Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Biological Activity
2.2.1. Calu-3 Cytotoxicity Assay
2.2.2. Antiviral Activity
2.2.3. Protease Inhibition
2.2.4. Statistical Analysis
2.2.5. Aqueous Solubility of 4a
2.2.6. In Vivo Pharmacokinetics of 4a
2.3. Computational Modeling
2.3.1. Molecular Dynamic Simulations
2.3.2. Protein and Ligand Preparation
Compound Preparation
Physicochemical Properties Analysis
Protein Preparation
2.3.3. Molecular Docking
Analysis of the Best Compounds
3. Results and Discussion
3.1. Synthesis
3.2. Biological Activity Evaluation
3.3. Computational Modeling Evaluation
3.3.1. Molecular Docking Evaluation
3.3.2. In Silico Prediction of Drug-Likeness, Physicochemical Properties, and Pharmacokinetic Profile
3.4. Drug-Likeness Properties and In Vivo Pharmacokinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdeldayem, O.M.; Dabbish, A.M.; Habashy, M.M.; Mostafa, M.K.; Elhefnawy, M.; Ami, L.; Al-Sakkari, E.G.; Raga, A.; Rene, E.R. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. Sci. Total Environ. 2022, 803, 149834. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Ladner, J.T.; Lemey, P.; Pybus, O.G.; Rambaut, A.; Holmes, E.C.; Andersen, K.G. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 2019, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Bhadoria, P.; Gupta, G.; Agarwal, A. Viral Pandemics in the Past Two Decades: An Overview. J. Family Med. Prim. Care 2021, 10, 2745. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci. 2020, 255, 117831. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.U.; Song, H.; Yoon, G.Y.; Kim, D.; Kwon, Y.C. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Front Microbiol. 2020, 11, 1723. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Caleffi, G.S.; Rosa, A.S.; de Souza, L.G.; Avelar, J.L.S.; Nascimento, S.M.R.; de Almeida, V.M.; Tucci, A.R.; Ferreira, V.N.; da Silva, A.J.M.; Santos-Filho, O.A.; et al. Aurones: A Promissing Scaffold to Inhibit SARS-CoV-2 Replication. J. Nat. Prod. 2023, 86, 1536–1549. [Google Scholar] [CrossRef]
- Cosar, B.; Karagulleoglu, Z.Y.; Unal, S.; Ince, A.T.; Uncuoglu, D.B.; Tuncer, G.; Kilinc, B.R.; Ozkan, Y.E.; Ozkoc, H.C.; Demir, I.N.; et al. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor Rev. 2022, 63, 10. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- de Souza, L.G.; Salustiano, E.J.; da Costa, K.M.; Costa, A.T.; Rumjanek, V.M.; Domingos, J.L.O.; Rennó, M.N.; Costa, P.R.R. Synthesis of new α-Aryl-α-tetralones and α-Fluoro-α-aryl-α-tetralones, preliminary antiproliferative evaluation on drug resistant cell lines and in silico prediction of ADMETox properties. Bioorg. Chem. 2021, 110, 104790. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.L.R.; Portes, J.A.; de Araújo, M.H.; Silva, J.L.; Rennó, M.N.; Netto, C.D.; da Silva, A.J.; Costa, P.R.R.; de Souza, W.; Seabra, S.H.; et al. Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro. Parasitol. Int. 2015, 64, 622. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2012, 112, 3193. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Mauro, M.V.; Bruno, R.; Aquaro, S.; Sinicropi, M.S. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019, 24, 1912. [Google Scholar] [CrossRef]
- Kongkathip, B.; Kongkathip, N.; Sunthitikawinsakul, A.; Napaswat, C.; Yoosook, C. Anti-HIV-1 constituents from Clausena excavata: Part II. Carbazoles and a pyranocoumarin. Phytother. Res. 2005, 19, 728. [Google Scholar] [CrossRef]
- Favia, A.D.; Habrant, D.; Scarpelli, R.; Migliore, M.; Albani, C.; Bertozzi, S.M.; Dionisi, M.; Tarozzo, G.; Piomelli, D.; Cavalli, A.; et al. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor. J. Med. Chem. 2012, 55, 8807. [Google Scholar] [CrossRef]
- Bonomo, M.G.; Caruso, A.; El-Kashef, H.; Salzano, G.; Sinicropi, M.S.; Saturnino, C. An Update of Carbazole Treatment Strategies for COVID-19 Infection. Appl. Sci. 2023, 13, 1522. [Google Scholar] [CrossRef]
- Lapa, D.P.; de Souza, L.G.; Schaeffer, E.; de Jesus, E.C.; Vieira, A.A.; da Silva, A.J.M. Synthesis, characterization and computational studies of new naphthoquinones fused isoxazoles by the regiospecific tandem sonogashira-cyclization reaction. J. Mol. Struc. 2023, 1282, 135186. [Google Scholar] [CrossRef]
- Demidoff, F.C.; Netto, C.D.; Netto, M.N. Chapter 2—Anticancer naphthoquinone derivatives: An updated patent review (2012–2019). Stud. Nat. Prod. Chem. 2022, 73, 45. [Google Scholar] [CrossRef]
- Santos, L.H.; Kronenberger, T.; Almeida, R.G.; Silva, E.B.; Rocha, R.E.O.; Oliveira, J.C.; Barreto, L.V.; Skinner, D.; Fajtová, P.; Giardini, M.A.; et al. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease Mpro and Papain-like Protease PLpro of SARS-CoV-2. J. Chem. Inf. Model. 2022, 62, 6553. [Google Scholar] [CrossRef]
- Melo, P.A.; Pinheiro, D.A.; Ricardo, H.D.; Fernandes, F.F.; Tomaz, M.A.; El-Kik, C.Z.; Strauch, M.A.; da Fonseca, T.F.; Sifuentes, D.N.; Calil-Elias, S.; et al. Ability of a synthetic coumestan to antagonize Bothrops snake venom activities. Toxicon 2010, 55, 488. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.L.S.; Militão, G.C.G.; Costa, A.M.; Pessoa, C.Ó.; Costa-Lotufo, L.V.; Cunha-Junior, E.F.; Torres-Santos, E.C.; Costa, P.R.R.; da Silva, A.J.M. Suzuki-Miyaura Coupling between 3-Iodolawsone and Arylboronic Acids. Synthesis of Lapachol Analogues with Antineoplastic and Antileishmanial Activities. J. Braz. Chem. Soc. 2017, 28, 1573. [Google Scholar] [CrossRef]
- de Oliveira, N.S.; de Souza, L.G.; de Almeida, V.M.; Barreto, A.R.R.; Carvalho-Gondim, F.; Schaeffer, E.; Santos-Filho, O.A.; Rossi-Bergmann, B.; da Silva, A.J.M. Synthesis and evaluation of hybrid sulfonamide-chalcones with potential antileishmanial activity. Arch. Pharm. 2023, 4, e2300440. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, P.H.; Chai, C.L.; Heath, G.A.; Mahon, P.J.; Smith, G.D.; Waring, P.; Wilkes, B.A. Synthesis, electrochemistry, and bioactivity of the cyanobacterial calothrixins and related quinones. J. Med. Chem. 2004, 47, 4958–4963. [Google Scholar] [CrossRef]
- Suematsu, N.; Ninomiya, M.; Sugiyama, H.; Udagawa, T.; Tanaka, K.; Koketsu, M. Synthesis of carbazoloquinone derivatives and their antileukemic activity via modulating cellular reactive oxygen species. Bioorg. Med. Chem. Lett. 2019, 29, 2243. [Google Scholar] [CrossRef]
- Sisodiya, S.; Paul, S.; Chaudhary, H.; Grewal, P.; Kumar, G.; Daniel, D.P.; Das, B.; Nayak, D.; Guchhait, S.K.; Kundu, C.N.; et al. Exploration of Benzo[b]carbazole-6,11-diones as anticancer agents: Synthesis and studies of hTopoIIα inhibition and apoptotic effects. Bioorg. Med. Chem. Lett. 2021, 49, 128274. [Google Scholar] [CrossRef]
- Josey, B.J.; Inks, E.S.; Wen, X.; Chou, C.J. Structure−Activity Relationship Study of Vitamin K Derivatives Yields Highly Potent Neuroprotective Agents. J. Med. Chem. 2013, 56, 1007–1022. [Google Scholar] [CrossRef]
- Demidoff, F.C.; Rodrigues-Filho, E.J.P.; de Souza, A.L.F.; Netto, C.D.; de Carvalho, L.L. Cross-Coupling Reactions with 2-Amino-/Acetylamino-Substituted 3-Iodo-1,4-naphthoquinones: Convenient Synthesis of Novel Alkenyl- and Alkynylnaphthoquinones and Derivatives. Synthesis 2021, 53, 4097–4109. [Google Scholar] [CrossRef]
- Chen, X.-L.; Dong, Y.; He, S.; Zhang, R.; Zhang, H.; Tang, L.; Zhang, X.-M.; Wang, J.-Y. A One-Pot Approach to 2-(N-Substituted Amino)-1,4-naphthoquinones with Use of Nitro Compounds and 1,4-Naphthoquinones in Water. Synlett 2019, 30, 615–619. [Google Scholar] [CrossRef]
- Sieveking, I.; Thomas, P.; Estévez, J.C.; Quiñones, N.; Cuéllar, M.A.; Villena, J.; Espinosa-Bustos, C.; Fierro, A.; Tapia, R.A.; Maya, J.D.; et al. 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorg. Med. Chem. 2014, 22, 4609–4620. [Google Scholar] [CrossRef]
- Chaves, O.A.; Sacramento, C.Q.; Ferreira, A.C.; Mattos, M.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Vazquez, L.; Pinto, D.P.; da Silveira, G.P.E.; da Fonseca, L.B.; et al. Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 Mpro, Impairing Variants Replication In Vitro and In Vivo. Pharmaceuticals 2021, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/publications/i/item/who-whe-epp-2024.3 (accessed on 27 May 2024).
- Dludla, P.V.; Jack, B.; Viraragavan, A.; Pheiffer, C.; Johnson, R.; Louw, J.; Muller, C.J.F. A Dose-Dependent Effect of Dimethyl Sulfoxide on Lipid Content, Cell Viability and Oxidative Stress in 3T3-L1 Adipocytes. Toxicol. Rep. 2018, 5, 1014. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.T.; Nguyen, G.T.-L.; Truong, K.D. Comparative Cytotoxic Effects of Methanol, Ethanol and DMSO on Human Cancer Cell Lines. Biomed. Res. Ther. 2020, 7, 3855. [Google Scholar] [CrossRef]
- Schneider, P.; Hosseiny, S.S.; Szczotka, M.; Jordan, V.; Schlitter, K. Rapid solubility determination of the triterpenes oleanolic acid and ursolic acid by UV-spectroscopy in different solvents. Phytochem. Let. 2009, 2, 85. [Google Scholar] [CrossRef]
- Gabrielsson, J.; Weiner, D. Non-compartmental Analysis. In Computational Toxicology. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 929. [Google Scholar] [CrossRef]
- Myung, Y.; De Sá, A.G.C.; Ascher, D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, 52, W469–W475. [Google Scholar] [CrossRef]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef]
- Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res. 2022, 198, 105252. [Google Scholar] [CrossRef]
- Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.C.J.E.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity Against SARS-CoV-2. Antimicrob. Agents Chemother. 2021, 65, e02428-20. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. ACTT-1 Study Group Members. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe COVID-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Fintelman-Rodrigues, N.; Sacramento, C.Q.; Ribeiro Lima, C.; Souza da Silva, F.; Ferreira, A.C.; Mattos, M.; de Freitas, C.S.; Cardoso Soares, V.; da Silva Gomes Dias, S.; Temerozo, J.R.; et al. Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrob. Agents Chemother. 2020, 64, e00825-20. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020, 30, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Huang, B.; Tang, J.; Liu, S.; Liu, M.; Ye, Y.; Liu, Z.; Xiong, Y.; Zhu, W.; Cao, D.; et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun. 2021, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 2005, 353, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409. [Google Scholar] [CrossRef]
- Mody, V.; Ho, J.; Wills, S.; Mawri, A.; Lawson, L.; Ebert, M.C.C.J.C.; Fortin, G.M.; Rayalam, S.; Taval, S. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun. Biol. 2021, 4, 93. [Google Scholar] [CrossRef]
- He, J.; Hu, L.; Huang, X.; Wang, C.; Zhang, Z.; Wang, Y.; Zhang, D.; Ye, W. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int. J. Antimicrob. Agents 2020, 56, 106055. [Google Scholar] [CrossRef]
- Ahmad, B.; Batool, M.; Ain, Q.u.; Kim, M.S.; Choi, S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Int. J. Mol. Sci. 2021, 22, 9124. [Google Scholar] [CrossRef]
- Phosrithong, N.; Ungwitayatorn, J. Molecular docking study on anticancer activity of plant-derived natural products. Med. Chem. Res. 2009, 19, 817. [Google Scholar] [CrossRef]
- de Souza, L.G.; Moraes, P.F.; Leão, R.A.C.; Costa, P.R.R.; Soares, R.O.; Pascutti, P.G.; Figueroa-Villar, J.D.; Rennó, M.N. Theoretical studies and NMR assay of coumarins and neoflavanones derivatives as potential inhibitors of acetylcholinesterase. Comput. Biol. Chem. 2020, 87, 107293. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.A.; Marinho, B.G.; de Souza, L.G.; Fernandes, P.D.; Figueroa-Villar, J.D. Design, synthesis and in vivo evaluation of sodium 2-benzyl-chloromalonates as new central nervous system depressants. Med. Chem. Commun. 2015, 6, 1427–1437. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Pea, F.; Lipman, J. The clinical relevance of plasma protein binding changes. Clin. Pharmacokinet. 2013, 52, 1–8. [Google Scholar] [CrossRef]
- Schmidt, S.; Röck, K.; Sahre, M.; Burkhardt, O.; Brunner, M.; Lobmeyer, M.T.; Derendorf, H. Effect of protein binding on the pharmacological activity of highly bound antibiotics. Antimicrob. Agents Chemother. 2008, 52, 3994–4000. [Google Scholar] [CrossRef]
- Le Tiec, C.; Barrail, A.; Goujard, C.; Taburet, A.-M. Clinical pharmacokinetics and summary of efficacy and tolerability of atazanavir. Clin. Pharmacokinet. 2005, 44, 1035–1050. [Google Scholar] [CrossRef]
- Chen, W.; Liang, B.; Wu, X.; Li, L.; Wang, C.; Xing, D. Advances and challenges in using nirmatrelvir and its derivatives against SARS-CoV-2 infection. J. Pharm. Anal. 2023, 13, 255–261. [Google Scholar] [CrossRef]
Conformation | Chain A | Chain B | ||||
---|---|---|---|---|---|---|
Center x | Center y | Center z | Center x | Center y | Center z | |
267 | −15.009 | −30.809 | 2.602 | 5.857 | −32.129 | 41.189 |
5671 | −17.105 | −32.970 | 3.326 | 5.257 | −30.779 | 40.249 |
13,403 | −13.797 | −32.972 | 2.249 | 6.123 | −32.972 | 41.676 |
27,333 | −13.776 | −32.208 | 3.199 | 7.573 | −32.519 | 41.260 |
27,906 | −12.421 | −32.509 | 2.764 | 7.567 | −32.194 | 41.535 |
38,174 | −1.624 | −29.817 | 2.224 | 4.946 | −32.800 | 41.553 |
Compounds | EC50 (μM) | CC50 (μM) | SI |
---|---|---|---|
4a | 0.75 ± 0.1 | >200 | >266.7 |
4b | 1.68 ± 0.1 | >200 | >119.0 |
4d | 1.41 ± 0.1 | >200 | >141.8 |
4i | 3.73 ± 0.6 | >200 | >53.7 |
Compounds | IC50 Mpro (μM) | IC50 PLpro (μM) |
---|---|---|
4a | 0.11 ± 0.05 | 153 ± 0.1 |
4b | 0.37 ± 0.05 | 72.1 ± 0.1 |
4d | >200 | 190.8 ± 0.1 |
4i | >200 | 148.7 ± 0.6 |
GC-376 | 0.54 | - |
GRL-0617 | - | 0.00053 |
Compounds | Protein_Chain (Program/Pose) | Interactions | Score (Kcal/mol) | cKI (μM) a | Minimum Interaction Distance to C145:SG (Å) |
---|---|---|---|---|---|
4a | 17362_A (dockthor/2) | PI: H164, Q189, T190, T25; NC: E166, D187; HI: L27; HB: C145, H41, N142 | −7.644 | 2.4938 | 2.5232 |
4b | 17362_A (dockthor/3) | PI: H164, Q189, T190, T25; NC: E166, D187; HI: L27; HB: C145, H41, N142 | −7.66 | 2.4274 | 2.487 |
ATV | 6209_A (Vina/3) | HB: D187, Q189, H41 | −5.80 | 13.4758 | 2.2 |
NMV | 6209_A (Vina/4) | HB: C145, H163, F140, L140, S144, D187 | −6.6 | 57.1064 | 4.1 |
4a | |
---|---|
Aqueous solubility (μg/mL) | 1.43 |
CMAX (µM) * | 0.77 ± 0.12 |
TMAX (min) * | 20 ± 5 |
CL/F (L/(kg.h)) * | 1.87 ± 1.79 |
Vz/F (L/kg) * | 98 ± 186 |
t1/2,z (h) * | 37 ± 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, L.G.; Penna, E.A.; Rosa, A.S.; da Silva, J.C.; Schaeffer, E.; Guimarães, J.V.; de Paiva, D.M.; de Souza, V.C.; Ferreira, V.N.S.; Souza, D.D.C.; et al. Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights. Viruses 2024, 16, 1768. https://doi.org/10.3390/v16111768
de Souza LG, Penna EA, Rosa AS, da Silva JC, Schaeffer E, Guimarães JV, de Paiva DM, de Souza VC, Ferreira VNS, Souza DDC, et al. Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights. Viruses. 2024; 16(11):1768. https://doi.org/10.3390/v16111768
Chicago/Turabian Stylede Souza, Luana G., Eduarda A. Penna, Alice S. Rosa, Juliana C. da Silva, Edgar Schaeffer, Juliana V. Guimarães, Dennis M. de Paiva, Vinicius C. de Souza, Vivian Neuza S. Ferreira, Daniel D. C. Souza, and et al. 2024. "Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights" Viruses 16, no. 11: 1768. https://doi.org/10.3390/v16111768
APA Stylede Souza, L. G., Penna, E. A., Rosa, A. S., da Silva, J. C., Schaeffer, E., Guimarães, J. V., de Paiva, D. M., de Souza, V. C., Ferreira, V. N. S., Souza, D. D. C., Roxo, S., Conceição, G. B., Constant, L. E. C., Frenzel, G. B., Landim, M. J. N., Baltazar, M. L. P., Silva, C. C., Brand, A. L. M., Nunes, J. S., ... da Silva, A. J. M. (2024). Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights. Viruses, 16(11), 1768. https://doi.org/10.3390/v16111768