Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, and Human Sera
2.2. Construction of Poliovirus Capsid Expression Plasmids
2.3. T7-Transcribed Pseudovirus Backbone RNA In Vitro
2.4. Preparation of Sabin II and Mutation Sabin II Pseudovirus
2.5. Pseudovirus-Based Neutralization Assay
2.6. Bioinformation Search Method
2.7. Establishment of Homology Models
2.8. Nucleotide Sequence Registration Numbers
2.9. Phylogenetic Tree Analysis
2.10. Statistical Analysis
3. Results
3.1. Neutralization Site Analysis
3.2. Prediction of the 3D Spatial Conformation of the Capsid Protein of the iVDPV Isolate (GU390707) and Sabin Strain
3.3. Mutant Sabin II Pseudoviruses Against Rabbit Polyclonal Antibody and Human Serum
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, L. The Salk Polio Vaccine Trial of 1954: Risks, randomization and public involvement in research. Clin. Trials 2004, 1, 122–130. [Google Scholar] [CrossRef]
- Poirier, B.; Morgeaux, S.; Fuchs, F. The assessment of OPV vaccines by the monkey neurovirulence test: Why and how to qualify the experts in histology of central nervous system. Vaccine 2002, 21, 115–119. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.L.; Weldon, W.C.; Wei, L.; Chen, Q.; Shaw, J.; Zhao, K.; Jorba, J.; Kew, O.M.; Pallansch, M.A.; Burns, C.C.; et al. Neutralization capacity of highly divergent type 2 vaccine-derived polioviruses from immunodeficient patients. Vaccine 2020, 38, 3042–3049. [Google Scholar] [CrossRef] [PubMed]
- Quarleri, J. Poliomyelitis is a current challenge: Long-term sequelae and circulating vaccine-derived poliovirus. Geroscience 2023, 45, 707–717. [Google Scholar] [CrossRef]
- Anis, E.; Kopel, E.; Singer, S.R.; Kaliner, E.; Moerman, L.; Moran-Gilad, J.; Sofer, D.; Manor, Y.; Shulman, L.M.; Mendelson, E.; et al. Insidious Reintroduction of Wild Poliovirus into Israel, 2013. Eurosurveillance 2013, 18, 20586. [Google Scholar] [CrossRef]
- Minor, P.D. An Introduction to Poliovirus: Pathogenesis, Vaccination, and the Endgame for Global Eradication. Methods Mol. Biol. 2016, 1387, 1–10. [Google Scholar]
- Aylward, B.; Yamada, T. The polio endgame. N. Engl. J. Med. 2011, 364, 2273–2275. [Google Scholar] [CrossRef]
- Nathanson, N. Eradication of poliovirus: Fighting fire with fire. J. Infect. Dis. 2011, 203, 889–890. [Google Scholar] [CrossRef]
- Bhaumik, S. Polio eradication: Current status and challenges. J. Family Med. Prim. Care 2012, 1, 84–85. [Google Scholar] [CrossRef]
- Sun, M.; Li, C.; Xu, W.; Liao, G.; Li, R.; Zhou, J.; Li, Y.; Cai, W.; Yan, D.; Che, Y.; et al. Immune Serum from Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses. Clin. Infect. Dis. 2017, 64, 1317–1325. [Google Scholar] [CrossRef]
- Arita, M.; Iwai, M.; Wakita, T.; Shimizu, H. Development of a poliovirus neutralization test with poliovirus pseudovirus for measurement of neutralizing antibody titer in human serum. Clin. Vaccine Immunol. 2011, 18, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Arita, M.; Nagata, N.; Sata, T.; Miyamura, T.; Shimizu, H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J. Gen. Virol. 2006, 87 Pt 11, 3317–3327. [Google Scholar] [CrossRef] [PubMed]
- Viktorova, E.G.; Khattar, S.; Samal, S.; Belov, G.A. Poliovirus Replicon RNA Generation, Transfection, Packaging, and Quantitation of Replication. Curr. Protoc. Microbiol. 2018, 48, 15H.4.1–15H.4.15. [Google Scholar] [CrossRef]
- Arita, M.; Iwai-Itamochi, M. Evaluation of antigenic differences between wild and Sabin vaccine strains of poliovirus using the pseudovirus neutralization test. Sci. Rep. 2019, 9, 11970. [Google Scholar] [CrossRef]
- Zhang, H.; An, D.; Liu, W.; Mao, Q.; Jin, J.; Xu, L.; Sun, S.; Jiang, L.; Li, X.; Shao, J.; et al. Analysis of cross-reactive neutralizing antibodies in human HFMD serum with an EV71 pseudovirus-based assay. PLoS ONE. 2014, 9, e100545. [Google Scholar] [CrossRef]
- Liu, S.; Song, D.; Bai, H.; Lu, W.; Dai, X.; Hao, C.; Zhang, Z.; Guo, H.; Zhang, Y.; Li, X. A safe and reliable neutralization assay based on pseudovirus to measure neutralizing antibody titer against poliovirus. J. Med. Virol. 2017, 89, 2075–2083. [Google Scholar] [CrossRef]
- Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef]
- Kopp, J.; Schwede, T. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 2004, 32, D230–D234. [Google Scholar] [CrossRef]
- Rigsby, R.E.; Parker, A.B. Using the PyMOL Application to Reinforce Visual Understanding of Protein Structure. Biochem. Mol. Biol. Educ. 2016, 44, 433–437. [Google Scholar] [CrossRef]
- Patel, V.; Ferguson, M.; Minor, P.D. Antigenic sites on type 2 poliovirus. Virology 1993, 192, 361–364. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Minor, P.D. Antigenic structure of picornaviruses. Curr. Top. Microbiol. Immunol. 1990, 161, 124–134. [Google Scholar]
- Bakker, W.A.; Thomassen, Y.E.; van’t Oever, A.G.; Westdijk, J.; van Oijen, M.G.; Sundermann, L.C.; van’t Veld, P.; Sleeman, E.; van Nimwegen, F.W.; Hamidi, A.; et al. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV. Vaccine 2011, 29, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Bigouette, J.P.; Henderson, E.; Traoré, M.A.; Wassilak, S.G.F.; Jorba, J.; Mahoney, F.; Bolu, O.; Diop, O.M.; Burns, C.C. Update on Vaccine-Derived Poliovirus Outbreaks—Worldwide, January 2021–December 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 366–371. [Google Scholar] [CrossRef]
- Namageyo-Funa, A.; Greene, S.A.; Henderson, E.; Traoré, M.A.; Shaukat, S.; Bigouette, J.P.; Jorba, J.; Wiesen, E.; Bolu, O.; Diop, O.M.; et al. Update on Vaccine-Derived Poliovirus Outbreaks—Worldwide, January 2023–June 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 909–916. [Google Scholar] [CrossRef]
- Shaghaghi, M.; Soleyman-Jahi, S.; Abolhassani, H.; Yazdani, R.; Azizi, G.; Rezaei, N.; Barbouche, M.R.; McKinlay, M.A.; Aghamohammadi, A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018, 36, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Howard, W.; Moonsamy, S.; Seakamela, L.; Jallow, S.; Modiko, F.; du Plessis, H.; Sibiya, R.; Kamupira, M.; Maseti, E.; Suchard, M. Sensitivity of the acute flaccid paralysis surveillance system for poliovirus in South Africa, 2016–2019. J. Med. Microbiol. 2021, 70, 001441. [Google Scholar] [CrossRef]
- Lin, J.; Cheng, N.; Hogle, J.M.; Steven, A.C.; Belnap, D.M. Conformational Shift of a Major Poliovirus Antigen Confirmed by Immuno-Cryogenic Electron Microscopy. J. Immunol. 2013, 191, 884–891. [Google Scholar] [CrossRef]
- Blomqvist, S.; Bruu, A.L.; Stenvik, M.; Hovi, T. Characterization of a recombinant type 3/type 2 poliovirus isolated from a healthy vaccinee and containing a chimeric capsid protein VP1. J. Gen. Virol. 2003, 84 Pt 3, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Page, G.S.; Mosser, A.G.; Hogle, J.M.; Filman, D.J.; Rueckert, R.R.; Chow, M. Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J. Virol. 1988, 62, 1781–1794. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Racaniello, V.R. Polioviruses that bind a chimeric Pvr–nectin-2 protein identify capsid residues involved in receptor interaction. Virology 2017, 510, 305–315. [Google Scholar] [CrossRef] [PubMed]
Type II | VP2 | VP3 | VP1 | |||||
---|---|---|---|---|---|---|---|---|
IIIb 140–142 | II 232–241 | II 336–338 | IIIa 394–401 | IIIb 410–420 | I 666–684 | IIa 800–804 | IIIa 864–867 | |
SabinII | WRK | DTNATNPARN | PRT | PLNLTSQR | VELSDTAHSDT | AIIEVDNDAPTKRASRLFS | STEGD | KDGLT |
MEF-1 | WRK | DTNATNPARN | PRT | PLNLTNQR | VELNDAAHSDT | AIIEVDNDAPTKRASKLFS | STEGD | KDGLA |
P712 | WRK | DTNATNPARN | PRT | PLNLTSQR | VELSDTAHSDT | AIIEVDNDAPTKRASRLFS | STEGD | KDGLT |
cVDPV2 | WRK | DTNATNPARN | PRT | PLNLTSQR | VELSDMARSDT | AIIEVDNDAPTKRASRLFS | STEGD | KDGLT |
iVDPV | WSK | DKNTDNPARK | PRT | PLNLTSQR | VELSDAANLDE | AIIEVENDAPTERXDRLFS | QAEGD | KDELT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, R.; Yuan, G.; He, L.; Dai, X.; Chuan, H.; Wang, M.; Liu, J.; Xu, L.; Liao, G.; et al. Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient. Viruses 2024, 16, 1761. https://doi.org/10.3390/v16111761
Wu Y, Zhang R, Yuan G, He L, Dai X, Chuan H, Wang M, Liu J, Xu L, Liao G, et al. Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient. Viruses. 2024; 16(11):1761. https://doi.org/10.3390/v16111761
Chicago/Turabian StyleWu, Yanan, Runfang Zhang, Guangbo Yuan, Lingyu He, Xiaohu Dai, Hongyun Chuan, Mingqing Wang, Jing Liu, Lilan Xu, Guoyang Liao, and et al. 2024. "Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient" Viruses 16, no. 11: 1761. https://doi.org/10.3390/v16111761
APA StyleWu, Y., Zhang, R., Yuan, G., He, L., Dai, X., Chuan, H., Wang, M., Liu, J., Xu, L., Liao, G., Li, W., & Zhou, J. (2024). Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient. Viruses, 16(11), 1761. https://doi.org/10.3390/v16111761