HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Study Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Data Analysis
3. Results
3.1. The Basic Characteristics of the Literature
3.2. The Prevalence of Pretreatment Drug Resistance at Different Sensitivity Thresholds
3.3. HIV Drug Resistance Mutations of Reverse Transcriptase Inhibitors, PIs, and INSTIs among ART-Naïve Individuals
3.4. The Prevalence of LA-DRVs
3.5. Subgroup Analysis
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visseaux, B.; Assoumou, L.; Mahjoub, N.; Grude, M.; Trabaud, M.A.; Raymond, S.; Wirden, M.; Morand-Joubert, L.; Roussel, C.; Montes, B.; et al. Surveillance of HIV-1 primary infections in France from 2014 to 2016: Toward stable resistance, but higher diversity, clustering and virulence? J. Antimicrob. Chemother. 2020, 75, 183–193. [Google Scholar] [CrossRef]
- Antiretroviral Therapy Cohort Collaboration. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: A collaborative analysis of cohort studies. Lancet HIV 2017, 4, e349–e356. [Google Scholar] [CrossRef]
- Chung, M.H.; McGrath, C.J.; Beck, I.A.; Levine, M.; Milne, R.S.; So, I.; Andersen, N.; Dross, S.; Coombs, R.W.; Chohan, B.; et al. Evaluation of the management of pretreatment HIV drug resistance by oligonucleotide ligation assay: A randomised controlled trial. Lancet HIV 2020, 7, e104–e112. [Google Scholar] [CrossRef]
- Milne, R.S.; Beck, I.A.; Levine, M.; So, I.; Andersen, N.; Deng, W.; Panpradist, N.; Kingoo, J.; Kiptinness, C.; Yatich, N.; et al. Low-frequency pre-treatment HIV drug resistance: Effects on 2-year outcome of first-line efavirenz-based antiretroviral therapy. AIDS 2022, 36, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Vyankandondera, J.; Mitchell, K.; Asiimwe-Kateera, B.; Boer, K.; Mutwa, P.; Balinda, J.P.; van Straten, M.; Reiss, P.; van de Wijgert, J. Antiretroviral therapy drug adherence in Rwanda: Perspectives from patients and healthcare workers using a mixed-methods approach. AIDS Care 2013, 25, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Derache, A.; Iwuji, C.C.; Baisley, K.; Danaviah, S.; Marcelin, A.G.; Calvez, V.; de Oliveira, T.; Dabis, F.; Porter, K.; Pillay, D. Impact of Next-generation Sequencing Defined Human Immunodeficiency Virus Pretreatment Drug Resistance on Virological Outcomes in the ANRS 12249 Treatment-as-Prevention Trial. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, 207–214. [Google Scholar] [CrossRef]
- HIV Drug Resistance Report 2021[EB]. Available online: https://www.who.int/publications-detail-redirect/9789240038608 (accessed on 16 August 2023).
- Yang, L.L.; Li, Q.; Zhou, L.B.; Chen, S.Q. Meta-analysis and systematic review of the efficacy and resistance for human immunodeficiency virus type 1 integrase strand transfer inhibitors. Int. J. Antimicrob. Agents 2019, 54, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Bertagnolio, S.; Hermans, L.; Jordan, M.R.; Avila-Rios, S.; Iwuji, C.; Derache, A.; Delaporte, E.; Wensing, A.; Aves, T.; Borhan, A.S.M.; et al. Clinical Impact of Pretreatment Human Immunodeficiency Virus Drug Resistance in People Initiating Nonnucleoside Reverse Transcriptase Inhibitor-Containing Antiretroviral Therapy: A Systematic Review and Meta-analysis. J. Infect. Dis. 2021, 224, 377–388. [Google Scholar] [CrossRef]
- Phillips, A.N.; Stover, J.; Cambiano, V.; Nakagawa, F.; Jordan, M.R.; Pillay, D.; Doherty, M.; Revill, P.; Bertagnolio, S. Impact of HIV Drug Resistance on HIV/AIDS-Associated Mortality, New Infections, and Antiretroviral Therapy Program Costs in Sub-Saharan Africa. J. Infect. Dis. 2017, 215, 1362–1365. [Google Scholar] [CrossRef]
- Guglielmi, G. Highly virulent HIV variant found circulating in Europe. Nature 2022. [Google Scholar] [CrossRef]
- Hirsch, M.S.; Günthard, H.F.; Schapiro, J.M.; Brun-Vézinet, F.; Clotet, B.; Hammer, S.M.; Johnson, V.A.; Kuritzkes, D.R.; Mellors, J.W.; Pillay, D.; et al. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel. Top. HIV Med. A Publ. Int. AIDS Soc. USA 2008, 16, 266–285. [Google Scholar] [CrossRef] [PubMed]
- Günthard, H.F.; Wong, J.K.; Ignacio, C.C.; Havlir, D.V.; Richman, D.D. Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples. AIDS Res. Hum. Retroviruses 1998, 14, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, R.; Demeter, L.; Reichelderfer, P.; Tijnagel, J.; de Groot, T.; Boucher, C. Worldwide evaluation of DNA sequencing approaches for identification of drug resistance mutations in the human immunodeficiency virus type 1 reverse transcriptase. J. Clin. Microbiol. 1999, 37, 2291–2296. [Google Scholar] [CrossRef]
- Chimukangara, B.; Samuel, R.; Naidoo, K.; de Oliveira, T. Primary HIV-1 Drug Resistant Minority Variants. AIDS Rev. 2017, 19, 89–96. [Google Scholar] [PubMed]
- Gianella, S.; Richman, D.D. Minority Variants of Drug-Resistant HIV. J. Infect. Dis. 2010, 202, 657–666. [Google Scholar] [CrossRef]
- Inzaule, S.C.; Hamers, R.L.; Noguera-Julian, M.; Casadellà, M.; Parera, M.; Kityo, C.; Steegen, K.; Naniche, D.; Clotet, B.; Rinke de Wit, T.F.; et al. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: A multi-country nested case-control study. Lancet HIV 2018, 5, e638–e646. [Google Scholar] [CrossRef]
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Low-Frequency HIV-1 Drug Resistance Mutations and Risk of NNRTI-Based Antiretroviral Treatment Failure: A Systematic Review and Pooled Analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef]
- Su, Y.; Cai, R.; Zhu, Y.; Zhong, M.; Qi, M.; Chen, C.; Ye, Z.; Zhang, H.; Wei, H. Pre-existing low-frequency resistance mutations increase the risk of antiretroviral treatment failure in HIV-1 naïve patients. Chin. Med. J. 2023, 136, 2756–2758. [Google Scholar] [CrossRef]
- Perrier, M.; Visseaux, B.; Landman, R.; Joly, V.; Todesco, E.; Yazdanpanah, Y.; Calvez, V.; Marcelin, A.G.; Descamps, D.; Charpentier, C. No impact of HIV-1 protease minority resistant variants on the virological response to a first-line PI-based regimen containing darunavir or atazanavir. J. Antimicrob. Chemother. 2018, 73, 173–176. [Google Scholar] [CrossRef]
- Metzner, K.J.; Rauch, P.; von Wyl, V.; Leemann, C.; Grube, C.; Kuster, H.; Böni, J.; Weber, R.; Günthard, H.F. Efficient suppression of minority drug-resistant HIV type 1 (HIV-1) variants present at primary HIV-1 infection by ritonavir-boosted protease inhibitor-containing antiretroviral therapy. J. Infect. Dis. 2010, 201, 1063–1071. [Google Scholar] [CrossRef]
- Kozal, M.J.; Chiarella, J.; St John, E.P.; Moreno, E.A.; Simen, B.B.; Arnold, T.E.; Lataillade, M. Prevalence of low-level HIV-1 variants with reverse transcriptase mutation K65R and the effect of antiretroviral drug exposure on variant levels. Antivir. Ther. 2011, 16, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Boltz, V.F.; Bao, Y.; Lockman, S.; Halvas, E.K.; Kearney, M.F.; McIntyre, J.A.; Schooley, R.T.; Hughes, M.D.; Coffin, J.M.; Mellors, J.W.; et al. Low-frequency nevirapine (NVP)-resistant HIV-1 variants are not associated with failure of antiretroviral therapy in women without prior exposure to single-dose NVP. J. Infect. Dis. 2014, 209, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, L.; Wang, Y.; Wang, X.; Jia, L.; Li, J.; Han, J.; Zhao, J.; Li, H.; Li, L. Establishment and application of a method of tagged-amplicon deep sequencing for low-abundance drug resistance in HIV-1. Front. Microbiol. 2022, 13, 895227. [Google Scholar] [CrossRef] [PubMed]
- Chaillon, A.; Nakazawa, M.; Wertheim, J.O.; Little, S.J.; Smith, D.M.; Mehta, S.R.; Gianella, S. No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J. Virol. 2017, 91, e00769-17. [Google Scholar] [CrossRef] [PubMed]
- Parkin, N.T.; Avila-Rios, S.; Bibby, D.F.; Brumme, C.J.; Eshleman, S.H.; Harrigan, P.R.; Howison, M.; Hunt, G.; Ji, H.; Kantor, R.; et al. Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020, 12, 694. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid.-Based Healthc. 2015, 13, 147–153. [Google Scholar] [CrossRef]
- Onofri, A.; Pensato, U.; Rosignoli, C.; Wells-Gatnik, W.; Stanyer, E.; Ornello, R.; Chen, H.Z.; De Santis, F.; Torrente, A.; Mikulenka, P.; et al. Primary headache epidemiology in children and adolescents: A systematic review and meta-analysis. J. Headache Pain 2023, 24, 8. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 November 2023).
- Gupta, R.K.; Gregson, J.; Parkin, N.; Haile-Selassie, H.; Tanuri, A.; Andrade Forero, L.; Kaleebu, P.; Watera, C.; Aghokeng, A.; Mutenda, N.; et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2018, 18, 346–355. [Google Scholar] [CrossRef]
- Xu, S.; Chen, M.; Feng, T.; Zhan, L.; Zhou, L.; Yu, G. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 774846. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Normand, S.L. Meta-analysis: Formulating, evaluating, combining, and reporting. Stat. Med. 1999, 18, 321–359. [Google Scholar] [CrossRef]
- Young, N.; Hobbs, M.; Rahnama, F.; Shi, J.; Briggs, S. An observational study of high- and low-abundance anti-retroviral resistance mutations among treatment-naïve people living with HIV in New Zealand between 2012 and 2017. Intern. Med. J. 2020, 50, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Vandenhende, A.; McCormick, A.; Booth, C.; Gonzalez, D.; Sayada, C.; Haque, T.; Johnson, M.; Webster, D. Analysis of transmitted HIV-1 drug resistance using 454 ultra-deep-sequencing and the DeepChek(®)-HIV system. J. Int. AIDS Soc. 2014, 17, 19752. [Google Scholar]
- Boyce, C.L.; Beck, I.A.; Styrchak, S.M.; Hardy, S.R.; Wallner, J.J.; Milne, R.S.; Morrison, R.L.; Shapiro, D.E.; João, E.C.; Mirochnick, M.H.; et al. Assessment of minority frequency pretreatment HIV drug-resistant variants in pregnant women and associations with virologic non-suppression at term. PLoS ONE 2022, 17, e0275254. [Google Scholar] [CrossRef]
- Sili, U.; Aksu, B.; Tekin, A.; Hasdemir, U.; Soyletir, G.; Korten, V. Assessment of Transmitted HIV-1 Drug Resistance Mutations Using Ultra-Deep Pyrosequencing in a Turkish Cohort. Curr. HIV Res. 2018, 16, 216–221. [Google Scholar] [CrossRef]
- Moscona, R.; Ram, D.; Wax, M.; Bucris, E.; Levy, I.; Mendelson, E.; Mor, O. Comparison between next-generation and Sanger-based sequencing for the detection of transmitted drug-resistance mutations among recently infected HIV-1 patients in Israel, 2000–2014. J. Int. AIDS Soc. 2017, 20, 21846. [Google Scholar] [CrossRef]
- Cho, M.C.; Park, C.W.; Park, B.G.; Oh, H.B.; Choi, S.H.; Choi, S.E.; Cho, N.S. Detecting primary drug-resistant mutations in Korean HIV patients using ultradeep pyrosequencing. J. Virol. Methods 2016, 234, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tang, K.; Zhang, G.; Wadonda-Kabondo, N.; Moyo, K.; Rowe, L.A.; DeVos, J.R.; Wagar, N.; Zheng, D.P.; Guo, H.; et al. Detection of minority drug resistant mutations in Malawian HIV-1 subtype C-positive patients initiating and on first-line antiretroviral therapy. Afr. J. Lab. Med. 2018, 7, 708. [Google Scholar] [CrossRef] [PubMed]
- Todesco, E.; Charpentier, C.; Bertine, M.; Wirden, M.; Storto, A.; Desire, N.; Grude, M.; Nguyen, T.; Sayon, S.; Yazdanpanah, Y.; et al. Disparities in HIV-1 transmitted drug resistance detected by ultradeep sequencing between men who have sex with men and heterosexual populations. HIV Med. 2017, 18, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Ogola, B.; Matume, N.D.; Mavhandu-Ramarumo, L.G.; Tebit, D.M.; Bessong, P.O. Drug Resistance Mutations in a Population Before Antiretroviral Therapy Initiation in Northern South Africa. AIDS Res. Hum. Retroviruses 2022, 38, 248–256. [Google Scholar] [CrossRef]
- Cunningham, E.; Chan, Y.T.; Aghaizu, A.; Bibby, D.F.; Murphy, G.; Tosswill, J.; Harris, R.J.; Myers, R.; Field, N.; Delpech, V.; et al. Enhanced surveillance of HIV-1 drug resistance in recently infected MSM in the UK. J. Antimicrob. Chemother. 2017, 72, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Cheriro, W.; Kiptoo, M.; Kikuvi, G.; Mining, S.; Emonyi, W.; Songok, E. High Prevalence of HIV Low Abundance Drug-Resistant Variants in a Treatment-Naive Population in North Rift Kenya. AIDS Res. Hum. Retroviruses 2015, 31, 1274–1277. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Ambikan, A.; Brännström, J.; Aralaguppe, S.G.; Yilmaz, A.; Albert, J.; Neogi, U.; Sönnerborg, A. High-throughput sequencing reveals a high prevalence of pretreatment HIV-1 drug resistance in Sweden. AIDS 2021, 35, 227–234. [Google Scholar] [CrossRef]
- Avila-Ríos, S.; García-Morales, C.; Matías-Florentino, M.; Tapia-Trejo, D.; Hernández-Álvarez, B.F.; Moreira-López, S.E.; Quant-Durán, C.J.; Porras-Cortés, G.; Reyes-Terán, G. HIV Drug Resistance in Antiretroviral Treatment-Naïve Individuals in the Largest Public Hospital in Nicaragua, 2011–2015. PLoS ONE 2016, 11, e0164156. [Google Scholar] [CrossRef]
- Raymond, S.; Jeanne, N.; Nicot, F.; Dimeglio, C.; Carcenac, R.; Harter, A.; Ranger, N.; Martin-Blondel, G.; Delobel, P.; Izopet, J. HIV-1 resistance genotyping by ultra-deep sequencing and 6-month virological response to first-line treatment. J. Antimicrob. Chemother. 2023, 78, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Stella, N.; Choudhary, M.C.; Javed, A.; Rodriguez, K.; Ribaudo, H.; Moosa, M.Y.; Brijkumar, J.; Pillay, S.; Sunpath, H.; et al. Impact of pre-existing drug resistance on risk of virological failure in South Africa. J. Antimicrob. Chemother. 2021, 76, 1558–1563. [Google Scholar] [CrossRef]
- Leda, A.R.; Hunter, J.; Oliveira, U.C.; Azevedo, I.J.; Sucupira, M.C.A.; Diaz, R.S. Insights about minority HIV-1 strains in transmitted drug resistance mutation dynamics and disease progression. J. Antimicrob. Chemother. 2018, 73, 1930–1934. [Google Scholar] [CrossRef]
- Ji, H.; Liang, B.; Li, Y.; Van Domselaar, G.; Graham, M.; Tyler, S.; Merks, H.; Sandstrom, P.; Brooks, J. Low abundance drug resistance variants in transmitted HIV drug resistance surveillance specimens identified using tagged pooled pyrosequencing. J. Virol. Methods 2013, 187, 314–320. [Google Scholar] [CrossRef]
- Mbunkah, H.A.; Marzel, A.; Schmutz, S.; Kok, Y.L.; Zagordi, O.; Shilaih, M.; Nsanwe, N.N.; Mbu, E.T.; Besong, L.M.; Sama, B.A.; et al. Low prevalence of transmitted HIV-1 drug resistance detected by a dried blood spot (DBS)-based next-generation sequencing (NGS) method in newly diagnosed individuals in Cameroon in the years 2015–16. J. Antimicrob. Chemother. 2018, 73, 1917–1929. [Google Scholar] [CrossRef]
- Simen, B.B.; Simons, J.F.; Hullsiek, K.H.; Novak, R.M.; Macarthur, R.D.; Baxter, J.D.; Huang, C.; Lubeski, C.; Turenchalk, G.S.; Braverman, M.S.; et al. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J. Infect. Dis. 2009, 199, 693–701. [Google Scholar] [CrossRef]
- Maruapula, D.; Seatla, K.K.; Morerinyane, O.; Molebatsi, K.; Giandhari, J.; de Oliveira, T.; Musonda, R.M.; Leteane, M.; Mpoloka, S.W.; Rowley, C.F.; et al. Low-frequency HIV-1 drug resistance mutations in antiretroviral naïve individuals in Botswana. Medicine 2022, 101, e29577. [Google Scholar] [CrossRef] [PubMed]
- Beck, I.A.; Levine, M.; McGrath, C.J.; Bii, S.; Milne, R.S.; Kingoo, J.M.; So, I.; Andersen, N.; Dross, S.; Coombs, R.W.; et al. Pre-treatment HIV-drug resistance associated with virologic outcome of first-line NNRTI-antiretroviral therapy: A cohort study in Kenya. eClinicalMedicine 2020, 18, 100239. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.S.; Bibby, D.F.; Mwaringa, S.M.; Agutu, C.A.; Ndirangu, K.K.; Sanders, E.J.; Cane, P.A.; Mbisa, J.L.; Berkley, J.A. Presence, persistence and effects of pretreatment HIV-1 drug resistance variants detected using next generation sequencing: A Retrospective longitudinal study from rural coastal Kenya. PLoS ONE 2019, 14, e0210559. [Google Scholar] [CrossRef] [PubMed]
- Telele, N.F.; Kalu, A.W.; Gebre-Selassie, S.; Fekade, D.; Abdurahman, S.; Marrone, G.; Neogi, U.; Tegbaru, B.; Sönnerborg, A. Pretreatment drug resistance in a large countrywide Ethiopian HIV-1C cohort: A comparison of Sanger and high-throughput sequencing. Sci. Rep. 2018, 8, 7556. [Google Scholar] [CrossRef] [PubMed]
- Matías-Florentino, M.; Chaillon, A.; Ávila-Ríos, S.; Mehta, S.R.; Paz-Juárez, H.E.; Becerril-Rodríguez, M.A.; Del Arenal-Sánchez, S.J.; Piñeirúa-Menéndez, A.; Ruiz, V.; Iracheta-Hernández, P.; et al. Pretreatment HIV drug resistance spread within transmission clusters in Mexico City. J. Antimicrob. Chemother. 2020, 75, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Ríos, S.; García-Morales, C.; Matías-Florentino, M.; Romero-Mora, K.A.; Tapia-Trejo, D.; Quiroz-Morales, V.S.; Reyes-Gopar, H.; Ji, H.; Sandstrom, P.; Casillas-Rodríguez, J.; et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: A nationally representative 2015 WHO survey. Lancet HIV 2016, 3, e579–e591. [Google Scholar] [CrossRef] [PubMed]
- Neuhann, F.; de Forest, A.; Heger, E.; Nhlema, A.; Scheller, C.; Kaiser, R.; Steffen, H.M.; Tweya, H.; Fätkenheuer, G.; Phiri, S. Pretreatment resistance mutations and treatment outcomes in adults living with HIV-1: A cohort study in urban Malawi. AIDS Res. Ther. 2020, 17, 22. [Google Scholar] [CrossRef]
- Lataillade, M.; Chiarella, J.; Yang, R.; Schnittman, S.; Wirtz, V.; Uy, J.; Seekins, D.; Krystal, M.; Mancini, M.; McGrath, D.; et al. Prevalence and Clinical Significance of HIV Drug Resistance Mutations by Ultra-Deep Sequencing in Antiretroviral-Naïve Subjects in the CASTLE Study. PLoS ONE 2010, 5, e10952. [Google Scholar] [CrossRef]
- Vandenhende, M.A.; Bellecave, P.; Recordon-Pinson, P.; Reigadas, S.; Bidet, Y.; Bruyand, M.; Bonnet, F.; Lazaro, E.; Neau, D.; Fleury, H.; et al. Prevalence and Evolution of Low Frequency HIV Drug Resistance Mutations Detected by Ultra Deep Sequencing in Patients Experiencing First Line Antiretroviral Therapy Failure. PLoS ONE 2014, 9, e86771. [Google Scholar] [CrossRef]
- Xiaobai, Z.; Xi, C.; Tian, H.; Williams, A.B.; Wang, H.; He, J.; Zhen, J.; Chiarella, J.; Blake, L.A.; Turenchalk, G.; et al. Prevalence of WHO transmitted drug resistance mutations by deep sequencing in antiretroviral-naïve subjects in Hunan Province, China. PLoS ONE 2014, 9, e98740. [Google Scholar] [CrossRef]
- Inzaule, S.C.; Hamers, R.L.; Noguera-Julian, M.; Casadellà, M.; Parera, M.; Rinke de Wit, T.F.; Paredes, R. Primary resistance to integrase strand transfer inhibitors in patients infected with diverse HIV-1 subtypes in sub-Saharan Africa. J. Antimicrob. Chemother. 2018, 73, 1167–1172. [Google Scholar] [CrossRef]
- Climaco-Arvizu, S.; Flores-López, V.; González-Torres, C.; Gaytán-Cervantes, F.J.; Hernández-García, M.C.; Zárate-Segura, P.B.; Chávez-Torres, M.; Tesoro-Cruz, E.; Pinto-Cardoso, S.M. Protease and gag diversity and drug resistance mutations among treatment-naive Mexican people living with HIV. BMC Infect. Dis. 2022, 22, 447. [Google Scholar] [CrossRef]
- Cecchini, D.; Sfalcin, J.; Zapiola, I.; Gómez, A.; Fernández Giuliano, S.; Mammana, L.; Seravalle, A.; Rodríguez, C.; Fay, F.; Bouzas, M.B. Reverse transcriptase and protease inhibitors mutational viral load in HIV infected pregnant women with transmitted drug resistance in Argentina. Rev. Esp. Quimioter. Publ. Of. Soc. Esp. Quimioter. 2021, 34, 371–375. [Google Scholar] [CrossRef]
- Alidjinou, E.K.; Deldalle, J.; Hallaert, C.; Robineau, O.; Ajana, F.; Choisy, P.; Hober, D.; Bocket, L. RNA and DNA Sanger sequencing versus next-generation sequencing for HIV-1 drug resistance testing in treatment-naive patients. J. Antimicrob. Chemother. 2017, 72, 2823–2830. [Google Scholar] [CrossRef]
- Stekler, J.D.; Milne, R.; Payant, R.; Beck, I.; Herbeck, J.; Maust, B.; Deng, W.; Tapia, K.; Holte, S.; Maenza, J.; et al. Transmission of HIV-1 drug resistance mutations within partner-pairs: A cross-sectional study of a primary HIV infection cohort. PLoS Med. 2018, 15, e1002537. [Google Scholar] [CrossRef]
- Baxter, J.D.; Dunn, D.; Tostevin, A.; Marvig, R.L.; Bennedbaek, M.; Cozzi-Lepri, A.; Sharma, S.; Kozal, M.J.; Gompels, M.; Pinto, A.N.; et al. Transmitted HIV-1 drug resistance in a large international cohort using next-generation sequencing: Results from the Strategic Timing of Antiretroviral Treatment (START) study. HIV Med. 2021, 22, 360–371. [Google Scholar] [CrossRef]
- Messiaen, P.; Verhofstede, C.; Vandenbroucke, I.; Dinakis, S.; Van Eygen, V.; Thys, K.; Winters, B.; Aerssens, J.; Vogelaers, D.; Stuyver, L.J.; et al. Ultra-Deep Sequencing of HIV-1 Reverse Transcriptase Before Start of an NNRTI-based Regimen in Treatment-naive Patients. Virology 2012, 426, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.G.; Liang, D.; Cooper, B.; Le, Y.; Taylor, T.; Lee, E.R.; Wu, S.; Sandstrom, P.; Ji, H. Development and Application of Performance Assessment Criteria for Next-Generation Sequencing-Based HIV Drug Resistance Assays. Viruses 2020, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Tzou, P.L.; Kosakovsky Pond, S.L.; Avila-Rios, S.; Holmes, S.P.; Kantor, R.; Shafer, R.W. Analysis of unusual and signature APOBEC-mutations in HIV-1 pol next-generation sequences. PLoS ONE 2020, 15, e0225352. [Google Scholar] [CrossRef] [PubMed]
- Ntamatungiro, A.J.; Kagura, J.; Weisser, M.; Francis, J. Pre-treatment HIV-1 drug resistance in antiretroviral therapy-naive adults in Eastern Africa: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2022, 77, 3231–3241. [Google Scholar] [CrossRef] [PubMed]
- Usach, I.; Melis, V.; Peris, J.E. Non-nucleoside reverse transcriptase inhibitors: A review on pharmacokinetics, pharmacodynamics, safety and tolerability. J. Int. AIDS Soc. 2013, 16, 18567. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.D.; Zhou, Y.; Margot, N.A.; McColl, D.J.; Zhong, L.; Borroto-Esoda, K.; Miller, M.D.; Svarovskaia, E.S. Low level of the K103N HIV-1 above a threshold is associated with virological failure in treatment-naive individuals undergoing efavirenz-containing therapy. AIDS 2011, 25, 325–333. [Google Scholar] [CrossRef]
- de Salazar, A.; Viñuela, L.; Fuentes, A.; Teyssou, E.; Charpentier, C.; Lambert-Niclot, S.; Serrano-Conde, E.; Pingarilho, M.; Fabeni, L.; De Monte, A.; et al. Transmitted Drug Resistance to Integrase-Based First-Line Human Immunodeficiency Virus Antiretroviral Regimens in Mediterranean Europe. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Casadellà, M.; van Ham, P.M.; Noguera-Julian, M.; van Kessel, A.; Pou, C.; Hofstra, L.M.; Santos, J.R.; Garcia, F.; Struck, D.; Alexiev, I.; et al. Primary resistance to integrase strand-transfer inhibitors in Europe. J. Antimicrob. Chemother. 2015, 70, 2885–2888. [Google Scholar] [CrossRef] [PubMed]
- Mbunkah, H.A.; Bertagnolio, S.; Hamers, R.L.; Hunt, G.; Inzaule, S.; Rinke De Wit, T.F.; Paredes, R.; Parkin, N.T.; Jordan, M.R.; Metzner, K.J.; et al. Low-Abundance Drug-Resistant HIV-1 Variants in Antiretroviral Drug-Naive Individuals: A Systematic Review of Detection Methods, Prevalence, and Clinical Impact. J. Infect. Dis. 2020, 221, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Manyana, S.; Gounder, L.; Pillay, M.; Manasa, J.; Naidoo, K.; Chimukangara, B. HIV-1 Drug Resistance Genotyping in Resource Limited Settings: Current and Future Perspectives in Sequencing Technologies. Viruses 2021, 13, 1125. [Google Scholar] [CrossRef]
- Knyazev, S.; Hughes, L.; Skums, P.; Zelikovsky, A. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief. Bioinform. 2021, 22, 96–108. [Google Scholar] [CrossRef]
- Ávila-Ríos, S.; Parkin, N.; Swanstrom, R.; Paredes, R.; Shafer, R.; Ji, H.; Kantor, R. Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020, 12, 617. [Google Scholar] [CrossRef]
- Blassel, L.; Zhukova, A.; Villabona-Arenas, C.J.; Atkins, K.E.; Hué, S.; Gascuel, O. Drug resistance mutations in HIV: New bioinformatics approaches and challenges. Curr. Opin. Virol. 2021, 51, 56–64. [Google Scholar] [CrossRef]
- Bai, R.; Lv, S.; Wu, H.; Dai, L. Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection. Dis. Markers 2022, 2022, e6952286. [Google Scholar] [CrossRef]
- Chen, X.; Zou, X.; He, J.; Zheng, J.; Chiarella, J.; Kozal, M.J. HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China. PLoS ONE 2016, 11, e0149215. [Google Scholar] [CrossRef] [PubMed]
- Stella-Ascariz, N.; Arribas, J.R.; Paredes, R.; Li, J.Z. The Role of HIV-1 Drug-Resistant Minority Variants in Treatment Failure. J. Infect. Dis. 2017, 216, S847–S850. [Google Scholar] [CrossRef] [PubMed]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach; World Health Organization: Geneva, Switzerland, 2013.
Parameter | Studies, n (%) |
---|---|
Number of participants, median (min–max) | 15,242, 148 (20–2902) |
Stage of HIV-1 infection at time of inclusion | |
Acute/recent | 4 (10.3) |
(Mainly) chronic | 4 (10.3) |
Not specified | 31 (79.4) |
Type of specimen used for DRMs detection | |
Plasma | 37 (94.9) |
PBMC | 1 (2.6) |
Dried blood spot | 1 (2.6) |
Geographic area | |
Europe | 7 (17.9) |
North America | 6 (15.4) |
Africa | 13 (33.3) |
Asia | 6 (15.4) |
Latin America | 3 (7.7) |
Worldwide | 2 (5.1) |
Not specified | 2 (5.1) |
Study Purpose | |
TDR | 14 (35.9) |
PDR | 17 (43.4) |
LA-DRVs | 8 (20.5) |
Detection method | |
454 pyrosequencing | 14 (35.9) |
Illumina NGS | 23 (59.0) |
tagged pooled pyrosequencing | 1 (2.6) |
Sentosa NGS system | 1 (2.6) |
Data report | |
Only NGS data | 27 (69.2) |
SGA and NGS data | 12 (30.8) |
Sample size | |
≤200 | 23 (59.0) |
>200 | 16 (41.0) |
Variants | Study | Event | Total | Pooled Prevalence (%) (95% CI) | I2 (%) | QB | p Value |
---|---|---|---|---|---|---|---|
PDR | 16.69 (13.53–20.41) | 94.5 | 26.34 | <0.01 | |||
1% | 16 | 664 | 3202 | 29.74 (20.77–40.59) | 96.6 | <0.01 | |
2% | 6 | 581 | 2778 | 22.43 (18.81–26.53) | 67.8 | <0.01 | |
5% | 7 | 361 | 2524 | 15.47 (10.89–21.49) | 90.4 | <0.01 | |
10% | 3 | 103 | 830 | 12.95 (7.54–21.36) | 91.7 | <0.01 | |
20% | 20 | 852 | 6889 | 11.08 (8.43–14.43) | 85.6 | <0.01 | |
NNRTI | 9.54 (7.56–11.98) | 88.7 | 14.59 | <0.01 | |||
1% | 14 | 289 | 2005 | 15.36 (10.84–21.32) | 83.9 | <0.01 | |
2% | 6 | 279 | 3229 | 9.51 (4.40–19.37) | 91.9 | <0.01 | |
5% | 7 | 354 | 4321 | 8.37 (6.90–10.11) | 73.6 | <0.01 | |
10% | 2 | 29 | 447 | 6.49 (4.55–9.18) | 0.0 | 0.73 | |
20% | 13 | 581 | 7687 | 6.64 (4.39–9.91) | 88.5 | <0.01 | |
NRTI | 7.94 (2.76–5.80) | 93.7 | 28.25 | <0.01 | |||
1% | 14 | 317 | 2088 | 14.94 (10.23–21.30) | 89.9 | <0.01 | |
2% | 6 | 301 | 3229 | 10.01 (7.35–13.50) | 74.4 | <0.01 | |
5% | 7 | 251 | 4321 | 6.06 (3.73–9.70) | 90.3 | <0.01 | |
10% | 2 | 29 | 447 | 6.49 (4.55–9.18) | 32.0 | 0.23 | |
20% | 13 | 285 | 7687 | 4.01 (2.76–5.80) | 81..8 | <0.01 | |
PI | 4.78 (3.29–6.88) | 93.8 | 82.9 | <0.01 | |||
1% | 13 | 182 | 1486 | 12.74 (8.14–19.40) | 86.4 | <0.01 | |
2% | 6 | 419 | 3951 | 9.49 (7.67–11.67) | 47.3 | 0.09 | |
5% | 7 | 226 | 5042 | 2.92 (1.28–6.50) | 93.3 | <0.01 | |
10% | 2 | 26 | 447 | 5.72 (2.80–11.30) | 84.1 | 0.01 | |
20% | 13 | 160 | 8468 | 1.72 (1.20–2.41) | 38.4 | 0.08 | |
INSTI | 1.15 (0.51–2.55) | 86.0 | 11.25 | 0.02 | |||
1% | 4 | 29 | 764 | 3.71 (1.91–7.07) | 72.3 | <0.01 | |
2% | 2 | 50 | 1763 | 1.77 (0.56–5.48) | 86.6 | <0.01 | |
5% | 3 | 28 | 1811 | 1.93 (0.47–7.61) | 89.5 | <0.01 | |
10% | 1 | 1 | 425 | 0.24 (0.03–1.65) | – – | – – | – – |
20% | 4 | 24 | 4365 | 0.25 (0.03–2.35) | 77.0 | <0.01 |
Subgroup | Study | No. of Included | Event | Prevalence | 95% CI (%) | I2 (%) | QB | p Value |
---|---|---|---|---|---|---|---|---|
1% | 0.43 | 0.5105 | ||||||
Illumina NGS | 8 | 1384 | 385 | 25.79 | 16.96–37.16 | 92.8 | ||
454 | 7 | 739 | 265 | 33.14 | 16.59–55.26 | 95.5 | ||
2% | – – | – – | ||||||
Illumina NGS | 4 | 1013 | 212 | 21.66 | 17.33–26.72 | 75.3 | 12.16 | |
454 | 0 | – – | – – | – – | – – | – – | ||
5% | 0.27 | 0.6011 | ||||||
Illumina NGS | 5 | 2293 | 296 | 10.42 | 4.40–22.69 | 62.3 | ||
454 | 1 | 48 | 5 | 13.02 | 10.89–15.51 | – – | ||
10% | 12.11 | 0.0005 | ||||||
Illumina NGS | 2 | 647 | 62 | 9.69 | 6.48–14.23 | 81.7 | ||
454 | 1 | 183 | 41 | 22.40 | 16.94–29.01 | – – | ||
20% | 0.27 | 0.6012 | ||||||
Illumina NGS | 13 | 6060 | 747 | 10.77 | 8.43–13.66 | 85.2 | ||
454 | 5 | 409 | 61 | 12.72 | 7.05–21.89 | 88.0 |
Threshold | Variables | Subgroup | Study | Event | Total | 95% CI (%) | I2 (%) | QB | p Value |
---|---|---|---|---|---|---|---|---|---|
20% | PDR | 19 | 419 | 3353 | 11.67 (8.62–15.79) | 87.7 | 0.07 | 0.79 | |
SGS | 12 | 2160 | 11.42 (7.46–17.48) | 90.8 | |||||
NGS | 7 | 1193 | 12.36 (8.34–18.30) | 77.4 | |||||
NNRTI | 18 | 212 | 3160 | 5.62 (3.86–8.18) | 81.1 | 0.19 | 0.66 | ||
SGS | 11 | 1967 | 5.21 (3.24–8.38) | 79.5 | |||||
NGS | 7 | 1193 | 6.22 (3.27–11.8) | 81.5 | |||||
NRTI | 18 | 144 | 3160 | 4.57 (3.28–6.38) | 0.693 | 0.46 | 0.5 | ||
SGS | 11 | 1967 | 4.20 (2.64–6.70) | 72.9 | |||||
NGS | 17 | 1193 | 5.28 (3.33–8.38) | 63.8 | |||||
PI | 16 | 208 | 2946 | 6.17 (4.22–9.01) | 81.3 | 0.4 | 0.53 | ||
SGS | 10 | 2160 | 5.57 (3.43–9.05) | 80 | |||||
NGS | 6 | 614 | 7.21 (3.84–13.56) | 80.8 | |||||
20%(SGS) vs. 1% | PDR | 16 | 13.93 | <0.01 | |||||
SGS | 12 | 2160 | 11.42 (7.46–17.48) | 90.8 | |||||
NGS | 4 | 586 | 26.81 (23.32–30.82) | 17.2 | |||||
NNRTI | 16 | 2581 | 6.46 | 0.01 | |||||
SGS | 11 | 1967 | 5.21 (3.24–8.38) | 79.5 | |||||
NGS | 5 | 614 | 11.87 (7.79–18.09) | 64.6 | |||||
NRTI | 16 | 9.93 | <0.01 | ||||||
SGS | 11 | 1967 | 4.20 (2.64–6.70) | 72.9 | |||||
NGS | 5 | 614 | 12.33 (7.63–19.94) | 76 | |||||
PI | 15 | 2474 | 2.72 | 0.1 | |||||
SGS | 10 | 1860 | 3.24 (1.38–7.63) | 95.1 | |||||
NGS | 5 | 614 | 9.74 (3.62–26.23) | 95.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, F.; Yuan, D.; Zhai, W.; Liu, S.; Zhou, Y.; Yang, H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses 2024, 16, 239. https://doi.org/10.3390/v16020239
Ouyang F, Yuan D, Zhai W, Liu S, Zhou Y, Yang H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses. 2024; 16(2):239. https://doi.org/10.3390/v16020239
Chicago/Turabian StyleOuyang, Fei, Defu Yuan, Wenjing Zhai, Shanshan Liu, Ying Zhou, and Haitao Yang. 2024. "HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis" Viruses 16, no. 2: 239. https://doi.org/10.3390/v16020239
APA StyleOuyang, F., Yuan, D., Zhai, W., Liu, S., Zhou, Y., & Yang, H. (2024). HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses, 16(2), 239. https://doi.org/10.3390/v16020239