The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species
Abstract
:1. Introduction
2. Chrysovirus Isolates Found in Fusarium Species
3. Effects of Chrysovirus on Fusarium Species
4. Interaction of Fusarium Species with Chrysoviruses
5. RNA Interference in F. graminearum Responding to FgV2 Infection
6. Transmission of Fusarium Chrysoviruses
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Sain, M.; Rep, M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Int. J. Mol. Sci. 2015, 16, 23970–23993. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Alisaac, E.; Mahlein, A.K. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins 2023, 15, 192. [Google Scholar] [CrossRef]
- Pegg, K.G.; Coates, L.M.; O’Neill, W.T.; Turner, D.W. The Epidemiology of Fusarium Wilt of Banana. Front. Plant Sci. 2019, 10, 1395. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, Y.; Wang, S.; Yao, Z.; Rao, G.P.; Zhang, M. First Report of Fusarium sacchari That Causes Sugarcane Wilt Disease in China. Plant Dis. 2020, 104, 2289. [Google Scholar] [CrossRef]
- Meng, J.; Huang, H.; Li, Y.X.; Li, Y.J.; Li, J.; Chen, B. First Report of Fusarium sacchari Causing Sugarcane Pokkah Boeng in China. Plant Dis. 2020, 104, 1553. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Villan Larios, D.C.; Diaz Reyes, B.M.; Pirovani, C.P.; Loguercio, L.L.; Santos, V.C.; Góes-Neto, A.; Fonseca, P.L.C.; Aguiar, E.R.G.R. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J. Fungi 2023, 9, 361. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Coutts, R.H.A.; Hillman, B.I.; Jiang, D.; Kim, D.H.; Moriyama, H. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Chrysoviridae. J. Gen. Virol. 2018, 99, 19–20, Erratum in J. Gen. Virol. 2018, 99, 434. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Castón, J.R.; Coutts, R.H.A.; Hillman, B.I.; Jiang, D.; Kim, D.H.; Moriyama, H.; Suzuki, N. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Chrysoviridae. J. Gen. Virol. 2020, 101, 143–144. [Google Scholar] [CrossRef]
- Andika, I.B.; Tian, M.; Bian, R.; Cao, X.; Luo, M.; Kondo, H.; Sun, L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Ann. Rev. Virol. 2023, 10, 119–138. [Google Scholar] [CrossRef]
- Takahashi-Nakaguchi, A.; Shishido, E.; Yahara, M.; Urayama, S.I.; Sakai, K.; Chibana, H.; Kamei, K.; Moriyama, H.; Gonoi, T. Analysis of an Intrinsic Mycovirus Associated with Reduced Virulence of the Human Pathogenic Fungus Aspergillus fumigatus. Front. Microbiol. 2020, 10, 3045. [Google Scholar] [CrossRef]
- Sharma, M.; Guleria, S.; Singh, K.; Chauhan, A.; Kulshrestha, S. Mycovirus associated hypovirulence, a potential method for biological control of Fusarium species. Virusdisease 2018, 29, 134–140. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, W.; Lu, Y.; Kang, Q.; Sui, L.; Liu, H.; Zhao, Y.; Zou, X.; Li, Q. Hypovirulence-associated mycovirus epidemics cause pathogenicity degeneration of Beauveria bassiana in the field. Virol. J. 2023, 20, 255. [Google Scholar] [CrossRef]
- Zheng, Y.; Yin, S.; Zhao, Y.; Li, S.; Lu, Z.; Li, Z.; Deng, Q.; Li, Z.; Zhang, S.; Fang, S. Molecular and biological characteristics of a novel chrysovirus infecting the fungus phytopathogenic Setosphaeria turcica f. sp. sorghi. Virus Res. 2023, 325, 199037. [Google Scholar] [CrossRef] [PubMed]
- Heiniger, U.; Rigling, D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 1994, 32, 581–599. [Google Scholar] [CrossRef]
- Sharzei, A.; Banihashemi, Z.; Afsharifar, A. Detection and characterization of a double-stranded RNA mycovirus in Fusarium oxysporum f. sp. melonis. Iran. J. Plant Pathol. 2007, 43, 9–26. [Google Scholar]
- Darissa, O.; Willingmann, P.; Schäfer, W.; Adam, G. A novel double-stranded RNA mycovirus from Fusarium graminearum: Nucleic acid sequence and genomic structure. Arch. Virol. 2011, 156, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, K.M.; Son, M.; Kim, K.H. Molecular characterization of Fusarium graminearum virus 2 Isolated from Fusarium graminearum strain 98-8-60. Plant Pathol. J. 2011, 27, 285–290. [Google Scholar] [CrossRef]
- Lemus-Minor, C.G.; Canizares, M.C.; Garcia-Pedrajas, M.D.; Perez-Artes, E. Complete genome sequence of a novel dsRNA mycovirus isolated from the phytopathogenic fungus Fusarium oxysporum f. sp. dianthi. Arch. Virol. 2015, 160, 2375–2379. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zou, C.; Peng, N.; Zhu, Y.; Bao, Y.; Zhou, Q.; Wu, Q.; Chen, B.; Zhang, M. Virome Identification and Characterization of Fusarium sacchari and F. andiyazi: Causative Agents of Pokkah Boeng Disease in Sugarcane. Front. Microbiol. 2020, 11, 240. [Google Scholar] [CrossRef]
- Chujo, T.; Ishibashi, K.; Miyashita, S.; Ishikawa, M. Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Res. 2015, 206, 82–89. [Google Scholar] [CrossRef]
- Blum, C.; Götsch, S.; Heinze, C. Duplications in the 3′ termini of three segments of Fusarium graminearum virus China 9. Arch. Virol. 2017, 162, 897–900. [Google Scholar] [CrossRef]
- Darissa, O.; Adam, G.; Schäfer, W. A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. Eur. J. Plant Pathol. 2012, 134, 181–189. [Google Scholar] [CrossRef]
- Lee, K.M.; Cho, W.K.; Yu, J.; Son, M.; Choi, H.; Min, K.; Lee, Y.M.; Kim, K.H. A Comparison of Transcriptional Patterns and Mycological Phenotypes following Infection of Fusarium graminearum by Four Mycoviruses. PLoS ONE 2014, 9, e100989. [Google Scholar] [CrossRef]
- Lemus-Minor, C.G.; Cañizares-Nolasco, C.; Mdd, G.P.; Pérez-Artés, E. Fusarium oxysporum f. sp. dianthi virus 1 accumulation is correlated with changes in virulence and other phenotypic traits of its fungal host. Phytopathology 2018, 108, 957–963. [Google Scholar] [CrossRef]
- Torres-Trenas, A.; Prieto, P.; Cañizares, M.C.; García-Pedrajas, M.D.; Pérez-Artés, E. Mycovirus Fusarium oxysporum f. sp. dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Front. Cell Infect. Microbiol. 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.S.; Dadalto, S.P.; Gonçalves, A.B.; de Souza, G.B.; Barros, V.A.; Fietto, L.G. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes 2014, 2, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kim, K.H. A Phenome-Wide Association Study of the Effects of Fusarium graminearum Transcription Factors Virus 1 Infection. Front. Microbiol. 2021, 12, 622261. [Google Scholar] [CrossRef]
- Babu, M.M.; Luscombe, N.M.; Aravind, L.; Gerstein, M.; Teichmann, S.A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 2004, 14, 283–291. [Google Scholar] [CrossRef]
- Kwon, G.; Yu, J.; Kim, K.H. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Virus Res. 2023, 326, 199061. [Google Scholar] [CrossRef] [PubMed]
- Bormann, J.; Heinze, C.; Blum, C.; Mentges, M.; Brockmann, A.; Alder, A.; Landt, S.K.; Josephson, B.; Indenbirken, D.; Spohn, M.; et al. Expression of a structural protein of the mycovirus FgV-ch9 negatively affects the transcript level of a novel symptom alleviation factor and causes virus infection-like symptoms in Fusarium graminearum. J. Virol. 2018, 92, e00326-18. [Google Scholar] [CrossRef]
- Lutz, T.; Petersen, J.M.; Yanık, C.; de Oliveira, C.; Heinze, C. Processing of the capsid proteins of the Betachrysovirus Fusarium graminearum virus-China 9 (FgV-ch9). Virology 2021, 563, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, K.M.; Cho, W.K.; Park, J.Y.; Kim, K.H. Differential contribution of RNA interference components in response to distinct Fusarium graminearum virus infections. J. Virol. 2018, 92, e01756-17. [Google Scholar] [CrossRef]
- Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, C.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef]
- Lemus-Minor, C.G.; Cañizares-Nolasco, M.C.; García-Pedrajas, M.D.; Pérez-Artés, E. Horizontal and vertical transmission of the hypovirulence-associated mycovirus Fusarium oxysporum f. sp. dianthi virus 1. Eur. J. Plant Pathol. 2019, 153, 645–650. [Google Scholar] [CrossRef]
- You, J.; Zhou, K.; Liu, X.; Wu, M.; Yang, L.; Zhang, J.; Chen, W.; Li, G. Defective RNA of a novel mycovirus with high transmissibility detrimental to biocontrol properties of Trichoderma spp. Microorganisms 2019, 7, 507. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Inoue, K.; Kida, C.; Uwamori, T.; Sasaki, A.; Kanematsu, S.; Park, P. Potentiation of mycovirus transmission by zinc compounds via attenuation of heterogenic incompatibility in Rosellinia necatrix. Appl. Environ. Microbiol. 2013, 79, 3684–3691. [Google Scholar] [CrossRef]
- Chen, B.; Choi, G.H.; Nuss, D.L. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 1994, 264, 1762–1764. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Fu, Y.; Jiang, D.; Ghabrial, S.A.; Li, G.; Peng, Y.; Xie, J.; Cheng, J.; Huang, J.; et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc. Natl. Acad. Sci. USA 2010, 107, 8387–8392. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; Fu, Y.; Xie, J.; Cheng, J.; Ghabrial, S.A.; Li, G.; Yi, X.; Jiang, D. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc. Natl. Acad. Sci. USA 2013, 110, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.X.; Nuss, D.L. Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes. Proc. Natl. Acad. Sci. USA 2016, 113, 2062–2067. [Google Scholar] [CrossRef] [PubMed]
- Stauder, C.M.; Nuss, D.L.; Zhang, D.X.; Double, M.L.; MacDonald, W.L.; Metheny, A.M.; Kasson, M.T. Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes. Virology 2019, 528, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xie, J.; Cheng, J.; Li, B.; Chen, T.; Fu, Y.; Li, G.; Wang, M.; Jin, H.; Wan, H.; et al. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proc. Natl. Acad. Sci. USA 2016, 113, 12803–12808. [Google Scholar] [CrossRef]
- Moriyama, H.; Urayama, S.I.; Higashiura, T.; Le, T.M.; Komatsu, K. Chrysoviruses in Magnaporthe oryzae. Viruses 2018, 10, 697. [Google Scholar] [CrossRef]
- Urayama, S.; Kimura, Y.; Katoh, Y.; Ohta, T.; Onozuka, N.; Fukuhara, T.; Arie, T.; Teraoka, T.; Komatsu, K.; Moriyama, H. Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus. Virus Res. 2016, 223, 10–19. [Google Scholar] [CrossRef]
Chrysovirus Name | Genus | Host | Effects on Host | dsRNA Segment (nt) | Size (nt) | 5′ UTR (nt) | 3′ UTR (nt) | Accession No. | Coding Protein | Plant | Country | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fusarium oxysporum chrysovirus 1 (FoV1) | Alphachrysovirus | F. oxysporum f. sp. melonis. | unknown | RNA1 | 2574 * | — | — | EF152346 | RdRp | Melon | Iran | [17] |
RNA2 | 648 * | — | — | EF152347 | P2 | |||||||
RNA3 | 994 * | — | — | EF152348 | nonfunctional putative protease | |||||||
Fusarium graminearum mycovirus-China 9 (FgV-ch9) | Betachrysovirus | F. graminearum strain China 9 | Mycelia growth ↓ Pigmentation ↑ Conidiation ↓ Pathogenicity ↓ | RNA1 | 3581 | 82 | 84 | HQ228213 | RdRp | Cereals | China | [18] |
RNA2 | 2931 | 93 | 210 | HQ228214 | P2 | |||||||
RNA3 | 3002 | 105 | 326 | HQ228215 | P3 | |||||||
RNA4 | 2746 | 78 | 160 | HQ228216 | P4 | |||||||
RNA5 | 2928 | 96 | 270 | HQ228217 | Contains a C2H2 zinc finger domain | |||||||
Fusarium graminearum virus 2 (FgV2) | Betachrysovirus | F. graminearum strain 98-8-60 | Mycelia growth ↓ Pigmentation ↑ Conidiation ↓ Pathogenicity ↓ | RNA1 | 3580 | 82 | 84 | HQ343295 | RdRp | Barley | Korea | [19] |
RNA2 | 3000 | 93 | 279 | HQ343296 | P2 | |||||||
RNA3 | 2982 | 105 | 306 | HQ343297 | P3 | |||||||
RNA4 | 2748 | 78 | 162 | HQ343298 | P4 | |||||||
RNA5 | 2414 | 97 | 184 | HQ343299 | Contains a C2H2 zinc finger domain | |||||||
Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1) | Betachrysovirus | F. oxysporum f. sp. dianthi strain 116 | Mycelia growth ↓ Conidiation ↓ Pathogenicity ↓ | RNA1 | 3555 | 82 | 53 | KP876629 | RdRp | Carnation | Spain | [20] |
RNA2 | 2809 | 84 | 88 | KP876630 | P2 | |||||||
RNA3 | 2794 | 97 | 138 | KP876631 | P3 | |||||||
RNA4 | 2646 | 97 | 56 | KP876632 | P4 | |||||||
Fusarium sacchari chrysovirus 1 (FsCV1) | Betachrysovirus | F. sacchari strain FJ-FZ04 | unknown | RNA1 | 3518 | 63 | 35 | MN295964 | RdRp | Sugarcane | China | [21] |
RNA2 | 2796 | 72 | 87 | MN295965 | P2 | |||||||
RNA3 | 2779 | 83 | 137 | MN295966 | P3 | |||||||
RNA4 | 2569 | 39 | 31 | MN295967 | P4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Cao, X.; Zhou, Q.; Yao, Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024, 16, 253. https://doi.org/10.3390/v16020253
Zou C, Cao X, Zhou Q, Yao Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses. 2024; 16(2):253. https://doi.org/10.3390/v16020253
Chicago/Turabian StyleZou, Chengwu, Xueying Cao, Qiujuan Zhou, and Ziting Yao. 2024. "The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species" Viruses 16, no. 2: 253. https://doi.org/10.3390/v16020253
APA StyleZou, C., Cao, X., Zhou, Q., & Yao, Z. (2024). The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses, 16(2), 253. https://doi.org/10.3390/v16020253