Recent Molecular Epidemiology of Echovirus 11 Throughout North and West Africa Resulted in the First Identification of a Recombinant Strain from an Acute Flaccid Paralysis Case in West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Data Collection
2.3. RNA Extraction and Molecular Testing
2.4. Complete Genome Sequencing
2.5. Sequencing of the Entire Coding Region of the Capsid Protein
2.6. Sequencing Data Analysis
2.7. Recombination Analysis
2.8. Assessment of Selection Pressures
2.9. Phylogenetic Analyses
2.10. In Silico Analysis Towards the Vaccine Strains
3. Results
3.1. Characteristics of West African E11 Strains Analyzed in This Study
3.2. Recombination and Selection Pressures Assessment
3.3. Phylogenetic and Evolutionary Analysis
3.4. VP1 Amino Acid Sequence Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itani, T.; Chalapa, V.; Semenov, A.; Sergeev, A. Laboratory diagnosis of nonpolio enteroviruses: A review of the current literature. Biosaf. Health 2023, 5, 112–119. Available online: https://www.sciencedirect.com/science/article/pii/S259005362200177X (accessed on 21 May 2024). [CrossRef]
- Singh, S.; Mane, S.S.; Kasniya, G.; Cartaya, S.; Rahman, M.M.; Maheshwari, A.; Motta, M.; Dudeja, P. Enteroviral Infections in Infants. Newborn 2022, 1, 297–305. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9599990/ (accessed on 21 May 2024). [PubMed]
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G. ICTV virus taxonomy profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421. [Google Scholar] [CrossRef] [PubMed]
- Knowles, N.J.; Hovi, T.; Hyypiä, T.; King, A.M.Q.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Simmonds, P.; Skern, T.; Stanway, G.; et al. Picornaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier: San Diego, CA, USA, 2012; pp. 855–880. [Google Scholar]
- Oberste, M.S.; Maher, K.; Kilpatrick, D.R.; Pallansch, M.A. Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999, 73, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Pallansch, M.A.; Oberste, M.S.; Whitton, J.L. Enteroviruses: Polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffen, D.G., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 1, pp. 490–530. [Google Scholar]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Virol. Division News 2020, 164, 2737–2748. [Google Scholar] [CrossRef]
- Abedi, G.R.; Watson, J.T.; Nix, W.A.; Oberste, M.S.; Gerber, S.I. Enterovirus and parechovirus surveillance—United States, 2014–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 515. [Google Scholar] [CrossRef]
- Lafolie, J.; Labbé, A.; L’honneur, A.S.; Madhi, F.; Pereira, B.; Decobert, M.; Adam, M.N.; Gouraud, F.; Faibis, F.; Arditty, F. Assessment of blood enterovirus PCR testing in paediatric populations with fever without source, sepsis-like disease, or suspected meningitis: A prospective, multicentre, observational cohort study. Lancet Infect. Dis. 2018, 18, 1385–1396. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Guo, J.; Xu, W.; Sun, S.; Xie, Z. An outbreak of echovirus 18 encephalitis/meningitis in children in Hebei Province, China, 2015. Emerg. Microbes Infect. 2017, 6, e54. [Google Scholar] [CrossRef]
- Lee, B.E.; Davies, H.D. Aseptic meningitis. Curr. Opin. Infect. Dis. 2007, 20, 272–277. Available online: https://journals.lww.com/co-infectiousdiseases/Fulltext/2007/06000/Aseptic_meningitis.7.aspx (accessed on 12 February 2024). [CrossRef]
- Mondiale de la Santé, O.; World Health Organization. WHO’s Health Emergencies Programme: Acute emergencies monthly summary–May 2023–Programme OMS de gestion des situations d’urgence sanitaire: Résumé mensuel des situations d’urgence aiguë–mai 2023. Wkly. Epidemiol. Rec. Relevé Épidémiologique Hebd. 2023, 98, 281–286. [Google Scholar]
- Mondiale de la Santé, O.; World Health Organization. Weekly Epidemiological Record, 2023, vol. 98, 26 [full issue]. Wkly. Epidemiol. Rec. Relevé Épidémiologique Hebd. 2023, 98, 279–286. [Google Scholar]
- Grapin, M.; Mirand, A.; Pinquier, D.; Basset, A.; Bendavid, M.; Bisseux, M.; Jeannoël, M.; Kireche, B.; Kossorotoff, M.; L’Honneur, A.-S. Severe and fatal neonatal infections linked to a new variant of echovirus 11, France, July 2022 to April 2023. Eurosurveillance 2023, 28, 2300253. [Google Scholar] [CrossRef] [PubMed]
- Piralla, A.; Borghesi, A.; Di Comite, A.; Giardina, F.; Ferrari, G.; Zanette, S.; Figar, T.A.; Angelini, M.; Pisoni, C.; Pitrolo, A.M.G. Fulminant echovirus 11 hepatitis in male non-identical twins in northern Italy, April 2023. Eurosurveillance 2023, 28, 2300289. [Google Scholar] [CrossRef] [PubMed]
- Khetsuriani, N.; LaMonte, A.; Oberste, M.S.; Pallansch, M. Neonatal enterovirus infections reported to the national enterovirus surveillance system in the United States, 1983–2003. Pediatr. Infect. Dis. J. 2006, 25, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Bersani, I.; Auriti, C.; Piersigilli, F.; Dotta, A.; Diomedi-Camassei, F.; Di Pede, A.; Buttinelli, G.; Danhaive, O. Neonatal acute liver failure due to enteroviruses: A 14 years single NICU experience. J. Matern. Fetal Neonatal Med. 2020, 33, 2576–2580. [Google Scholar] [CrossRef]
- Davies, D.P.; Hughes, C.A.; MacVicar, J.; Hawkes, P.; Mair, H.J. Echovirus-11 infection in a special-care baby unit. Echovirus-11 Infect. Spec.-Care Baby Unit 1979, 1, 96. [Google Scholar] [CrossRef]
- Mostoufizadeh, M.; Lack, E.E.; Gang, D.L.; Perez-Atayde, A.R.; Driscoll, S.G. Postmortem manifestations of echovirus 11 sepsis in five newborn infants. Hum. Pathol. 1983, 14, 818–823. [Google Scholar] [CrossRef]
- Modlin, J.F.; Polk, B.F.; Horton, P.; Etkind, P.; Crane, E.; Spiliotes, A. Perinatal echovirus infection: Risk of transmission during a community outbreak. New Engl. J. Med. 1981, 305, 368–371. [Google Scholar] [CrossRef]
- Ndiaye, N.; Kébé, O.; Diarra, M.; Thiaw, F.D.; Dia, M.; Dia, N.D.; Sall, A.A.; Fall, M.; Faye, O.; Faye, M. Non-polio enteroviruses circulation in acute flaccid paralysis cases and sewage in Senegal from 2013 to 2021. Int. J. Infect. Dis. 2024, 138, 54–62. Available online: https://www.sciencedirect.com/science/article/pii/S1201971223007816 (accessed on 14 March 2024). [CrossRef]
- Fernandez-Garcia, M.D.; Kebe, O.; Fall, A.D.; Ndiaye, K. Identification and molecular characterization of non-polio enteroviruses from children with acute flaccid paralysis in West Africa, 2013–2014. Sci. Rep. 2017, 7, 3808. [Google Scholar] [CrossRef]
- World Health Organization. Polio Laboratory Manual; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Lewis, G.D.; Metcalf, T.G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl. Environ. Microbiol. 1988, 54, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Nijhuis, M.; van Maarseveen, N.; Schuurman, R.; Verkuijlen, S.; de Vos, M.; Hendriksen, K.; van Loon, A.M. Rapid and Sensitive Routine Detection of All Members of the Genus Enterovirus in Different Clinical Specimens by Real-Time PCR. J. Clin. Microbiol. 2002, 40, 3666–3670. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T.; Izumi, H.; Okabe, N.; Enomoto, M.; Konagaya, M.; Chikahira, M.; Munemura, T.; Taniguchi, K. Usefulness of real-time reverse transcription-polymerase chain reaction for the diagnosis of echovirus aseptic meningitis using cerebrospinal fluid. Jpn. J. Infect. Dis. 2009, 62, 455–457. Available online: https://www.jstage.jst.go.jp/article/yoken/62/6/62_JJID.2009.455/_article/-char/ja/ (accessed on 22 January 2024). [CrossRef]
- Majumdar, M.; Martin, J. Detection by direct next generation sequencing analysis of emerging enterovirus D68 and C109 strains in an environmental sample from Scotland. Front. Microbiol. 2018, 9, 1956. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01956/full (accessed on 21 February 2024). [CrossRef]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.-M. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2019, 35, 871–873. Available online: https://academic.oup.com/bioinformatics/article-abstract/35/5/871/5075035 (accessed on 13 March 2024). [CrossRef]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021, 7, veaa087. Available online: https://academic.oup.com/ve/article-abstract/7/1/veaa087/6020281 (accessed on 11 April 2024). [CrossRef]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Pond, S.K.; FUBAR, K.S. A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012, 8, e1002764. Available online: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002764 (accessed on 14 March 2024). [CrossRef]
- Kosakovsky Pond, S.L.; Frost, S.D. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005, 22, 1208–1222. Available online: https://academic.oup.com/mbe/article-abstract/22/5/1208/1066893 (accessed on 14 March 2024). [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Proceedings of the Nucleic Acids Symposium Series; Oxford University Press: Oxford, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree, a graphical viewer of phylogenetic trees (tree. bio. ed. ac. 691 uk/software/figtree). Inst Evol Biol Univ Edinb. 2014, 1, 2. [Google Scholar]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. Available online: https://academic.oup.com/ve/article-abstract/2/1/vew007/1753488 (accessed on 16 July 2024). [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. Available online: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003537 (accessed on 16 July 2024). [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. Available online: https://academic.oup.com/sysbio/article-abstract/67/5/901/4989127 (accessed on 16 July 2024). [CrossRef]
- Celniker, G.; Nimrod, G.; Ashkenazy, H.; Glaser, F.; Martz, E.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Isr. J. Chem. 2013, 53, 199–206. [Google Scholar] [CrossRef]
- Faleye, T.O.C.; George, U.E.; Klapsa, D.; Majumdar, M.; Oragwa, A.O.; Adewumi, M.O.; Martin, J.; Adeniji, J.A. Isolation and Genomic Characterization of Echovirus 11 from faeces of a Non-Human Primate in Nigeria. EcoHealth 2020, 17, 461–468. [Google Scholar] [CrossRef]
- Brouwer, L.; Moreni, G.; Wolthers, K.C.; Pajkrt, D. World-wide prevalence and genotype distribution of enteroviruses. Viruses 2021, 13, 434. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, B.; Hwang, S.; Hong, J.; Kim, K.; Cheon, D.-S. Epidemics of viral meningitis caused by echovirus 6 and 30 in Korea in 2008. Virol. J. 2012, 9, 38. [Google Scholar] [CrossRef]
- Tassin, M.; Martinovic, J.; Mirand, A.; Peigue-Lafeuille, H.; Picone, O.; Benachi, A.; Vauloup-Fellous, C. A case of congenital echovirus 11 infection acquired early in pregnancy. J. Clin. Virol. 2014, 59, 71–73. Available online: https://www.sciencedirect.com/science/article/pii/S1386653213004812?casa_token=ARcpMvcTHoUAAAAA:_699pnzkTUYbPqayL9a1a8ev6R-pqlj6w5wjyNOFwgy9onC3v2ifcWl3ImOGeMdWwl_xoHWu5pYR (accessed on 15 March 2024). [CrossRef]
- Liu, Q.; Xu, W.; Lu, S.; Jiang, J.; Zhou, J.; Shao, Z.; Liu, X.; Xu, L.; Xiong, Y.; Zheng, H.; et al. Landscape of emerging and re-emerging infectious diseases in China: Impact of ecology, climate, and behavior. Front. Med. 2018, 12, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.K.; Simmonds, P.; Harvala, H. The importance of enterovirus surveillance in a post-polio world. Lancet Infect. Dis. 2022, 22, e35–e40. Available online: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30852-5/fulltext (accessed on 18 March 2024). [CrossRef] [PubMed]
- Wang, C.; Li, J.; Liu, Y.; Sun, Q.; Liu, Z. Pathogenesis of enterovirus infection in central nervous system. Biosaf. Health 2023, 5, 233–239. [Google Scholar] [CrossRef]
- Antona, D.; Kossorotoff, M.; Schuffenecker, I.; Mirand, A.; Leruez-Ville, M.; Bassi, C.; Aubart, M.; Moulin, F.; Lévy-Bruhl, D.; Henquell, C. Severe paediatric conditions linked with EV-A71 and EV-D68, France, May to October 2016. Eurosurveillance 2016, 21, 30402. [Google Scholar] [CrossRef]
- Pons-Salort, M.; Oberste, M.S.; Pallansch, M.A.; Abedi, G.R.; Takahashi, S.; Grenfell, B.T.; Grassly, N.C. The seasonality of nonpolio enteroviruses in the United States: Patterns and drivers. Proc. Natl. Acad. Sci. USA 2018, 115, 3078–3083. [Google Scholar] [CrossRef]
- Kyriakopoulou, Z.; Pliaka, V.; Amoutzias, G.D.; Markoulatos, P. Recombination among human non-polio enteroviruses: Implications for epidemiology and evolution. Virus Genes 2015, 50, 177–188. [Google Scholar] [CrossRef]
- Muslin, C.; Mac Kain, A.; Bessaud, M.; Blondel, B.; Delpeyroux, F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses 2019, 11, 859. Available online: https://www.mdpi.com/1999-4915/11/9/859 (accessed on 29 July 2024). [CrossRef]
- Oberste, M.S.; Maher, K.; Pallansch, M.A. Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J. Virol. 2004, 78, 855–867. [Google Scholar] [CrossRef]
- Nikolaidis, M.; Mimouli, K.; Kyriakopoulou, Z.; Tsimpidis, M.; Tsakogiannis, D.; Markoulatos, P.; Amoutzias, G.D. Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses. Virology 2019, 526, 72–80. [Google Scholar] [CrossRef]
- Tee, K.K.; Lam, T.T.-Y.; Chan, Y.F.; Bible, J.M.; Kamarulzaman, A.; Tong, C.Y.W.; Takebe, Y.; Pybus, O.G. Evolutionary Genetics of Human Enterovirus 71: Origin, Population Dynamics, Natural Selection, and Seasonal Periodicity of the VP1 Gene. J. Virol. 2010, 84, 3339–3350. [Google Scholar] [CrossRef]
- Marine, R.L.; Ntim, N.A.A.; Castro, C.J.; Attiku, K.O.; Pratt, D.; Duker, E.; Agbosu, E.; Ng, T.F.F.; Gatei, W.; Obodai, E. Strengthening laboratory surveillance of viral pathogens: Experiences and lessons learned building next-generation sequencing capacity in Ghana. Int. J. Infect. Dis. 2019, 81, 231–234. Available online: https://www.sciencedirect.com/science/article/pii/S1201971219300724 (accessed on 18 March 2024). [CrossRef] [PubMed]
- Chapman, N.M. Persistent enterovirus infection: Little deletions, long infections. Vaccines 2022, 10, 770. Available online: https://www.mdpi.com/2076-393X/10/5/770 (accessed on 19 March 2024). [CrossRef] [PubMed]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. Available online: https://www.nature.com/articles/nature04388 (accessed on 17 March 2024). [CrossRef] [PubMed]
- Lukashev, A.N.; Vakulenko, Y.A. Molecular evolution of types in non-polio enteroviruses. J. Gen. Virol. 2017, 98, 2968–2981. [Google Scholar] [CrossRef]
- Patel, J.R.; Daniel, J.; Mathan, V.I. An epidemic of acute diarrhoea in rural southern India associated with echovirus type 11 infection. Epidemiol. Infect. 1985, 95, 483–492. [Google Scholar] [CrossRef]
- Fares, W.; Rezig, D.; Seghier, M.; Ben Yahia, A.; Touzi, H.; Triki, H. Phylogenetic analysis of complete VP1 sequences of echoviruses 11 and 6: High genetic diversity and circulation of genotypes with a wide geographical and temporal range. J. Med. Microbiol. 2011, 60, 1017–1025. [Google Scholar] [CrossRef]
- Findlater, A.; Bogoch, I.I. Human mobility and the global spread of infectious diseases: A focus on air travel. Trends Parasitol. 2018, 34, 772–783. Available online: https://www.cell.com/trends/parasitology/fulltext/S1471-4922(18)30142-9 (accessed on 25 July 2024). [CrossRef]
- Bek, E.J.; McMinn, P.C. Recent Advances in Research on Human Enterovirus 71. Future Virol. 2010, 5, 453–468. [Google Scholar] [CrossRef]
- Sun, H.; Gao, M.; Cui, D. Molecular characteristics of the VP1 region of enterovirus 71 strains in China. Gut Pathog. 2020, 12, 38. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Li, Q. Immune evasion of enteroviruses under innate immune monitoring. Front. Microbiol. 2018, 9, 1866. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01866/full (accessed on 7 August 2024). [CrossRef]
Strain ID Number | Collection Year | Country | Case | Age (Month) | Sex | Isolated Month | Sequence Region | Sequence Length (nt) | Accession Number | Reference | Co-Infections |
---|---|---|---|---|---|---|---|---|---|---|---|
13_650_MAU_2013 | 2013 | Mauritania | AFP | 36 | M | September | Capsid protein | 3804 | PP816738 | This study | None |
13_473_SEN_2013 | 2013 | Senegal | AFP | N/A | N/A | N/A | VP3-VP1 protein | 688 | KY433623 | [23] | None |
13_700_MAU_2013 | 2013 | Mauritania | AFP | 16 | M | September | VP3-VP1 protein | 876 | KY433708 | [23] | None |
13_647_MAU_2013 | 2013 | Mauritania | AFP | 60 | M | August | Capsid protein | 3896 | PP8167377 | This study | None |
13_699_MAU_2013 | 2013 | Mauritania | AFP | 18 | M | September | Capsid protein | 3902 | PP816739 | This study | None |
13_754_SEN_2013 | 2013 | Senegal | AFP | 24 | M | October | Capsid protein | 4000 | PP816740 | This study | None |
13_653_SEN_2013 | 2013 | Senegal | AFP | 36 | M | September | VP3-VP1 protein | 690 | KY433626 | [23] | None |
14_530_NIG_2014 | 2014 | Niger | AFP | 24 | M | September | Capsid protein | 3900 | PP816741 | This study | None |
14_240_GUI_2014 | 2014 | Guinea | AFP | 24 | F | May | VP3-VP1 protein | 876 | KY433711 | [23] | None |
14_239_GUI_2014 | 2014 | Guinea | AFP | 36 | M | May | VP3-VP1 protein | 876 | KY433710 | [23] | None |
14_381_NIG_2014 | 2014 | Niger | AFP | 19 | M | June | VP3-VP1 protein | 876 | KY433712 | [23] | None |
14_128_NIG_2014 | 2014 | Niger | AFP | 17 | F | March | VP3-VP1 protein | 876 | KY433709 | [23] | None |
17_787_SEN_2017 | 2017 | Senegal | AFP | N/A | N/A | N/A | VP3-VP1 protein | 711 | OM827233 | [23] | None |
17_718_SEN_2017 | 2017 | Senegal | AFP | N/A | N/A | N/A | VP1 protein | 783 | PP816742 | This study | None |
21_279_SEN_2021 | 2022 | Senegal | AFP | 48 | M | March | Complete genome | 7357 | PP816743 | This study | None |
22_438_SEN_2022 | 2022 | Senegal | AFP | N/A | N/A | N/A | Capsid protein | 3900 | PP816746 | This study | None |
22_081_SEN_2022 | 2022 | Senegal | AFP | 24 | F | November | Capsid protein | 4003 | PP816744 | This study | None |
22_102_SEN_2022 | 2022 | Senegal | AFP | 24 | M | May | Capsid protein | 3800 | PP816745 | This study | None |
22_751_SEN_2022 | 2022 | Senegal | AFP | N/A | N/A | September | Capsid protein | 3800 | PP816747 | This study | None |
23_371_BFA_2023 | 2023 | Burkina Faso | ES | N/A | N/A | July | Capsid protein | 4000 | PP816749 | This study | E19 |
23_399_SEN_2023 | 2023 | Senegal | ES | N/A | N/A | July | Capsid protein | 4000 | PP816750 | This study | E19 |
23_368_SEN_2023 | 2023 | Senegal | ES | N/A | N/A | July | VP1 protein | 804 | PP816748 | This study | E19 |
23_415_BFA_2023 | 2023 | Burkina Faso | ES | N/A | N/A | July | Capsid protein | 3987 | PP816751 | This study | E12 |
Proteins | Number of Sites Detected by Method | Evidence of Positive Selection | |||
---|---|---|---|---|---|
SLAC (p < 0.1) | FUBAR (Posterior Probability ≥ 0.9) | MEME (p < 0.1) | |||
VP1 | Sites under negative selection (dN/dS < 1) | 134 | 155 | 0 | NO |
Sites under positive selection (dN/dS > 1) | 0 | 0 | 0 | ||
Capsid | Sites under negative selection (dN/dS < 1) | 877 | 1150 | 0 | NO |
Sites under positive selection (dN/dS > 1) | 0 | 0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndiaye, N.; Thiaw, F.D.; Lagare, A.; Sinare, T.; Diakité, M.L.; Ngom, S.F.M.; Kébé, O.; Abdoulkader, I.K.; Cissé, G.; Dia, M.; et al. Recent Molecular Epidemiology of Echovirus 11 Throughout North and West Africa Resulted in the First Identification of a Recombinant Strain from an Acute Flaccid Paralysis Case in West Africa. Viruses 2024, 16, 1772. https://doi.org/10.3390/v16111772
Ndiaye N, Thiaw FD, Lagare A, Sinare T, Diakité ML, Ngom SFM, Kébé O, Abdoulkader IK, Cissé G, Dia M, et al. Recent Molecular Epidemiology of Echovirus 11 Throughout North and West Africa Resulted in the First Identification of a Recombinant Strain from an Acute Flaccid Paralysis Case in West Africa. Viruses. 2024; 16(11):1772. https://doi.org/10.3390/v16111772
Chicago/Turabian StyleNdiaye, Ndack, Fatou Diène Thiaw, Adamou Lagare, Thérèse Sinare, Mohamed Lemine Diakité, Serigne Fallou Mbacké Ngom, Ousmane Kébé, Issifi Kollo Abdoulkader, Gassim Cissé, Mohamed Dia, and et al. 2024. "Recent Molecular Epidemiology of Echovirus 11 Throughout North and West Africa Resulted in the First Identification of a Recombinant Strain from an Acute Flaccid Paralysis Case in West Africa" Viruses 16, no. 11: 1772. https://doi.org/10.3390/v16111772
APA StyleNdiaye, N., Thiaw, F. D., Lagare, A., Sinare, T., Diakité, M. L., Ngom, S. F. M., Kébé, O., Abdoulkader, I. K., Cissé, G., Dia, M., Djimadoum, H. N., Neya, C. O., Boubakar, R., Ouedraogo, I., Essoya, L. D., Dia, N., Sall, A. A., Faye, O., & Faye, M. (2024). Recent Molecular Epidemiology of Echovirus 11 Throughout North and West Africa Resulted in the First Identification of a Recombinant Strain from an Acute Flaccid Paralysis Case in West Africa. Viruses, 16(11), 1772. https://doi.org/10.3390/v16111772