Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomes and Gene Annotation Sources
2.2. Pig Custom Repeat Library of ERVs
2.3. Pig Genomes Annotation with RepeatMasker
2.4. Solo-LTR Identification
2.5. Solo-LTR Polymorphic Sites Mining
- Step 1. Mapping to the Reference Genome
- Step 2: Cross-Comparison
- Step 3: PCR validation for the solo-LTR polymorphic sites
2.6. Annotation of Solo-LTR Polymorphic Sites
2.7. Utilization of Solo-LTR Polymorphic Sites for Population Analysis
2.8. Statistical Tests
3. Results
3.1. A Large Number of Solo-LTRs Were Present in the Pig Genome
3.2. 603 Solo-LTR Polymorphic Sites Were Identified Across the Pig Genomes
3.3. About 45% of Solo-LTR Polymorphic Sites Were Overlapping with Genes/Functional Regions
3.4. Utility of Solo-LTR Polymorphic Sites for Population Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Wang, W.; Wang, X.; Shen, D.; Wang, S.; Wang, Y.; Gao, B.; Wimmers, K.; Mao, J.; Li, K.; et al. Retrotransposons Evolution and Impact on LncRNA and Protein Coding Genes in Pigs. Mob. DNA 2019, 10, 19. [Google Scholar] [CrossRef]
- Fang, X.; Mou, Y.; Huang, Z.; Li, Y.; Han, L.; Zhang, Y.; Feng, Y.; Chen, Y.; Jiang, X.; Zhao, W.; et al. The Sequence and Analysis of a Chinese Pig Genome. Gigascience 2012, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.L.; Stoye, J.P. Mammalian Endogenous Retroviruses. Microbiol. Spectr. 2015, 3, MDNA3-0009. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Chen, C.; Zheng, Y.; Wang, X.; Song, C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals 2024, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Belshaw, R.; Watson, J.; Katzourakis, A.; Howe, A.; Woolven-Allen, J.; Burt, A.; Tristem, M. Rate of Recombinational Deletion among Human Endogenous Retroviruses. J. Virol. 2007, 81, 9437–9442. [Google Scholar] [CrossRef]
- Hughes, J.F.; Coffin, J.M. Human Endogenous Retrovirus K Solo-LTR Formation and Insertional Polymorphisms: Implications for Human and Viral Evolution. Proc. Natl. Acad. Sci. USA 2004, 101, 1668–1672. [Google Scholar] [CrossRef]
- Wildschutte, J.H.; Williams, Z.H.; Montesion, M.; Subramanian, R.P.; Kidd, J.M.; Coffin, J.M. Discovery of Unfixed Endogenous Retrovirus Insertions in Diverse Human Populations. Proc. Natl. Acad. Sci. USA 2016, 113, E2326–E2334. [Google Scholar] [CrossRef]
- Thomas, J.; Perron, H.; Feschotte, C. Variation in Proviral Content among Human Genomes Mediated by LTR Recombination. Mobile DNA 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Fueyo, R.; Judd, J.; Feschotte, C.; Wysocka, J. Roles of Transposable Elements in the Regulation of Mammalian Transcription. Nat. Rev. Mol. Cell Biol. 2022, 23, 481–497. [Google Scholar] [CrossRef]
- Göke, J.; Ng, H.H. CTRL + INSERT: Retrotransposons and Their Contribution to Regulation and Innovation of the Transcriptome. EMBO Rep. 2016, 17, 1131–1144. [Google Scholar] [CrossRef]
- Feuchter, A.; Mager, D. Functional Heterogeneity of a Large Family of Human LTR-like Promoters and Enhancers. Nucleic Acids Res. 1990, 18, 1261–1270. [Google Scholar] [CrossRef]
- Pi, W.; Zhu, X.; Wu, M.; Wang, Y.; Fulzele, S.; Eroglu, A.; Ling, J.; Tuan, D. Long-Range Function of an Intergenic Retrotransposon. Proc. Natl. Acad. Sci. USA 2010, 107, 12992–12997. [Google Scholar] [CrossRef]
- Chuong, E.B.; Rumi, M.A.K.; Soares, M.J.; Baker, J.C. Endogenous Retroviruses Function as Species-Specific Enhancer Elements in the Placenta. Nat. Genet. 2013, 45, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; D’Alessandro, E.; Murani, E.; Zheng, Y.; Giosa, D.; Yang, N.; Wang, X.; Gao, B.; Li, K.; Wimmers, K.; et al. SINE Jumping Contributes to Large-Scale Polymorphisms in the Pig Genomes. Mob. DNA 2021, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, W.; Pan, X.; Liao, W.; Shen, Q.; Cai, J.; Gong, W.; Tian, Y.; Xu, D.; Li, Y.; et al. Pig-ERNAdb: A Comprehensive Enhancer and ERNA Dataset of Pigs. Sci. Data 2024, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr. Protoc. Bioinform. 2009, 25, 4.10.1–4.10.14. [Google Scholar] [CrossRef]
- Vitte, C. Formation of Solo-LTRs Through Unequal Homologous Recombination Counterbalances Amplifications of LTR Retrotransposons in Rice Oryza sativa L. Mol. Biol. Evol. 2003, 20, 528–540. [Google Scholar] [CrossRef]
- Chen, J.Q.; Zhang, M.P.; Tong, X.K.; Li, J.Q.; Zhang, Z.; Huang, F.; Du, H.P.; Zhou, M.; Ai, H.S.; Huang, L.S. Scan of the Endogenous Retrovirus Sequences across the Swine Genome and Survey of Their Copy Number Variation and Sequence Diversity among Various Chinese and Western Pig Breeds. Zool. Res. 2022, 43, 423–441. [Google Scholar] [CrossRef]
- Hossain, M.J.; Nyame, P.; Monde, K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024, 14, 280. [Google Scholar] [CrossRef]
- Chen, M.; Huang, X.; Wang, C.; Wang, S.; Jia, L.; Li, L. Endogenous Retroviral Solo-LTRs in Human Genome. Front. Genet. 2024, 15, 1358078. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Preissl, S.; Amaral, M.L.; Grinstein, J.D.; Farah, E.N.; Destici, E.; Qiu, Y.; Hu, R.; Lee, A.Y.; et al. Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells. Nat. Genet. 2019, 51, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.T.; Goodchild, N.L.; Mager, D.L. Gain of Sp1 Sites and Loss of Repressor Sequences Associated with a Young, Transcriptionally Active Subset of HERV-H Endogenous Long Terminal Repeats. Virology 1996, 220, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; DeWoody, J.A. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch. J. Mol. Evol. 2016, 82, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Recombinant Porcine Endogenous Retroviruses (PERV-A/C): A New Risk for Xenotransplantation? Arch. Virol. 2008, 153, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Schuurman, H.J. High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021, 13, 1869. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Borger, P.; Beatty, J.A. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021, 13, 2156. [Google Scholar] [CrossRef]
- Blayney, J.W.; Francis, H.; Rampasekova, A.; Camellato, B.; Mitchell, L.; Stolper, R.; Cornell, L.; Babbs, C.; Boeke, J.D.; Higgs, D.R.; et al. Super-Enhancers Include Classical Enhancers and Facilitators to Fully Activate Gene Expression. Cell 2023, 186, 5826–5839.e18. [Google Scholar] [CrossRef]
- Deniz, Ö.; Ahmed, M.; Todd, C.D.; Rio-Machin, A.; Dawson, M.A.; Branco, M.R. Endogenous Retroviruses Are a Source of Enhancers with Oncogenic Potential in Acute Myeloid Leukaemia. Nat. Commun. 2020, 11, 3506. [Google Scholar] [CrossRef]
- Gautam, P.; Yu, T.; Loh, Y.-H. Regulation of ERVs in Pluripotent Stem Cells and Reprogramming. Curr. Opin. Genet. Dev. 2017, 46, 194–201. [Google Scholar] [CrossRef]
- Benachenhou, F.; Blikstad, V.; Blomberg, J. The Phylogeny of Orthoretroviral Long Terminal Repeats (LTRs). Gene 2009, 448, 134–138. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, A.; Tang, T. Weak Effect of Gypsy Retrotransposon Bursts on Sonneratia Alba Salt Stress Gene Expression. Front. Plant Sci. 2022, 12, 830079. [Google Scholar] [CrossRef] [PubMed]
- Franke, V.; Ganesh, S.; Karlic, R.; Malik, R.; Pasulka, J.; Horvat, F.; Kuzman, M.; Fulka, H.; Cernohorska, M.; Urbanova, J.; et al. Long Terminal Repeats Power Evolution of Genes and Gene Expression Programs in Mammalian Oocytes and Zygotes. Genome Res. 2017, 27, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
Number | Genome Name | No. of Solo-LTR | No. of Solo-LTR Mapped to Ref-Genome | Successfully Mapped Ratio (%) |
---|---|---|---|---|
1 | Sscrofa11.1 | 5761 | —— | —— |
2 | Meishan (Beijing) | 5784 | 5304 | 91.70 |
3 | Meishan | 5624 | 5459 | 97.07 |
4 | Bama | 5742 | 5389 | 93.85 |
5 | Bamei | 5594 | 5439 | 97.23 |
6 | Berkshire | 5544 | 5389 | 97.20 |
7 | Cross-bred | 6656 | 5435 | 81.66 |
8 | Ellegaard Gottingen minipig | 3489 | 3410 | 97.74 |
9 | Hampshire | 5631 | 5481 | 97.34 |
10 | Jinhua | 5617 | 5461 | 97.22 |
11 | Landrace | 5606 | 5461 | 97.41 |
12 | LargeWhite | 5616 | 5473 | 97.45 |
13 | Pietrain | 5615 | 5460 | 97.24 |
14 | Rongchang | 5641 | 5488 | 97.29 |
15 | Tibetan | 5558 | 5424 | 97.59 |
16 | Wuzhishan | 5855 | 5611 | 95.83 |
17 | Duroc (Ninghe) | 5763 | 5410 | 93.87 |
18 | Kenya domestic pig | 5446 | 5317 | 97.63 |
19 | Ningxiang | 5560 | 5292 | 95.18 |
20 | Nero Siciliano pig | 5616 | 5366 | 95.55 |
21 | PK15 cells | 6514 | 5347 | 82.08 |
Average | 5630 | 5321 | 94.51 |
Gene/Functional Region | No. of Solo-LTR | No. of Gene/Transcript | ||
---|---|---|---|---|
Solo-LTR− | Solo-LTR+ | Total | Gene/Transcript | |
lncRNA gene | 52 | 12 | 64 | 66 |
lncRNA gene exon | 0 | 0 | 0 | 0 |
lncRNA intron | 52 | 12 | 64 | 64/110 |
lncRNA 5’flank 5 kb | 13 | 4 | 17 | - |
lncRNA 3’flank 5 kb | 13 | 4 | 17 | - |
protein coding gene | 180 | 26 | 206 | 189 |
protein coding gene exon | 1 | 1 | 2 | 2/2 |
protein coding intron | 179 | 25 | 204 | 187/837 |
protein coding 5’flank 5 kb | 10 | 10 | 20 | - |
protein coding 3’flank 5 kb | 18 | 11 | 29 | - |
eRNA region | 27 | 6 | 33 | 10 |
enhancer region | 1 | 1 | 2 | 2 |
Total | 248 | 23 | 271 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Du, Z.; Zheng, Y.; Chen, H.; Saleh, A.A.; Yang, N.; Wang, M.; Azele, P.; Wang, X.; Song, C. Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses 2024, 16, 1801. https://doi.org/10.3390/v16111801
Chen C, Du Z, Zheng Y, Chen H, Saleh AA, Yang N, Wang M, Azele P, Wang X, Song C. Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses. 2024; 16(11):1801. https://doi.org/10.3390/v16111801
Chicago/Turabian StyleChen, Cai, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A. Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang, and Chengyi Song. 2024. "Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs)" Viruses 16, no. 11: 1801. https://doi.org/10.3390/v16111801
APA StyleChen, C., Du, Z., Zheng, Y., Chen, H., Saleh, A. A., Yang, N., Wang, M., Azele, P., Wang, X., & Song, C. (2024). Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses, 16(11), 1801. https://doi.org/10.3390/v16111801