Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Animal Housing
2.2. Virus Propagation, Titration and Inoculation
2.3. Clinical Observations
2.4. Sample Collection
2.5. Nucleic Acid Extraction and RRT-PCR
2.6. Antibody Detection
3. Results
3.1. Experiment #1—CSFV Pinillos
3.1.1. Clinical Picture
3.1.2. Detection of CSFV Pinillos Genomic Material
3.1.3. Detection of Antibodies against CSFV Pinillos Strain
3.2. Experiment #2—CSFV Koslov
3.2.1. Clinical Picture
3.2.2. Detection of CSFV Koslov Genomic Material
3.2.3. Detection of Antibodies against CSFV Koslov Strain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganges, L.; Crooke, H.R.; Bohorquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical swine fever virus: The past, present and future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef]
- Rios, L.; Nunez, J.I.; Diaz de Arce, H.; Ganges, L.; Perez, L.J. Revisiting the genetic diversity of classical swine fever virus: A proposal for new genotyping and subgenotyping schemes of classification. Transbound. Emerg. Dis. 2018, 65, 963–971. [Google Scholar] [CrossRef]
- Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. Clinical signs and epidemiology of classical swine fever: A review of new knowledge. Vet. J. 2003, 165, 11–20. [Google Scholar] [CrossRef]
- Belak, K.; Koenen, F.; Vanderhallen, H.; Mittelholzer, C.; Feliziani, F.; De Mia, G.M.; Belak, S. Comparative studies on the pathogenicity and tissue distribution of three virulence variants of classical swine fever virus, two field isolates and one vaccine strain, with special regard to immunohistochemical investigations. Acta Vet. Scand. 2008, 50, 34. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. CLASSICAL SWINE FEVER Aetiology Epidemiology Diagnosis Prevention and Control References. Available online: https://www.woah.org/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/CLASSICAL_SWINE_FEVER.pdf (accessed on 1 October 2023).
- Lohse, L.; Nielsen, J.; Uttenthal, A. Early pathogenesis of classical swine fever virus (CSFV) strains in Danish pigs. Vet. Microbiol. 2012, 159, 327–336. [Google Scholar] [CrossRef]
- Postel, A.; Nishi, T.; Kameyama, K.I.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan, 2018. Emerg Infect Dis 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Plateau, E.; Vannier, P.; Tillon, J.P. Atypical hog cholera infection: Viral isolation and clinical study of in utero transmission. Am. J. Vet. Res. 1980, 41, 2012–2015. [Google Scholar] [PubMed]
- Munoz-Gonzalez, S.; Ruggli, N.; Rosell, R.; Perez, L.J.; Frias-Leuporeau, M.T.; Fraile, L.; Montoya, M.; Cordoba, L.; Domingo, M.; Ehrensperger, F.; et al. Postnatal persistent infection with classical Swine Fever virus and its immunological implications. PLoS ONE 2015, 10, e0125692. [Google Scholar] [CrossRef] [PubMed]
- Bohorquez, J.A.; Wang, M.; Perez-Simo, M.; Vidal, E.; Rosell, R.; Ganges, L. Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3 weeks after birth. Transbound. Emerg. Dis. 2019, 66, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Stalheim, O.H. The hog cholera battle and veterinary professionalism. In Danbom DB, ed: Publicly sponsored agricultural research in the United States: Past, present, and future. Agric. Hist. 1988, 62, 116–121. [Google Scholar]
- World Organisation for Animal Health. List of CSF Free Members According to Resolution No. 18 (90th General Session, May 2023). Available online: https://www.woah.org/app/uploads/2023/05/a-r18-2023-csf-1.pdf (accessed on 1 October 2023).
- Brown, V.R.; Bevins, S.N. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front. Vet. Sci. 2018, 5, 31. [Google Scholar] [CrossRef]
- Donahue, B.C.; Petrowski, H.M.; Melkonian, K.; Ward, G.B.; Mayr, G.A.; Metwally, S. Analysis of clinical samples for early detection of classical swine fever during infection with low, moderate, and highly virulent strains in relation to the onset of clinical signs. J. Virol. Methods 2012, 179, 108–115. [Google Scholar] [CrossRef]
- Busch, F.; Haumont, C.; Penrith, M.L.; Laddomada, A.; Dietze, K.; Globig, A.; Guberti, V.; Zani, L.; Depner, K. Evidence-Based African Swine Fever Policies: Do We Address Virus and Host Adequately? Front. Vet. Sci. 2021, 8, 637487. [Google Scholar] [CrossRef]
- Henao-Diaz, A.; Gimenez-Lirola, L.; Baum, D.H.; Zimmerman, J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porc. Health Manag. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Prickett, J.R.; Johnson, J.; Murtaugh, M.P.; Puvanendiran, S.; Wang, C.; Zimmerman, J.J.; Opriessnig, T. Prolonged detection of PCV2 and anti-PCV2 antibody in oral fluids following experimental inoculation. Transbound. Emerg. Dis. 2011, 58, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Kittawornrat, A.; Engle, M.; Panyasing, Y.; Olsen, C.; Schwartz, K.; Rice, A.; Lizano, S.; Wang, C.; Zimmerman, J. Kinetics of the porcine reproductive and respiratory syndrome virus (PRRSV) humoral immune response in swine serum and oral fluids collected from individual boars. BMC Vet. Res. 2013, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Bjustrom-Kraft, J.; Woodard, K.; Gimenez-Lirola, L.; Rotolo, M.; Wang, C.; Sun, Y.; Lasley, P.; Zhang, J.; Baum, D.; Gauger, P.; et al. Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs. BMC Vet. Res. 2016, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Panyasing, Y.; Goodell, C.K.; Gimenez-Lirola, L.; Kittawornrat, A.; Wang, C.; Schwartz, K.J.; Zimmerman, J.J. Kinetics of influenza A virus nucleoprotein antibody (IgM, IgA, and IgG) in serum and oral fluid specimens from pigs infected under experimental conditions. Vaccine 2013, 31, 6210–6215. [Google Scholar] [CrossRef] [PubMed]
- Goonewardene, K.B.; Chung, C.J.; Goolia, M.; Blakemore, L.; Fabian, A.; Mohamed, F.; Nfon, C.; Clavijo, A.; Dodd, K.A.; Ambagala, A. Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies. Transbound. Emerg. Dis. 2021, 68, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.; Goonewardene, K.; Lamboo, L.; Perez, O.; Goolia, M.; Lewis, C.; Erdelyan, C.N.G.; Lung, O.; Handel, K.; Moffat, E.; et al. Molecular and Pathological Characterization of Classical Swine Fever Virus Genotype 2 Strains Responsible for the 2013–2018 Outbreak in Colombia. Viruses 2023, 15, 2308. [Google Scholar] [CrossRef] [PubMed]
- Fahnoe, U.; Pedersen, A.G.; Risager, P.C.; Nielsen, J.; Belsham, G.J.; Hoper, D.; Beer, M.; Rasmussen, T.B. Rescue of the highly virulent classical swine fever virus strain “Koslov” from cloned cDNA and first insights into genome variations relevant for virulence. Virology 2014, 468, 379–387. [Google Scholar] [CrossRef]
- National Farm Animal Care Council. C.P.C. Code of Practice for the Care and Handling of Pigs; National Farm Animal Care Council: Lacombe, AB, Canada, 2014; p. 78. [Google Scholar]
- Mittelholzer, C.; Moser, C.; Tratschin, J.D.; Hofmann, M.A. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet. Microbiol. 2000, 74, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Beer, M.; Schelp, C.; Schirrmeier, H.; Depner, K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J. Virol. Methods 2005, 130, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Hayama, Y.; Murato, Y.; Sawai, K.; Yamaguchi, E.; Yamamoto, T. Epidemiology of Classical Swine Fever in Japan—A Descriptive Analysis of the Outbreaks in 2018–2019. Front. Vet. Sci. 2020, 7, 573480. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022; World Organisation for Animal Health: Paris, France, 2022; Chapter 3.9.3. [Google Scholar]
- Atkinson, J.C.; Dawes, C.; Ericson, T.; Fox, P.C.; Gandara, B.K.; Malamud, D.; Mandel, I.D.; Navazesh, M.; Tabak, L.A. Guidelines for Saliva Nomenclature and Collection. Ann. N. Y. Acad. Sci. 1993, 694, xi–xii. [Google Scholar]
- White, D.; Rotolo, M.; Olsen, C.; Wang, C.; Prickett, J.; Kittawornrat, A.; Panyasing, Y.; Main, R.; Rademacher, C.; Hoogland, M.; et al. Recommendations for pen-based oral-fluid collection in growing pigs. J. Swine Health Prod. 2014, 22, 138–141. [Google Scholar]
- Ramirez, A.; Wang, C.; Prickett, J.R.; Pogranichniy, R.; Yoon, K.J.; Main, R.; Johnson, J.K.; Rademacher, C.; Hoogland, M.; Hoffmann, P.; et al. Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med. 2012, 104, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.N.; Zimmerman, J.J.; Wang, C.; Linhares, D.C.L. Assessment of abattoir based monitoring of PRRSV using oral fluids. Prev. Vet. Med. 2018, 158, 137–145. [Google Scholar] [CrossRef]
- Boulbria, G.; Normand, V.; Leblanc-Maridor, M.; Belloc, C.; Berton, P.; Bouchet, F.; Lebret, A. Feasibility of pooled oral fluid collection from pre-weaning piglets using cotton ropes. Vet. Anim. Sci. 2020, 9, 100099. [Google Scholar] [CrossRef]
- Pol, F.; Dorenlor, V.; Eono, F.; Eudier, S.; Eveno, E.; Liégard-Vanhecke, D.; Rose, N.; Fablet, C. Individual and pen-based oral fluid sampling: A welfare-friendly sampling method for group-housed gestating sows. Prev. Vet. Med. 2017, 147, 58–65. [Google Scholar] [CrossRef]
- Qi, S.; He, Q.; Zhang, Z.; Chen, H.; Giménez-Lirola, L.; Yuan, F.; Bei, W. Detection of Porcine Circovirus Type 3 in Serum, Semen, Oral Fluid, and Preputial Fluid Samples of Boars. Vet. Sci. 2023, 10, 689. [Google Scholar] [CrossRef]
- Ouyang, K.; Binjawadagi, B.; Kittawornrat, A.; Olsen, C.; Hiremath, J.; Elkalifa, N.; Schleappi, R.; Wu, J.; Zimmerman, J.; Renukaradhya, G.J. Development and validation of an assay to detect porcine reproductive and respiratory syndrome virus-specific neutralizing antibody titers in pig oral fluid samples. Clin. Vaccine Immunol. CVI 2013, 20, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.N.; Rotto, H.; Schneider, P.; Robb, C.; Zimmerman, J.J.; Holtkamp, D.J.; Rademacher, C.J.; Linhares, D.C.L. Collecting oral fluid samples from due-to-wean litters. Prev. Vet. Med. 2020, 174, 104810. [Google Scholar] [CrossRef] [PubMed]
- Beemer, O.; Remmenga, M.; Gustafson, L.; Johnson, K.; Hsi, D.; Antognoli, M.C. Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in U.S. swine. PLoS ONE 2019, 14, e0219532. [Google Scholar] [CrossRef] [PubMed]
- Dietze, K.; Tucakov, A.; Engel, T.; Wirtz, S.; Depner, K.; Globig, A.; Kammerer, R.; Mouchantat, S. Rope-based oral fluid sampling for early detection of classical swine fever in domestic pigs at group level. BMC Vet. Res. 2017, 13, 5. [Google Scholar] [CrossRef]
- Petrini, S.; Pierini, I.; Giammarioli, M.; Feliziani, F.; De Mia, G.M. Detection of Classical swine fever virus infection by individual oral fluid of pigs following experimental inoculation. J. Vet. Diagn. Investig. 2017, 29, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Panyasing, Y.; Kedkovid, R.; Thanawongnuwech, R.; Kittawornrat, A.; Ji, J.; Gimenez-Lirola, L.; Zimmerman, J. Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities. Vet. Microbiol. 2018, 216, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Grau, F.R.; Schroeder, M.E.; Mulhern, E.L.; McIntosh, M.T.; Bounpheng, M.A. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction. J. Vet. Diagn. Investig. 2015, 27, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Panyasing, Y.; Gimenez-Lirola, L.; Thanawongnuwech, R.; Prakobsuk, P.; Kawilaphan, Y.; Kittawornrat, A.; Cheng, T.Y.; Zimmerman, J. Performance of a Differentiation of Infected from Vaccinated Animals (DIVA) Classical Swine Fever Virus (CSFV) Serum and Oral Fluid Erns Antibody AlphaLISA Assay. Animals 2023, 13, 3802. [Google Scholar] [CrossRef]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical Swine Fever-An Updated Review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef]
- Chittick, W.A.; Stensland, W.R.; Prickett, J.R.; Strait, E.L.; Harmon, K.; Yoon, K.-J.; Wang, C.; Zimmerman, J.J. Comparison of RNA Extraction and Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Detection of Porcine Reproductive and Respiratory Syndrome Virus in Porcine Oral Fluid Specimens. J. Vet. Diagn. Investig. 2011, 23, 248–253. [Google Scholar] [CrossRef] [PubMed]
Parameter | Criteria | Score | |
---|---|---|---|
1 | Rectal temperature | 38–40 °C (Normal) | 0 |
>40 °C but < 41 °C (mild to moderate fever) | 1 | ||
≥ 41 °C (High fever) | 2 | ||
Temperature < 38 °C (Hypothermia) | 3 | ||
2 | Behavior & mentation | Normal, alert, responsive | 0 |
Slightly reduced liveliness, stands up unassisted, resists restraint & rectal thermometer | 1 | ||
Obtunded, tired, reluctant to get up unassisted, lies down quickly, reduced resistance to restraint & rectal thermometer | 2 | ||
Stationary, moribund, unconscious, non-responsive | 3 | ||
3 | Walking | Normal, coordinated | 0 |
Slow, hesitant, crossed legged | 1 | ||
Distinct ataxia, lameness | 2 | ||
Severe lameness, unable to walk | 3 | ||
4 | Skin | Normal, evenly pink, hair coat flat | 0 |
Reddened skin areas | 1 | ||
Purple discolored & cold skin areas, few areas of petechiae | 2 | ||
Large areas of black-red discoloration, no sensitivity, large hemorrhages on skin | 3 | ||
5 | Appetite | Greedy, hungry, voracious | 0 |
Eats slowly | 1 | ||
Sniffs food but not eating | 2 | ||
No interest in food at all | 3 | ||
6 | Gastrointestinal | Normal, soft feces | 0 |
Reduced amount of feces, dry or pelleted | 1 | ||
Diarrhea or small amount of blood in feces or melena or fibrin-covered dry feces | 2 | ||
Severe watery diarrhea, bloody diarrhea or no feces or mucus in rectum | 3 | ||
7 | Respiratory | Normal breathing | 0 |
Increased respiratory rate, dyspnea | 1 | ||
Coughing, loud respiratory sounds, rales | 2 | ||
Severe dyspnea, open mouth breathing | 3 | ||
8 | Neurological signs | Normal | 0 |
Dog sitting | 2 | ||
Unambiguous neurological signs (seizures, convulsions) | 3 | ||
Maximum Cumulative Clinical Score | 24 |
Exp. | Number of Pigs | CSFV Strain | Initial Detection in OF | Initial Detection—Seeder Pig | Initial Detection—Contact Pigs | Seeder Pig Mortality | Herd Mortality at the Study End | ||
---|---|---|---|---|---|---|---|---|---|
WB | OPSW | WB | OPSW | ||||||
1 | 25 | Pinillos | 7 dpi (38.93) | 2 dpi (39.09) | 4 dpi (35.14) | 11 dpc (38.84) | 8 dpc (36.28) | 21 dpi | 48% |
2 | 25 | Koslov | 4 dpi (39.44) | 2 dpi (28.94) | 2 dpi (32.20) | 6 dpc (38.74) | 4 dpc (38.36) | 13 dpi | 45.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robert, E.; Goonewardene, K.; El Kanoa, I.; Hochman, O.; Nfon, C.; Ambagala, A. Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens. Viruses 2024, 16, 318. https://doi.org/10.3390/v16030318
Robert E, Goonewardene K, El Kanoa I, Hochman O, Nfon C, Ambagala A. Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens. Viruses. 2024; 16(3):318. https://doi.org/10.3390/v16030318
Chicago/Turabian StyleRobert, Erin, Kalhari Goonewardene, Ian El Kanoa, Orie Hochman, Charles Nfon, and Aruna Ambagala. 2024. "Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens" Viruses 16, no. 3: 318. https://doi.org/10.3390/v16030318
APA StyleRobert, E., Goonewardene, K., El Kanoa, I., Hochman, O., Nfon, C., & Ambagala, A. (2024). Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens. Viruses, 16(3), 318. https://doi.org/10.3390/v16030318