses Are Nephro-Tropic and Produce Novel Accessory Proteins in Infected Kidneys. PLoS Pathog. 2020, 16, e1008262. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Carrasco, S.E.; Feng, Y.; Bakthavatchalu, V.; Annamalai, D.; Kramer, R.; Muthupalani, S.; Fox, J.G. Identification of a New Strain of Mouse Kidney Parvovirus Associated with Inclusion Body Nephropathy in Immunocompromised Laboratory Mice. Emerg. Microbes Infect. 2020, 9, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, E.F.; Hsieh, W.-T.; Kramer, J.A.; Breed, M.W.; Roelke-Parker, M.E.; Stephens-Devalle, J.; Pate, N.M.; Bassel, L.L.; Hollingshead, M.G.; Karim, B.O.; et al. Naturally Acquired Mouse Kidney Parvovirus Infection Produces a Persistent Interstitial Nephritis in Immunocompetent Laboratory Mice. Vet. Pathol. 2020, 57, 915–925. [Google Scholar] [CrossRef]
- Williams, S.H.; Che, X.; Garcia, J.A.; Klena, J.D.; Lee, B.; Muller, D.; Ulrich, W.; Corrigan, R.M.; Nichol, S.; Jain, K.; et al. Viral Diversity of House Mice in New York City. mBio 2018, 9, e01354-17. [Google Scholar] [CrossRef]
- Tan, Z.; Yu, H.; Xu, L.; Zhao, Z.; Zhang, P.; Qu, Y.; He, B.; Tu, C. Virome Profiling of Rodents in Xinjiang Uygur Autonomous Region, China: Isolation and Characterization of a New Strain of Wenzhou Virus. Virology 2019, 529, 122–134. [Google Scholar] [CrossRef]
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef]
- Rivadulla, E.; Romalde, J.L. A Comprehensive Review on Human Aichi Virus. Virol. Sin. 2020, 35, 501–516. [Google Scholar] [CrossRef]
- Fourgeaud, J.; Lecuit, M.M.; Pérot, P.; Bruneau, J.; Regnault, B.; Da Rocha, N.; Bessaud, M.; Picard, C.; Jeziorski, É.; Fournier, B.; et al. Chronic Aichi Virus Infection As a Cause of Long-Lasting Multiorgan Involvement in Patients With Primary Immune Deficiencies. Clin. Infect. Dis. 2023, 77, 620–628. [Google Scholar] [CrossRef]
- Lu, L.; Van Dung, N.; Ivens, A.; Bogaardt, C.; O’Toole, A.; Bryant, J.E.; Carrique-Mas, J.; Van Cuong, N.; Anh, P.H.; Rabaa, M.A.; et al. Genetic Diversity and Cross-Species Transmission of Kobuviruses in Vietnam. Virus Evol. 2018, 4. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, L.; Du, J.; Yang, L.; Ren, X.; Liu, B.; Jiang, J.; Yang, J.; Dong, J.; Sun, L.; et al. Comparative Analysis of Rodent and Small Mammal Viromes to Better Understand the Wildlife Origin of Emerging Infectious Diseases. Microbiome 2018, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Boros, Á.; Orlovácz, K.; Pankovics, P.; Szekeres, S.; Földvári, G.; Fahsbender, E.; Delwart, E.; Reuter, G. Diverse Picornaviruses Are Prevalent among Free-Living and Laboratory Rats (Rattus Norvegicus) in Hungary and Can Cause Disseminated Infections. Infect. Genet. Evol. 2019, 75, 103988. [Google Scholar] [CrossRef]
- He, W.-T.; Hou, X.; Zhao, J.; Sun, J.; He, H.; Si, W.; Wang, J.; Jiang, Z.; Yan, Z.; Xing, G.; et al. Virome Characterization of Game Animals in China Reveals a Spectrum of Emerging Pathogens. Cell 2022, 185, 1117–1129.e8. [Google Scholar] [CrossRef] [PubMed]
- You, F.-F.; Zhang, M.-Y.; He, H.; He, W.-Q.; Li, Y.-Z.; Chen, Q. Kobuviruses Carried by Rattus Norvegicus in Guangdong, China. BMC Microbiol. 2020, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; He, W.; Fu, J.; Li, Y.; He, H.; Chen, Q. Epidemiological Evidence for Fecal-Oral Transmission of Murine Kobuvirus. Front. Public Health 2022, 10, 865605. [Google Scholar] [CrossRef]
- Firth, C.; Bhat, M.; Firth, M.A.; Williams, S.H.; Frye, M.J.; Simmonds, P.; Conte, J.M.; Ng, J.; Garcia, J.; Bhuva, N.P.; et al. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus Norvegicus in New York City. mBio 2014, 5, e01933-14. [Google Scholar] [CrossRef]
- Zhang, M.; You, F.; Wu, F.; He, H.; Li, Q.; Chen, Q. Epidemiology and Genetic Characteristics of Murine Kobuvirus from Faecal Samples of Rattus Losea, Rattus Tanezumi and Rattus Norvegicus in Southern China. J. Gen. Virol. 2021, 102, 001646. [Google Scholar] [CrossRef]
- Phan, T.G.; Kapusinszky, B.; Wang, C.; Rose, R.K.; Lipton, H.L.; Delwart, E.L. The Fecal Viral Flora of Wild Rodents. PLoS Pathog. 2011, 7, e1002218. [Google Scholar] [CrossRef]
- Briese, T.; Kapoor, A.; Mishra, N.; Jain, K.; Kumar, A.; Jabado, O.J.; Lipkin, W.I. Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. mBio 2015, 6, e01491-15. [Google Scholar] [CrossRef]
- Kapoor, V.; Briese, T.; Ranjan, A.; Donovan, W.M.; Mansukhani, M.M.; Chowdhary, R.; Lipkin, W.I. Validation of the VirCapSeq-VERT System for Differential Diagnosis, Detection, and Surveillance of Viral Infections. J. Clin. Microbiol. 2024, 62, e00612-23. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Needleman, S.B.; Wunsch, C.D. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef]
- Walker, S.L.; Wonderling, R.S.; Owens, R.A. Mutational Analysis of the Adeno-Associated Virus Type 2 Rep68 Protein Helicase Motifs. J. Virol. 1997, 71, 6996–7004. [Google Scholar] [CrossRef] [PubMed]
- James, J.A.; Escalante, C.R.; Yoon-Robarts, M.; Edwards, T.A.; Linden, R.M.; Aggarwal, A.K. Crystal Structure of the SF3 Helicase from Adeno-Associated Virus Type 2. Structure 2003, 11, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.D.S.F.; Abreu, W.U.; Rodrigues, L.R.R.; Marinho, L.F.; Morais, V.D.S.; Villanova, F.; Pandey, R.P.; Araújo, E.L.L.; Deng, X.; Delwart, E.; et al. Novel Chaphamaparvovirus in Insectivorous Molossus Molossus Bats, from the Brazilian Amazon Region. Viruses 2023, 15, 606. [Google Scholar] [CrossRef]
- Jager, M.C.; Tomlinson, J.E.; Lopez-Astacio, R.A.; Parrish, C.R.; Van De Walle, G.R. Small but Mighty: Old and New Parvoviruses of Veterinary Significance. Virol. J. 2021, 18, 210. [Google Scholar] [CrossRef]
- Pénzes, J.J.; Söderlund-Venermo, M.; Canuti, M.; Eis-Hübinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the Family Parvoviridae: A Revised Taxonomy Independent of the Canonical Approach Based on Host Association. Arch. Virol. 2020, 165, 2133–2146. [Google Scholar] [CrossRef]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef]
- Sasaki, M.; Orba, Y.; Ueno, K.; Ishii, A.; Moonga, L.; Hang’ombe, B.M.; Mweene, A.S.; Ito, K.; Sawa, H. Metagenomic Analysis of the Shrew Enteric Virome Reveals Novel Viruses Related to Human Stool-Associated Viruses. J. Gen. Virol. 2015, 96, 440–452. [Google Scholar] [CrossRef]
- Kapoor, A.; Simmonds, P.; Lipkin, W.I.; Zaidi, S.; Delwart, E. Use of Nucleotide Composition Analysis To Infer Hosts for Three Novel Picorna-Like Viruses. J. Virol. 2010, 84, 10322–10328. [Google Scholar] [CrossRef]
- Jungbauer-Groznica, M.; Wiese, K.; Fischer, I.; Markus, J.; Chang, T.-H.; Gösler, I.; Kowalski, H.; Blaas, D.; Real-Hohn, A. Aichivirus A1 Replicates in Human Intestinal Epithelium and Bronchial Tissue: Lung–Gut Axis? Virus Res. 2024, 342, 199338. [Google Scholar] [CrossRef] [PubMed]
- Japhet, M.O.; Famurewa, O.; Adesina, O.A.; Opaleye, O.O.; Wang, B.; Höhne, M.; Bock, C.T.; Mas Marques, A.; Niendorf, S. Viral Gastroenteritis among Children of 0-5 Years in Nigeria: Characterization of the First Nigerian Aichivirus, Recombinant Noroviruses and Detection of a Zoonotic Astrovirus. J. Clin. Virol. 2019, 111, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Sdiri-Loulizi, K.; Hassine, M.; Gharbi-Khelifi, H.; Sakly, N.; Chouchane, S.; Guediche, M.N.; Pothier, P.; Aouni, M.; Ambert-Balay, K. Detection and Genomic Characterization of Aichi Viruses in Stool Samples from Children in Monastir, Tunisia. J. Clin. Microbiol. 2009, 47, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Reuter, G.; Boros, Á.; Pankovics, P.; Egyed, L. Kobuvirus in Domestic Sheep, Hungary. Emerg. Infect. Dis. 2010, 16, 869–870. [Google Scholar] [CrossRef] [PubMed]
- Khamrin, P.; Maneekarn, N.; Hidaka, S.; Kishikawa, S.; Ushijima, K.; Okitsu, S.; Ushijima, H. Molecular Detection of Kobuvirus Sequences in Stool Samples Collected from Healthy Pigs in Japan. Infect. Genet. Evol. 2010, 10, 950–954. [Google Scholar] [CrossRef]
- Aiemjoy, K.; Altan, E.; Aragie, S.; Fry, D.M.; Phan, T.G.; Deng, X.; Chanyalew, M.; Tadesse, Z.; Callahan, E.K.; Delwart, E.; et al. Viral Species Richness and Composition in Young Children with Loose or Watery Stool in Ethiopia. BMC Infect. Dis. 2019, 19, 53. [Google Scholar] [CrossRef]
- Ouédraogo, N.; Kaplon, J.; Bonkoungou, I.J.O.; Traoré, A.S.; Pothier, P.; Barro, N.; Ambert- Balay, K. Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso. PLoS ONE 2016, 11, e0153652. [Google Scholar] [CrossRef]
- Ibrahim, C.; Hammami, S.; Mejri, S.; Mehri, I.; Pothier, P.; Hassen, A. Detection of Aichi Virus Genotype B in Two Lines of Wastewater Treatment Processes. Microb. Pathog. 2017, 109, 305–312. [Google Scholar] [CrossRef]
- Onosi, O.; Upfold, N.S.; Jukes, M.D.; Luke, G.A.; Knox, C. The First Molecular Detection of Aichi Virus 1 in Raw Sewage and Mussels Collected in South Africa. Food Env. Virol. 2019, 11, 96–100. [Google Scholar] [CrossRef]
- Thibault, P.A.; Watkinson, R.E.; Moreira-Soto, A.; Drexler, J.F.; Lee, B. Zoonotic Potential of Emerging Paramyxoviruses. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 98, pp. 1–55. ISBN 978-0-12-812596-0. [Google Scholar]
- Luis, A.D.; Hayman, D.T.S.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.C.; Mills, J.N.; Timonin, M.E.; Willis, C.K.R.; Cunningham, A.A.; et al. A Comparison of Bats and Rodents as Reservoirs of Zoonotic Viruses: Are Bats Special? Proc. R. Soc. B. 2013, 280, 20122753. [Google Scholar] [CrossRef]
- Nieto-Rabiela, F.; Wiratsudakul, A.; Suzán, G.; Rico-Chávez, O. Viral Networks and Detection of Potential Zoonotic Viruses in Bats and Rodents: A Worldwide Analysis. Zoonoses Public. Health 2019, 66, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Audsley, M.D.; Marsh, G.A.; Lieu, K.G.; Tachedjian, M.; Joubert, D.A.; Wang, L.-F.; Jans, D.A.; Moseley, G.W. The Immune Evasion Function of J and Beilong Virus V Proteins Is Distinct from That of Other Paramyxoviruses, Consistent with Their Inclusion in the Proposed Genus Jeilongvirus. J. Gen. Virol. 2016, 97, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Jun, M.; Karabatsos, N.; Johnson, R. A New Mouse Paramyxovirus (J Virus). Aust. J. Exp. Biol. Med. 1977, 55, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Jack, P.J.M.; Boyle, D.B.; Eaton, B.T.; Wang, L.-F. The Complete Genome Sequence of J Virus Reveals a Unique Genome Structure in the Family Paramyxoviridae. J. Virol. 2005, 79, 10690–10700. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, J.; Chen, Z.; Gao, X.; Wang, L.-F.; Basler, C.; Sakamoto, K.; He, B. The L Gene of J Paramyxovirus Plays a Critical Role in Viral Pathogenesis. J. Virol. 2013, 87, 12990–12998. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Patel, J.; Fuentes, S.; Lin, Y.; Anderson, D.; Sakamoto, K.; Wang, L.-F.; He, B. Function of the Small Hydrophobic Protein of J Paramyxovirus. J. Virol. 2011, 85, 32–42. [Google Scholar] [CrossRef]
- Abraham, M.; Arroyo-Diaz, N.M.; Li, Z.; Zengel, J.; Sakamoto, K.; He, B. Role of Small Hydrophobic Protein of J Paramyxovirus in Virulence. J. Virol. 2018, 92, e00653-18. [Google Scholar] [CrossRef]
- Franz, S.; Rennert, P.; Woznik, M.; Grützke, J.; Lüdde, A.; Arriero Pais, E.M.; Finsterbusch, T.; Geyer, H.; Mankertz, A.; Friedrich, N. Mumps Virus SH Protein Inhibits NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor 1, Interleukin-1 Receptor 1, and Toll-Like Receptor 3 Complexes. J. Virol. 2017, 91, e01037-17. [Google Scholar] [CrossRef]
- Ghawar, W.; Pascalis, H.; Bettaieb, J.; Mélade, J.; Gharbi, A.; Snoussi, M.A.; Laouini, D.; Goodman, S.M.; Ben Salah, A.; Dellagi, K. Insight into the Global Evolution of Rodentia Associated Morbilli-Related Paramyxoviruses. Sci. Rep. 2017, 7, 1974. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Mélade, J.; Dietrich, M.; Ramasindrazana, B.; Soarimalala, V.; Lagadec, E.; Le Minter, G.; Tortosa, P.; Heraud, J.-M.; De Lamballerie, X.; et al. Highly Diverse Morbillivirus-Related Paramyxoviruses in Wild Fauna of the Southwestern Indian Ocean Islands: Evidence of Exchange between Introduced and Endemic Small Mammals. J. Virol. 2014, 88, 8268–8277. [Google Scholar] [CrossRef]
- Ch’ng, L.; Low, D.H.W.; Borthwick, S.A.; Zhang, R.; Ong, Z.A.; Su, Y.C.F.; Hitch, A.T.; Smith, G.J.D.; Mendenhall, I.H. Evolution and Ecology of Jeilongvirus among Wild Rodents and Shrews in Singapore. One Health Outlook 2023, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Han, Y.; Liu, B.; Li, H.; Zhu, G.; Latinne, A.; Dong, J.; Sun, L.; Su, H.; Liu, L.; et al. Decoding the RNA Viromes in Rodent Lungs Provides New Insight into the Origin and Evolutionary Patterns of Rodent-Borne Pathogens in Mainland Southeast Asia. Microbiome 2021, 9, 18. [Google Scholar] [CrossRef]
- Larsen, B.B.; Gryseels, S.; Otto, H.W.; Worobey, M. Evolution and Diversity of Bat and Rodent Paramyxoviruses from North America. J. Virol. 2022, 96, e01098-21. [Google Scholar] [CrossRef] [PubMed]
- Wells, H.L.; Loh, E.; Nava, A.; Solorio, M.R.; Lee, M.H.; Lee, J.; Sukor, J.R.A.; Navarrete-Macias, I.; Liang, E.; Firth, C.; et al. Classification of New Morbillivirus and Jeilongvirus Sequences from Bats Sampled in Brazil and Malaysia. Arch. Virol. 2022, 167, 1977–1987. [Google Scholar] [CrossRef]
- Horemans, M.; Van Bets, J.; Joly Maes, T.; Maes, P.; Vanmechelen, B. Discovery and Genome Characterization of Six New Orthoparamyxoviruses in Small Belgian Mammals. Virus Evol. 2023, 9, vead065. [Google Scholar] [CrossRef] [PubMed]
- Guida, J.D.; Fejer, G.; Pirofski, L.A.; Brosnan, C.F.; Horwitz, M.S. Mouse Adenovirus Type 1 Causes a Fatal Hemorrhagic Encephalomyelitis in Adult C57BL/6 but Not BALB/c Mice. J. Virol. 1995, 69, 7674–7681. [Google Scholar] [CrossRef] [PubMed]
- Hemmi, S.; Spindler, K.R. Murine Adenoviruses: Tools for Studying Adenovirus Pathogenesis in a Natural Host. FEBS Lett. 2019, 593, 3649–3659. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Sugiyama, T.; Sasaki, S. An Adenovirus Isolated from the Feces of Mice: I. Isolation and Identification. Jpn. J. Microbiol. 1966, 10, 115–125. [Google Scholar] [CrossRef]
- Sugiyama, T.; Hashimoto, K.; Sasaki, S. An Adenovirus Isolated from the Feces of Mice: II. Experimental Infection. Jpn. J. Microbiol. 1967, 11, 33–42. [Google Scholar] [CrossRef]
- Zheng, X.; Qiu, M.; Ke, X.; Guan, W.; Li, J.; Huo, S.; Chen, S.; Zhong, X.; Zhou, W.; Xiong, Y.; et al. Detection of Novel Adenoviruses in Fecal Specimens from Rodents and Shrews in Southern China. Virus Genes. 2016, 52, 417–421. [Google Scholar] [CrossRef]
- Yu, G.; Yagi, S.; Carrion, R.; Chen, E.C.; Liu, M.; Brasky, K.M.; Lanford, R.E.; Kelly, K.R.; Bales, K.L.; Schnurr, D.P.; et al. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus. PLoS ONE 2013, 8, e68558. [Google Scholar] [CrossRef]
- Chen, E.C.; Yagi, S.; Kelly, K.R.; Mendoza, S.P.; Maninger, N.; Rosenthal, A.; Spinner, A.; Bales, K.L.; Schnurr, D.P.; Lerche, N.W.; et al. Cross-Species Transmission of a Novel Adenovirus Associated with a Fulminant Pneumonia Outbreak in a New World Monkey Colony. PLoS Pathog. 2011, 7, e1002155. [Google Scholar] [CrossRef]
- Ongrádi, J.; Chatlynne, L.G.; Tarcsai, K.R.; Stercz, B.; Lakatos, B.; Pring-Åkerblom, P.; Gooss, D.; Nagy, K.; Ablashi, D.V. Adenovirus Isolated From a Cat Is Related to Human Adenovirus 1. Front. Microbiol. 2019, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.; Vidovszky, M.Z.; Mühldorfer, K.; Dabrowski, P.W.; Radonić, A.; Nitsche, A.; Wibbelt, G.; Kurth, A.; Harrach, B. Genome Analysis of Bat Adenovirus 2: Indications of Interspecies Transmission. J. Virol. 2012, 86, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, S.; Seto, J.; Liu, E.B.; Ismail, A.M.; Madupu, R.; Heim, A.; Jones, M.S.; Dyer, D.W.; Chodosh, J.; Seto, D. A Zoonotic Adenoviral Human Pathogen Emerged through Genomic Recombination among Human and Nonhuman Simian Hosts. J. Virol. 2019, 93, e00564-19. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Yagi, S.; Lu, X.; Yu, G.; Chen, E.C.; Liu, M.; Dick, E.J.; Carey, K.D.; Erdman, D.D.; Leland, M.M.; et al. A Novel Adenovirus Species Associated with an Acute Respiratory Outbreak in a Baboon Colony and Evidence of Coincident Human Infection. mBio 2013, 4, e00084-13. [Google Scholar] [CrossRef]
- Souza, W.M.D.; Romeiro, M.F.; Fumagalli, M.J.; Modha, S.; De Araujo, J.; Queiroz, L.H.; Durigon, E.L.; Figueiredo, L.T.M.; Murcia, P.R.; Gifford, R.J. Chapparvoviruses Occur in at Least Three Vertebrate Classes and Have a Broad Biogeographic Distribution. J. Gen. Virol. 2017, 98, 225–229. [Google Scholar] [CrossRef]
- Alex, C.E.; Fahsbender, E.; Altan, E.; Bildfell, R.; Wolff, P.; Jin, L.; Black, W.; Jackson, K.; Woods, L.; Munk, B.; et al. Viruses in Unexplained Encephalitis Cases in American Black Bears (Ursus Americanus). PLoS ONE 2020, 15, e0244056. [Google Scholar] [CrossRef]
Site * | Sample ID | Species # | Tissue † | Milanzi Virus | Lupande Virus | MAdV-4 | Mwangazi Virus | Nyamadzi Virus | Aichivirus A |
---|---|---|---|---|---|---|---|---|---|
1 | A104 | MN | K/L | 87 ¶ | 100 | 100 | |||
1 | A121L | MN | L | 53 | |||||
1 | A124K | MN | K/L | 10 | 38 | ||||
1 | A131K | MN | K | 100 | 68 | ||||
1 | A126K | MN | K/L | 100 | |||||
1 | A138 | MN | K | 3 | 99 | 100 | |||
1 | A13LV | MN | LV | 2 | 9 | ||||
1 | A14 | MN | K/LV | 84 | 9 | ||||
1 | A17L | MN | L | 100 | |||||
1 | A46L | MN | L | 90 | |||||
1 | A48K | MN | K | 45 | 100 | ||||
1 | A87L | MN | L | 71 | |||||
1 | A93 | MN | K | 12 | 12 | ||||
1 | A99L | MN | L | 37 | 42 | ||||
1 | A102 | MN | K/L | 100 | |||||
1 | A105 | MN | K/L | 9 | |||||
1 | A115 | MN | K/L | 15 | |||||
1 | A127 | MN | K/L | 70 | 18 | ||||
1 | A128 | MN | K/L | 93 | 100 | ||||
1 | A24 | MN | K/LV | 11 | 40 | ||||
1 | A27 | MN | L/LV | 28 | |||||
1 | A29 | MN | K/LV | 5 | 6 | ||||
1 | A30 | MN | L/S | 63 | |||||
1 | A39 | MN | L/S | 4 | 100 | ||||
1 | A58 | MN | K/L | 85 | 99 | 23 | |||
1 | A59 | MN | K/L | 22 | |||||
1 | A60 | MN | K/LV | 32 | |||||
1 | A63 | MN | L | 43 | |||||
1 | A64 | MN | K | 8 | 99 | ||||
1 | A80 | MN | L | 12 | 98 | ||||
1 | A83 | MN | L | 93 | 100 | ||||
1 | A85 | MN | K/L | 43 | |||||
1 | A89 | MN | K | 3 | |||||
1 | A95 | MN | K | 32 | 59 | 76 | |||
1 | A96 | MN | K | 27 | |||||
1 | A97 | MN | K | 86 | |||||
1 | A98 | MN | K/L | 37 | |||||
1 | A119 | MN | K/L | 27 | |||||
1 | A15 | MN | L/LV | 62 | |||||
1 | A16K | RR | K | 100 | 100 | ||||
1 | A18 | MN | K/L/LV | 53 | |||||
1 | A22 | MN | L/S/K | 67 | |||||
1 | A25 | MN | K/L/LV | 14 | |||||
1 | A32 | MN | K/L/LV/S | 3 | |||||
1 | A3 | MN | K/LV/S | 2 | 80 | ||||
1 | A4L | MN | L | 5 | |||||
1 | A50 | MN | K/L/LV | 58 | |||||
1 | A65 | MN | K/L | 92 | 100 | ||||
1 | A67 | MN | K/LV/S | 2 | 5 | ||||
1 | A69 | MN | K/LV/S | 4 | |||||
1 | A6K | MN | K | 3 | |||||
1 | A72 | MN | K/L | 11 | |||||
1 | A7 | MN | L/LV/S | 17 | |||||
2 | K1 | MN | K/L/LV | 8 | |||||
2 | K2 | MN | K/L/LV | 5 | |||||
2 | K3 | MN | K/L/LV | 7 | |||||
2 | K6 | MN | K/LV/S | 5 | |||||
3 | NY2 | RR | K/L/LV/S | 17 | 100 | ||||
3 | NY4 | RR | K/L/LV/S | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moonga, L.C.; Chipinga, J.; Collins, J.P.; Kapoor, V.; Saasa, N.; Nalubamba, K.S.; Hang’ombe, B.M.; Namangala, B.; Lundu, T.; Lu, X.-J.; et al. Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses 2024, 16, 1754. https://doi.org/10.3390/v16111754
Moonga LC, Chipinga J, Collins JP, Kapoor V, Saasa N, Nalubamba KS, Hang’ombe BM, Namangala B, Lundu T, Lu X-J, et al. Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses. 2024; 16(11):1754. https://doi.org/10.3390/v16111754
Chicago/Turabian StyleMoonga, Lavel C., Jones Chipinga, John P. Collins, Vishal Kapoor, Ngonda Saasa, King S. Nalubamba, Bernard M. Hang’ombe, Boniface Namangala, Tapiwa Lundu, Xiang-Jun Lu, and et al. 2024. "Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents" Viruses 16, no. 11: 1754. https://doi.org/10.3390/v16111754
APA StyleMoonga, L. C., Chipinga, J., Collins, J. P., Kapoor, V., Saasa, N., Nalubamba, K. S., Hang’ombe, B. M., Namangala, B., Lundu, T., Lu, X. -J., Yingst, S., Wickiser, J. K., & Briese, T. (2024). Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses, 16(11), 1754. https://doi.org/10.3390/v16111754