Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Phage Preparation and Handling
2.3. Phage Dosing
2.4. Bacterial Preparation
2.5. Rat Treatment Groups
2.6. Rat Surgical Procedures
2.7. Tissue Harvest and Processing
2.8. Phage Enumeration
2.9. Bacterial Enumeration
2.10. Post-Harvest Bacterial Assessment
2.11. Statistics
2.12. Ethics and Institutional Review
3. Results
3.1. Post-Implantation, Euthanasia, and Harvest
3.2. Bacterial and Phage Enumeration
3.3. Noncompartmental Pharmacokinetic Analysis
3.4. Post-Harvest Bacterial Assessment
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gbejuade, H.O.; Lovering, A.M.; Webb, J.C. The role of microbial biofilms in prosthetic joint infections: A review. Acta Orthop. 2015, 86, 147. [Google Scholar] [CrossRef] [PubMed]
- Visperas, A.; Santana, D.; Klika, A.K.; Higuera-Rueda, C.A.; Piuzzi, N.S. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J. Orthop. Res. 2022, 40, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, E.J.; Stephens-Shields, A.J.; Newcomb, C.W.; Silibovsky, R.; Nelson, C.L.; O’Donnell, J.A.; Glaser, L.J.; Hsieh, E.; Hanberg, J.S.; Tate, J.P.; et al. Incidence, Microbiological Studies, and Factors Associated with Prosthetic Joint Infection After Total Knee Arthroplasty. JAMA Netw. Open 2023, 6, e2340457. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, A.; Kolin, D.A.; Farley, K.X.; Wilson, J.M.; McLawhorn, A.S.; Cross, M.B.; Sculco, P.K. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J. Arthroplast. 2021, 36, 1484–1489.e3. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplast. 2012, 27, 61–65.e1. [Google Scholar] [CrossRef]
- Yao, J.J.; Hevesi, M.; Visscher, S.L.; Ransom, J.E.; Lewallen, D.G.; Berry, D.J.; Maradit Kremers, H. Direct Inpatient Medical Costs of Operative Treatment of Periprosthetic Hip and Knee Infections are Twofold Higher than Those of Aseptic Revisions. J. Bone Jt. Surg. 2021, 103, 312. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, T.B.; Schuetz, M.A.; Choong, P.F.M. Mortality, patient-reported outcome measures, and the health economic burden of prosthetic joint infection. EFORT Open Rev. 2023, 8, 690–697. [Google Scholar] [CrossRef]
- Kildow, B.J.; Springer, B.D.; Brown, T.S.; Lyden, E.; Fehring, T.K.; Garvin, K.L. Long Term Results of Two-Stage Revision for Chronic Periprosthetic Hip Infection: A Multicenter Study. J. Clin. Med. 2022, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Lee, S.W.; Shariyate, M.J.; Cronin, A.; Wixted, J.J.; Nazarian, A.; Rowley, C.F.; Rodriguez, E.K. Bacteriophage Therapy and Current Delivery Strategies for Orthopedic Infections: A SCOPING Review. J. Infect. 2024, 88, 106125. [Google Scholar] [CrossRef]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162. [Google Scholar] [CrossRef]
- Chang, C.; Yu, X.; Guo, W.; Guo, C.; Guo, X.; Li, Q.; Zhu, Y. Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Front. Microbiol. 2022, 13, 825828. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A.; Sutherland, I.W.; Jones, M.V. Biofilm susceptibility to bacteriophage attack: The role of phage-borne polysaccharide depolymerase. Microbiology 1998, 144, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Mehta, N.; Lee, S.W.; Rodriguez, E.K. How Effective Is Phage Therapy for Prosthetic Joint Infections? A Preliminary Systematic Review and Proportional Meta-Analysis of Early Outcomes. Medicina 2024, 60, 790. [Google Scholar] [CrossRef]
- Fedorov, E.; Samokhin, A.; Kozlova, Y.; Kretien, S.; Sheraliev, T.; Morozova, V.; Tikunova, N.; Kiselev, A.; Pavlov, V. Short-Term Outcomes of Phage-Antibiotic Combination Treatment in Adult Patients with Periprosthetic Hip Joint Infection. Viruses 2023, 15, 499. [Google Scholar] [CrossRef]
- Doub, J.B.; Johnson, A.J.; Nandi, S.; Ng, V.; Manson, T.; Lee, M.; Chan, B. Experience Using Adjuvant Bacteriophage Therapy for the Treatment of 10 Recalcitrant Periprosthetic Joint Infections: A Case Series. Clin. Infect. Dis. 2023, 76, E1463–E1466. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Suh, G.A.; Lodise, T.P.; Tamma, P.D.; Knisely, J.M.; Alexander, J.; Aslam, S.; Barton, K.D.; Bizzell, E.; Totten, K.M.C.; Campbell, J.L.; et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob. Agents Chemother. 2022, 66, e0207121. [Google Scholar] [CrossRef]
- Totten, K.M.C.; Cunningham, S.A.; Gades, N.M.; Etzioni, A.; Patel, R. Pharmacokinetic Assessment of Staphylococcal Phage K Following Parenteral and Intra-articular Administration in Rabbits. Front. Pharmacol. 2022, 13, 840165. [Google Scholar] [CrossRef]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef]
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302. [Google Scholar] [CrossRef]
- BacDive. Strain Identifier: 24584. BacDive. Available online: https://bacdive.dsmz.de/strain/24584#ref20829 (accessed on 24 April 2024).
- Williams, D.L.; Bloebaum, R.D. Observing the biofilm matrix of Staphylococcus epidermidis ATCC 35984 grown using the CDC biofilm reactor. Microsc. Microanal. 2010, 16, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Shariyate, M.J.; Razavi, A.H.; Nazarian, A.; Rodriguez, E.K. Bacteriophage Dosing and its Effect on Bacterial Growth Suppression in a Staphylococcus epidermidis Model: An In Vitro Study. PHAGE, 2024; published ahead of print. [Google Scholar] [CrossRef]
- Bhetwal, A.; Maharjan, A.; Shakya, S.; Satyal, D.; Ghimire, S.; Khanal, P.R.; Parajuli, N.P. Isolation of Potential Phages against Multidrug-Resistant Bacterial Isolates: Promising Agents in the Rivers of Kathmandu, Nepal. Biomed. Res. Int. 2017, 2017, 3723254. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay BT—Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Methods Mol. Biol. 2009, 501, 69–76. [Google Scholar] [PubMed]
- Bernthal, N.M.; Stavrakis, A.I.; Billi, F.; Cho, J.S.; Kremen, T.J.; Simon, S.I.; Cheung, A.L.; Finerman, G.A.; Lieberman, J.R.; Adams, J.S.; et al. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE 2010, 5, e12580. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.H.; Tang, C.C.; Chang, Y.C.; Huang, S.Y.; Chen, C.H.; Wu, S.C.; Hsieh, S.P.; Hsieh, C.S.; Wang, K.Y.; Lin, S.Y.; et al. Intra-articular injection of the selective cyclooxygenase-2 inhibitor meloxicam (Mobic) reduces experimental osteoarthritis and nociception in rats. Osteoarthr. Cartil. 2013, 21, 1976–1986. [Google Scholar] [CrossRef]
- Beeton, C.; Garcia, A.; Chandy, K.G. Drawing Blood from Rats through the Saphenous Vein and by Cardiac Puncture. J. Vis. Exp. 2007, 7, 266. [Google Scholar] [CrossRef]
- Carli, A.V.; Bhimani, S.; Yang, X.; Shirley, M.B.; De Mesy Bentley, K.L.; Ross, F.P.; Bostrom, M.P.G. Quantification of Peri-Implant Bacterial Load and in Vivo Biofilm Formation in an Innovative, Clinically Representative Mouse Model of Periprosthetic Joint Infection. J. Bone Jt. Surg. 2017, 99, e25. [Google Scholar] [CrossRef]
- Askar, M.; Ashraf, W.; Scammell, B.; Bayston, R. Comparison of different human tissue processing methods for maximization of bacterial recovery. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 149–155. [Google Scholar] [CrossRef]
- Smith, A.C.; Hussey, M.A. Gram Stain Protocols. In Proceedings of the ASM Conference for Undergraduate Educators, Atlanta, GA, USA, 30 September 2005; American Society for Microbiology: Washington, DC, USA, 2005. [Google Scholar]
- Reiner, K. (Ed.) Catalase Test Protocol. In Proceedings of the ASM Conference for Undergraduate Educators, San Diego, CA, USA, 11 November 2010; American Society for Microbiology: Washington, DC, USA, 2010. [Google Scholar]
- Katz, D.S. Coagulase Test Protocol. In Proceedings of the ASM Conference for Undergraduate Educators, San Diego, CA, USA, 11 November 2010; American Society for Microbiology: Washington, DC, USA, 2010. [Google Scholar]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- Nang, S.C.; Lin, Y.W.; Petrovic Fabijan, A.; Chang, R.Y.K.; Rao, G.G.; Iredell, J.; Chan, H.K.; Li, J. Pharmacokinetics/pharmacodynamics of phage therapy: A major hurdle to clinical translation. Clin. Microbiol. Infect. 2023, 29, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 2019, 39, 2000–2025. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, K.; Abedon, S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol. Mol. Biol. Rev. 2019, 83, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Echterhof, A.; Dharmaraj, T.; McBride, R.; Berry, J.; Hopkins, M.; Selvakumar, H.; Miesel, L.; Chia, J.H.; Lin, K.Y.; Shen, C.C.; et al. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. bioRxiv 2024. [Google Scholar] [CrossRef]
- Chow, M.Y.T.; Chang, R.Y.K.; Li, M.; Wang, Y.; Lin, Y.; Morales, S.; McLachlan, A.J.; Kutter, E.; Li, J.; Chan, H.K. Pharmacokinetics and Time-Kill Study of Inhaled Antipseudomonal Bacteriophage Therapy in Mice. Antimicrob. Agents Chemother. 2020, 65, 10-1128. [Google Scholar] [CrossRef]
- Dhungana, G.; Nepal, R.; Regmi, M.; Malla, R. Pharmacokinetics and Pharmacodynamics of a Novel Virulent Klebsiella Phage Kp_Pokalde_002 in a Mouse Model. Front. Cell Infect. Microbiol. 2021, 11, 684704. [Google Scholar] [CrossRef]
- Cerveny, K.E.; DePaola, A.; Duckworth, D.H.; Gulig, P.A. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 2002, 70, 6251–6262. [Google Scholar] [CrossRef]
- Hájek, P. The elimination of bacteriophages ΦX 174 and T2 from the circulating blood of newborn precolostral pigs. Folia Microbiol. 1970, 15, 125–128. [Google Scholar] [CrossRef]
- Popescu, M.; Van Belleghem, J.D.; Khosravi, A.; Bollyky, P.L. Bacteriophages and the Immune System. Annu. Rev. Virol. 2021, 8, 415–435. [Google Scholar] [CrossRef]
- Krut, O.; Bekeredjian-Ding, I. Contribution of the Immune Response to Phage Therapy. J. Immunol. 2018, 200, 3037–3044. [Google Scholar] [CrossRef]
- Aslam, S.; Lampley, E.; Wooten, D.; Karris, M.; Benson, C.; Strathdee, S.; Schooley, R.T. Lessons Learned From the First 10 Consecutive Cases of Intravenous Bacteriophage Therapy to Treat Multidrug-Resistant Bacterial Infections at a Single Center in the United States. Open Forum Infect. Dis. 2020, 7, ofaa389. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Sanchez, C.; Gonzales, F.; Buckley, M.; Biswas, B.; Henry, M.; Deschenes, M.V.; Horne, B.A.; Fackler, J.; Brownstein, M.J.; Schooley, R.T.; et al. Successful Treatment of Staphylococcus aureus Prosthetic Joint Infection with Bacteriophage Therapy. Viruses 2021, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.A.; de Melo, L.D.; da Silva, R.A.; Ferraz, M.P.; de Rodrigues Azeredo, J.C.; de Carvalho Pinheiro, V.M.; Colaço, B.J.; Fernandes, M.H.; de Sousa Gomes, P.; Monteiro, F.J. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102145. [Google Scholar] [CrossRef] [PubMed]
- Rotman, S.G.; Post, V.; Foster, A.L.; Lavigne, R.; Wagemans, J.; Trampuz, A.; Moreno, M.G.; Metsemakers, W.J.; Grijpma, D.W.; Richards, R.G.; et al. Alginate chitosan microbeads and thermos-responsive hyaluronic acid hydrogel for phage delivery. J. Drug Deliv. Sci. Technol. 2023, 79, 103991. [Google Scholar] [CrossRef]
- Ismail, R.; Dorighello Carareto, N.D.; Hornez, J.C.; Bouchart, F. A Localized Phage-Based Antimicrobial System: Effect of Alginate on Phage Desorption from β-TCP Ceramic Bone Substitutes. Antibiotics 2020, 9, 560. [Google Scholar] [CrossRef]
- Kaźmierczak, Z.; Majewska, J.; Miernikiewicz, P.; Międzybrodzki, R.; Nowak, S.; Harhala, M.; Lecion, D.; Kęska, W.; Owczarek, B.; Ciekot, J.; et al. Immune Response to Therapeutic Staphylococcal Bacteriophages in Mammals: Kinetics of Induction, Immunogenic Structural Proteins, Natural and Induced Antibodies. Front. Immunol. 2021, 12, 639570. [Google Scholar] [CrossRef]
- Kaur, S.; Harjai, K.; Chhibber, S. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS ONE 2014, 9, e90411. [Google Scholar] [CrossRef]
- Zhu, H.; Jin, H.; Zhang, C.; Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Jt. Res. 2020, 9, 152–161. [Google Scholar] [CrossRef]
- Hartford, O.; O’Brien, L.; Schofield, K.; Wells, J.; Foster, T.J. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 2001, 147, 2545–2552. [Google Scholar] [CrossRef]
- Ács, N.; Gambino, M.; Brøndsted, L. Bacteriophage Enumeration and Detection Methods. Front. Microbiol. 2020, 11, 594868. [Google Scholar] [CrossRef]
Parameter | Unit | Combined Pharmacokinetic Assessment (Median [IQR]) (n = 42) | Sterile Implant + Phage (Median [IQR]) (n = 21) | PJI + Phage (Median [IQR]) (n = 21) |
---|---|---|---|---|
λz | 1/h | 0.25 [0.08, 0.49] | 0.12 [0.08, 0.33] | 0.37 [0.22, 2.63] |
t1/2 | h | 3.73 [1.45, 10.07] | 5.59 [3.45, 14.57] | 1.87 [1.01, 6.72] |
tmax | h | 0.75 [0.50, 1.75] | 1.00 [0.75, 1.50] | 0.50 [0.50, 1.25] |
Cmax | PFU/mL | 1.61 × 105 [2.75 × 104, 2.83 × 105] | 2.05 × 104 [1.48 × 104, 3.94 × 105] | 2.73 × 105 [1.61 × 105, 2.80 × 105] |
AUC0–t | PFU/mL*h | 1.27 × 105 [7.79 × 104, 3.77 × 105] | 6.95 × 104 [5.09 × 104, 2.61 × 105] | 1.50 × 105 [1.27 × 105, 7.69 × 105] |
AUC0–∞ | PFU/mL*h | 1.31 × 105 [8.06 × 104, 3.78 × 105] | 7.01 × 104 [6.54 × 104, 2.62 × 105] | 1.50 × 105 [1.31 × 105, 7.75 × 105] |
AUMC0–∞ | PFU/mL*h2 | 3.75 × 105 [2.46 × 105, 1.52 × 106] | 4.12 × 105 [3.13 × 105, 1.15 × 106] | 3.39 × 105 [2.10 × 105, 3.36 × 106] |
MRT0–∞ | h | 3.04 [1.44, 4.19] | 3.06 [1.99, 17.09] | 3.02 [1.78, 3.79] |
Vz/Fobs | (PFU)/(PFU/mL) | 2.09 × 103 [1.34 × 103, 2.61 × 103] | 2.68 × 103 [2.23 × 103, 2.93 × 104] | 1.19 × 103 [6.64 × 102, 1.80 × 103] |
Cl/Fobs | (PFU)/(PFU/mL)/h | 7.79 × 102 [3.32 × 102, 1.29 × 103] | 1.43 × 103 [8.23 × 102, 1.54 × 103] | 6.66 x102 [3.68 × 102, 7.79 × 102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, J.; Shariyate, M.J.; Misra, P.; Laiwala, S.; Nazarian, A.; Rodriguez, E.K. Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses 2024, 16, 1800. https://doi.org/10.3390/v16111800
Young J, Shariyate MJ, Misra P, Laiwala S, Nazarian A, Rodriguez EK. Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses. 2024; 16(11):1800. https://doi.org/10.3390/v16111800
Chicago/Turabian StyleYoung, Jason, Mohammad Javad Shariyate, Prateek Misra, Shubham Laiwala, Ara Nazarian, and Edward Kenneth Rodriguez. 2024. "Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model" Viruses 16, no. 11: 1800. https://doi.org/10.3390/v16111800
APA StyleYoung, J., Shariyate, M. J., Misra, P., Laiwala, S., Nazarian, A., & Rodriguez, E. K. (2024). Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses, 16(11), 1800. https://doi.org/10.3390/v16111800