Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses
Abstract
:1. Introduction
2. African Swine Fever (ASF)
2.1. Diagnosis
2.1.1. Virus Detection
2.1.2. Genome Detection
2.1.3. Serological Diagnosis
2.1.4. Rapid Test Kits
3. Influenza A Viruses of Swine (SwIAV)
3.1. Diagnosis
3.1.1. Virus Detection
3.1.2. Reverse Transcription–Polymerase Chain Reaction (RT-PCR)
3.1.3. Serological Diagnosis
3.1.4. Rapid Test Kits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Chen, W.; Qiu, Z.; Li, Y.; Fan, J.; Wu, K.; Li, X.; Zhao, M.; Ding, H.; Fan, S.; et al. African Swine Fever Virus: A Review. Life 2022, 12, 1255. [Google Scholar] [CrossRef] [PubMed]
- Crisci, E.; Mussá, T.; Fraile, L.; Montoya, M. Review: Influenza Virus in Pigs. Mol. Immunol. 2013, 55, 200–211. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.K.; Graham, S.P. The Pig as an Amplifying Host for New and Emerging Zoonotic Viruses. One Health 2022, 14, 100384. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Ribeiro, A.I.; Rocha-Santos, T. An Introduction to the Concept of One Health. In One Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–31. [Google Scholar]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef]
- Mighell, E.; Ward, M.P. African Swine Fever Spread across Asia, 2018–2019. Transbound. Emerg. Dis. 2021, 68, 2722–2732. [Google Scholar] [CrossRef] [PubMed]
- Schambow, R.; Reyes, R.; Morales, J.; Diaz, A.; Perez, A.M. A Qualitative Assessment of Alternative Eradication Strategies for African Swine Fever in the Dominican Republic. Front. Vet. Sci. 2022, 9, 1054271. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J.M. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen. Virol. 2018, 99, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Colgrove, G.S.; Haelterman, E.O.; Coggins, L. Pathogenesis of African Swine Fever in Young Pigs. Am. J. Vet. Res. 1969, 30, 1343–1359. [Google Scholar] [PubMed]
- Pan, I.C.; Hess, W.R. Virulence in African Swine Fever: Its Measurement and Implications. Am. J. Vet. Res. 1984, 45, 361–366. [Google Scholar]
- Sánchez-Cordón, P.J.; Jabbar, T.; Chapman, D.; Dixon, L.K.; Montoya, M. Absence of Long-Term Protection in Domestic Pigs Immunized with Attenuated African Swine Fever Virus Isolate OURT88/3 or BeninΔMGF Correlates with Increased Levels of Regulatory T Cells and Interleukin-10. J. Virol. 2020, 94, e00350-20. [Google Scholar] [CrossRef]
- Bech-Nielsen, S.; Fernandez, J.; Martinez-Pereda, F.; Espinosa, J.; Perez Bonilla, Q.; Sanchez-Vizcaino, J.M. A Case Study of an Outbreak of African Swine Fever in Spain. Br. Vet. J. 1995, 151, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Mebus, C.A.; Dardiri, A.H. Western Hemisphere Isolates of African Swine Fever Virus: Asymptomatic Carriers and Resistance to Challenge Inoculation. Am. J. Vet. Res. 1980, 41, 1867–1869. [Google Scholar] [PubMed]
- Nurmoja, I.; Petrov, A.; Breidenstein, C.; Zani, L.; Forth, J.H.; Beer, M.; Kristian, M.; Viltrop, A.; Blome, S. Biological Characterization of African Swine Fever Virus Genotype II Strains from North-Eastern Estonia in European Wild Boar. Transbound. Emerg. Dis. 2017, 64, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.L.; Thomson, G.R.; Bastos, A.D.S.; Phiri, O.C.; Lubici, B.A.; Du Plessis, E.C.; Macome, F.; Pinto, F.; Botha, B.; Esterhuysen, J.J. An Investigation into Natural Resistance to African Swine Fever in Domestic Pigs from an Endemic Area in Southern Africa. Rev. Sci. Tech. l’OIE 2004, 23, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African Swine Fever Virus. Virus Res. 2013, 173, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Penrith, M.-L.; Vosloo, W. Review of African Swine Fever: Transmission, Spread and Control: Review Article. J. S. Afr. Vet. Assoc. 2009, 80, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Greig, A. Pathogenesis of African Swine Fever in Pigs Naturally Exposed to the Disease. J. Comp. Pathol. 1972, 82, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.L.; Andrés, G. African Swine Fever Virus Morphogenesis. Virus Res. 2013, 173, 29–41. [Google Scholar] [CrossRef]
- Karger, A.; Pérez-Núñez, D.; Urquiza, J.; Hinojar, P.; Alonso, C.; Freitas, F.; Revilla, Y.; Le Potier, M.-F.; Montoya, M. An Update on African Swine Fever Virology. Viruses 2019, 11, 864. [Google Scholar] [CrossRef]
- Qu, H.; Ge, S.; Zhang, Y.; Wu, X.; Wang, Z. A Systematic Review of Genotypes and Serogroups of African Swine Fever Virus. Virus Genes 2022, 58, 77–87. [Google Scholar] [CrossRef]
- Spinard, E.; Dinhobl, M.; Tesler, N.; Birtley, H.; Signore, A.V.; Ambagala, A.; Masembe, C.; Borca, M.V.; Gladue, D.P. A Re-Evaluation of African Swine Fever Genotypes Based on P72 Sequences Reveals the Existence of Only Six Distinct P72 Groups. Viruses 2023, 15, 2246. [Google Scholar] [CrossRef] [PubMed]
- Borca, M.V.; Ramirez-Medina, E.; Silva, E.; Rai, A.; Espinoza, N.; Velazquez-Salinas, L.; Gladue, D.P. ASF Vaccine Candidate ASFV-G-∆I177L Does Not Exhibit Residual Virulence in Long-Term Clinical Studies. Pathogens 2023, 12, 805. [Google Scholar] [CrossRef]
- Borca, M.V.; Rai, A.; Espinoza, N.; Ramirez-Medina, E.; Spinard, E.; Velazquez-Salinas, L.; Valladares, A.; Silva, E.; Burton, L.; Meyers, A.; et al. African Swine Fever Vaccine Candidate ASFV-G-ΔI177L Produced in the Swine Macrophage-Derived Cell Line IPKM Remains Genetically Stable and Protective against Homologous Virulent Challenge. Viruses 2023, 15, 2064. [Google Scholar] [CrossRef]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef] [PubMed]
- Deutschmann, P.; Forth, J.-H.; Sehl-Ewert, J.; Carrau, T.; Viaplana, E.; Mancera, J.C.; Urniza, A.; Beer, M.; Blome, S. Assessment of African Swine Fever Vaccine Candidate ASFV-G-∆MGF in a Reversion to Virulence Study. NPJ Vaccines 2023, 8, 78. [Google Scholar] [CrossRef]
- Deutschmann, P.; Carrau, T.; Sehl-Ewert, J.; Forth, J.H.; Viaplana, E.; Mancera, J.C.; Urniza, A.; Beer, M.; Blome, S. Taking a Promising Vaccine Candidate Further: Efficacy of ASFV-G-ΔMGF after Intramuscular Vaccination of Domestic Pigs and Oral Vaccination of Wild Boar. Pathogens 2022, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African Swine Fever Virus Vaccine Candidate ASFV-G- Δ I177L Efficiently Protects European and Native Pig Breeds against Circulating Vietnamese Field Strain. Transbound. Emerg. Dis. 2022, 69, 497–504. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Zhang, H.; Qin, Z.; Shan, H.; Cai, X. Vaccines for African Swine Fever: An Update. Front. Microbiol. 2023, 14, 1139494. [Google Scholar] [CrossRef] [PubMed]
- Chandana, M.S.; Nair, S.S.; Chaturvedi, V.K.; Abhishek; Pal, S.; Charan, M.S.S.; Balaji, S.; Saini, S.; Vasavi, K.; Deepa, P. Recent Progress and Major Gaps in the Vaccine Development for African Swine Fever. Braz. J. Microbiol. 2024, 55, 997–1010. [Google Scholar] [CrossRef]
- FAO; OIE. Global Control of African Swine Fever: A GF-TADs Initiative. 2020–2025. Available online: https://www.woah.org/en/document/global-control-of-african-swine-fever-a-gf-tads-initiative-2020-2025/ (accessed on 28 February 2023).
- Malmquist, W.A.; Hay, D. Hemadsorption and Cytopathic Effect Produced by African Swine Fever Virus in Swine Bone Marrow and Buffy Coat Cultures. Am. J. Vet. Res. 1960, 21, 104–108. [Google Scholar]
- Gallardo, C.; Fernández-Pinero, J.; Arias, M. African Swine Fever (ASF) Diagnosis, an Essential Tool in the Epidemiological Investigation. Virus Res. 2019, 271, 197676. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.; Fernández, J.; Romero, L.; Sánchez Mascaraque, C.; Arias, M.; Sánchez-Vizcaíno, J.M. Highly Sensitive PCR Assay for Routine Diagnosis of African Swine Fever Virus in Clinical Samples. J. Clin. Microbiol. 2003, 41, 4431–4434. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.C.; de la Torre Reoyo, A.; Fernández-Pinero, J.; Iglesias, I.; Muñoz, M.J.; Arias, M.L. African Swine Fever: A Global View of the Current Challenge. Porcine Health Manag. 2015, 1, 21. [Google Scholar] [CrossRef]
- Schoder, M.-E.; Tignon, M.; Linden, A.; Vervaeke, M.; Cay, A.B. Evaluation of Seven Commercial African Swine Fever Virus Detection Kits and Three Taq Polymerases on 300 Well-Characterized Field Samples. J. Virol. Methods 2020, 280, 113874. [Google Scholar] [CrossRef]
- Blome, S.; Franzke, K.; Beer, M. African Swine Fever—A Review of Current Knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef] [PubMed]
- Gifford, G.; Szabo, M.; Hibbard, R.; Mateo, D.; Colling, A.; Gardner, I.; Vindel, E.E. Validation, Certification and Registration of Veterinary Diagnostic Test Kits by the World Organisation for Animal Health Secretariat for Registration of Diagnostic Kits. Rev. Sci. Tech. l’OIE 2021, 40, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Haines, F.J.; Hofmann, M.A.; King, D.P.; Drew, T.W.; Crooke, H.R. Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses. PLoS ONE 2013, 8, e71019. [Google Scholar] [CrossRef] [PubMed]
- Mandyhra, S.S.; Muzykina, L.M.; Ishchenko, L.M.; Kovalenko, G.A.; Halka, I.V.; Spyrydonov, V.G.; Nychyk, S.A. Approbation of RT-QPCR Test Kit for Differential Diagnosis of African and Classical Swine Fever. Sci. Messenger LNU Vet. Med. Biotechnol. 2018, 20, 221–225. [Google Scholar] [CrossRef]
- King, D.P.; Reid, S.M.; Hutchings, G.H.; Grierson, S.S.; Wilkinson, P.J.; Dixon, L.K.; Bastos, A.D.S.; Drew, T.W. Development of a TaqMan® PCR Assay with Internal Amplification Control for the Detection of African Swine Fever Virus. J. Virol. Methods 2003, 107, 53–61. [Google Scholar] [CrossRef]
- Bru, G.; Martínez-Candela, M.; Romero, P.; Navarro, A.; Martínez-Murcia, A. Internal Validation of the ASFV MONODOSE Dtec-QPCR Kit for African Swine Fever Virus Detection under the UNE-EN ISO/IEC 17025:2005 Criteria. Vet. Sci. 2023, 10, 564. [Google Scholar] [CrossRef]
- Fernández-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gómez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular Diagnosis of African Swine Fever by a New Real-Time PCR Using Universal Probe Library. Transbound. Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef]
- Chen, Q.; Tu, F.; Chen, X.; Yu, Y.; Gu, Y.; Wang, Y.; Liu, Z. Visual Isothermal Amplification Detection of ASFV Based on Trimeric G-Quadruplex Cis-Cleavage Activity of Cas-12a. Anal. Biochem. 2023, 676, 115235. [Google Scholar] [CrossRef]
- Wang, X.; He, S.; Zhao, N.; Liu, X.; Cao, Y.; Zhang, G.; Wang, G.; Guo, C. Development and Clinical Application of a Novel CRISPR-Cas12a Based Assay for the Detection of African Swine Fever Virus. BMC Microbiol. 2020, 20, 282. [Google Scholar] [CrossRef]
- WOAH Terrestrial Manual. Chapter 3.9.1. African Swine Fever. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.09.01_ASF.pdf (accessed on 15 January 2024).
- Gallardo, C.; Nieto, R.; Soler, A.; Pelayo, V.; Fernández-Pinero, J.; Markowska-Daniel, I.; Pridotkas, G.; Nurmoja, I.; Granta, R.; Simón, A.; et al. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs. J. Clin. Microbiol. 2015, 53, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- WOAH. The OIE ASF Reference Laboratory Network’s Overview of African Swine Fever Diagnostic Tests for Field Application. Available online: https://www.woah.org/app/uploads/2022/03/en-oie-asf-poc-tests-guide-final.pdf (accessed on 30 January 2024).
- Sastre, P.; Gallardo, C.; Monedero, A.; Ruiz, T.; Arias, M.; Sanz, A.; Rueda, P. Development of a Novel Lateral Flow Assay for Detection of African Swine Fever in Blood. BMC Vet. Res. 2016, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Sastre, P.; Pérez, T.; Costa, S.; Yang, X.; Räber, A.; Blome, S.; Goller, K.V.; Gallardo, C.; Tapia, I.; García, J.; et al. Development of a Duplex Lateral Flow Assay for Simultaneous Detection of Antibodies against African and Classical Swine Fever Viruses. J. Vet. Diagn. Investig. 2016, 28, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Cappai, S.; Loi, F.; Coccollone, A.; Cocco, M.; Falconi, C.; Dettori, G.; Feliziani, F.; Sanna, M.L.; Oggiano, A.; Rolesu, S. Evaluation of a Commercial Field Test to Detect African Swine Fever. J. Wildl. Dis. 2017, 53, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Bionote. Rapid ASFV Ag. Available online: https://www.bionote.co.kr/en/product/rapid/view.html?idx=33&srh_cate=5&curpage=1&search_txt=#content (accessed on 30 January 2024).
- Onyilagha, C.; Nguyen, K.; Luka, P.D.; Hussaini, U.; Adedeji, A.; Odoom, T.; Ambagala, A. Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types. Pathogens 2022, 11, 138. [Google Scholar] [CrossRef]
- Matsumoto, N.; Siengsanan-Lamont, J.; Gleeson, L.J.; Douangngeun, B.; Theppangna, W.; Khounsy, S.; Phommachanh, P.; Halasa, T.; Bush, R.D.; Blacksell, S.D. Evaluation of the Diagnostic Accuracy of an Affordable Rapid Diagnostic Test for African Swine Fever Antigen Detection in Lao People’s Democratic Republic. J. Virol. Methods 2020, 286, 113975. [Google Scholar] [CrossRef]
- Algenex. Commercial Adoption of Herdscreen® ASFV Antibody Test in Europe. Available online: https://www.algenex.com/commercial-adoption-of-herdscreen-asfv-antibody-test-in-europe/ (accessed on 30 January 2024).
- Deutschmann, P.; Pikalo, J.; Beer, M.; Blome, S. Lateral Flow Assays for the Detection of African Swine Fever Virus Antigen Are Not Fit for Field Diagnosis of Wild Boar Carcasses. Transbound. Emerg. Dis. 2022, 69, 2344–2348. [Google Scholar] [CrossRef]
- Zsak, L.; Borca, M.V.; Risatti, G.R.; Zsak, A.; French, R.A.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Callahan, J.D.; Nelson, W.M.; et al. Preclinical Diagnosis of African Swine Fever in Contact-Exposed Swine by a Real-Time PCR Assay. J. Clin. Microbiol. 2005, 43, 112–119. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (WOAH). Swine Influenza. Available online: https://www.woah.org/en/disease/swine-influenza/ (accessed on 20 November 2023).
- Chauhan, R.P.; Gordon, M.L. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020, 9, 355. [Google Scholar] [CrossRef]
- Kuntz-Simon, G.; Madec, F. Genetic and Antigenic Evolution of Swine Influenza Viruses in Europe and Evaluation of Their Zoonotic Potential. Zoonoses Public Health 2009, 56, 310–325. [Google Scholar] [CrossRef]
- Kyriakis, C.S.; Brown, I.H.; Foni, E.; Kuntz-Simon, G.; Maldonado, J.; Madec, F.; Essen, S.C.; Chiapponi, C.; Van Reeth, K. Virological Surveillance and Preliminary Antigenic Characterization of Influenza Viruses in Pigs in Five European Countries from 2006 to 2008. Zoonoses Public Health 2011, 58, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Robertson, I. The Epidemiology of Swine Influenza. Anim. Dis. 2021, 1, 21. [Google Scholar] [CrossRef]
- Qi, X.; Lu, C. Swine Influenza Virus: Evolution Mechanism and Epidemic Characterization—A Review. Wei Sheng Wu Xue Bao 2009, 49, 1138–1145. [Google Scholar] [PubMed]
- Watson, S.J.; Langat, P.; Reid, S.M.; Lam, T.T.-Y.; Cotten, M.; Kelly, M.; Van Reeth, K.; Qiu, Y.; Simon, G.; Bonin, E.; et al. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. J. Virol. 2015, 89, 9920–9931. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Webby, R.; Lam, T.T.Y.; Smith, D.K.; Peiris, J.S.M.; Guan, Y. History of Swine Influenza Viruses in Asia. Curr. Top. Microbiol. Immunol. 2011, 370, 57–68. [Google Scholar]
- Holzer, B.; Martini, V.; Edmans, M.; Tchilian, E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front. Immunol. 2019, 10, 98. [Google Scholar] [CrossRef]
- Ma, W.; Loving, C.L.; Driver, J.P. From Snoot to Tail: A Brief Review of Influenza Virus Infection and Immunity in Pigs. J. Immunol. 2023, 211, 1187–1194. [Google Scholar] [CrossRef]
- Lewis, N.S.; Russell, C.A.; Langat, P.; Anderson, T.K.; Berger, K.; Bielejec, F.; Burke, D.F.; Dudas, G.; Fonville, J.M.; Fouchier, R.A.; et al. The Global Antigenic Diversity of Swine Influenza A Viruses. Elife 2016, 5, e12217. [Google Scholar] [CrossRef] [PubMed]
- Mancera Gracia, J.C.; Pearce, D.S.; Masic, A.; Balasch, M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front. Vet. Sci. 2020, 7, 647. [Google Scholar] [CrossRef] [PubMed]
- WOAH. Terrestrial Manual Chapter 3.9.7. Influenza A Viruses of Swine. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.09.07_INF_A_SWINE.pdf (accessed on 30 January 2024).
- Applied Biosystems. VetMAX-Gold SIV Solutions. Available online: https://assets.thermofisher.com/TFS-Assets/GSD/Flyers/animalhealth_flyer_vetmaxgold_siv_CO121090.pdf (accessed on 15 January 2024).
- Slomka, M.J.; Densham, A.L.E.; Coward, V.J.; Essen, S.; Brookes, S.M.; Irvine, R.M.; Spackman, E.; Ridgeon, J.; Gardner, R.; Hanna, A.; et al. Real Time Reverse Transcription (RRT)-Polymerase Chain Reaction (PCR) Methods for Detection of Pandemic (H1N1) 2009 Influenza Virus and European Swine Influenza A Virus Infections in Pigs. Influ. Other Respir. Viruses 2010, 4, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Chiapponi, C.; Boniotti, M.B.; Sozzi, E.; Foni, E.; Barbieri, I.; Zanoni, M.G.; Faccini, S.; Lelli, D.; Cordioli, P. Genomic Characterization of H1N2 Swine Influenza Viruses in Italy. Vet. Microbiol. 2012, 156, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Pulit-Penaloza, J.A.; Belser, J.A.; Pappas, C.; Pearce, M.B.; Brock, N.; Zeng, H.; Creager, H.M.; Zanders, N.; Jang, Y.; et al. Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011–2016. J. Virol. 2018, 92, e00665-18. [Google Scholar] [CrossRef] [PubMed]
- WEI, Y.; PEI, X.; ZHANG, Y.; YU, C.; SUN, H.; LIU, J.; PU, J. Nested RT-PCR Method for the Detection of European Avian-like H1 Swine Influenza A Virus. J. Integr. Agric. 2016, 15, 1095–1102. [Google Scholar] [CrossRef]
- Goodell, C.K.; Prickett, J.; Kittawornrat, A.; Johnson, J.; Zhang, J.; Wang, C.; Zimmerman, J.J. Evaluation of Screening Assays for the Detection of Influenza A Virus Serum Antibodies in Swine. Transbound. Emerg. Dis. 2016, 63, 24–35. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Inoue, H.; Ozawa, M.; Matsuu, A. Serological Survey of Influenza A Virus Infection in Japanese Wild Boars (Sus Scrofa Leucomystax). Microbiol. Immunol. 2019, 63, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Ingenasa. INGEZIM PPA Compac. Available online: https://www.goldstandarddiagnostics.es/media/3540/11fluk1-ficha-bi.pdf (accessed on 30 January 2024).
- Touloudi, A.; Valiakos, G.; Athanasiou, L.V.; Birtsas, P.; Giannakopoulos, A.; Papaspyropoulos, K.; Kalaitzis, C.; Sokos, C.; Tsokana, C.N.; Spyrou, V.; et al. A Serosurvey for Selected Pathogens in Greek European Wild Boar. Vet. Rec. Open 2015, 2, e000077. [Google Scholar] [CrossRef]
- Innovative Diagnostics Internal Validation Report. ID Screen ® Influenza A Nucleoprotein Swine Indirect. Available online: https://www.innovative-diagnostics.com/produit/id-screen-influenza-a-nucleoprotein-swine-indirect/ (accessed on 30 January 2024).
- Andraud, M.; Hervé, S.; Gorin, S.; Barbier, N.; Quéguiner, S.; Paboeuf, F.; Simon, G.; Rose, N. Evaluation of Early Single Dose Vaccination on Swine Influenza A Virus Transmission in Piglets: From Experimental Data to Mechanistic Modelling. Vaccine 2023, 41, 3119–3127. [Google Scholar] [CrossRef]
- Swenson, S.L.; Vincent, L.L.; Lute, B.M.; Janke, B.H.; Lechtenberg, K.F.; Landgraf, J.G.; Schmitt, B.J.; Kinker, D.R.; McMillen, J.K. A Comparison of Diagnostic Assays for the Detection of Type a Swine Influenza Virus from Nasal Swabs and Lungs. J. Vet. Diagn. Investig. 2001, 13, 36–42. [Google Scholar] [CrossRef]
- Bai, G.-R.; Sakoda, Y.; Mweene, A.S.; Kishida, N.; Yamada, T.; Minakawa, H.; Kida, H. Evaluation of the ESPLINE® INFLUENZA A&B-N Kit for the Diagnosis of Avian and Swine Influenza. Microbiol. Immunol. 2005, 49, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Innovative Diagnostics Internal Validation Report. ID Screen Influenza A Antigen Capture. Available online: https://www.innovative-diagnostics.com/produit/id-screen-influenza-a-antigen-capture/ (accessed on 30 January 2024).
- Aira, C.; Klett-Mingo, J.I.; Ruiz, T.; Garcia-Sacristán, A.; Martín-Valls, G.E.; Mateu, E.; Gómez-Laguna, J.; Rueda, P.; González, V.M.; Rodríguez, M.J.; et al. Development of an Antigen Enzyme-Linked AptaSorbent Assay (ELASA) for the Detection of Swine Influenza Virus in Field Samples. Anal. Chim. Acta 2021, 1181, 338933. [Google Scholar] [CrossRef]
- Zhou, J.; Ni, Y.; Wang, D.; Fan, B.; Zhu, X.; Zhou, J.; Hu, Y.; Li, L.; Li, B. Development of a Competitive Enzyme-Linked Immunosorbent Assay Targeting the-P30 Protein for Detection of Antibodies against African Swine Fever Virus. Viruses 2023, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, J.M.; Rodriguez, F.; Gómez-Puertas, P.; Brun, A.; Gómez, N.; Alonso, C.; Escribano, J.M. High Level Expression of the Major Antigenic African Swine Fever Virus Proteins P54 and P30 in Baculovirus and Their Potential Use as Diagnostic Reagents. J. Virol. Methods 1997, 64, 27–35. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, H.; Zhu, D.; Xie, J.; Sun, F.; Xu, Y.; Zhang, H.; Wu, Z.; Xia, W.; Zhu, S. Developing an Indirect ELISA for the Detection of African Swine Fever Virus Antibodies Using a Tag-Free P15 Protein Antigen. Viruses 2023, 15, 1939. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Shi, Z.; Luo, J.; Zhang, X.; Wei, J.; Zhou, J.; Liao, H.; Wang, W.; Tian, H.; Zheng, H. WITHDRAWN: Development of a Double-Antigen Sandwich ELISA for African Swine Fever Virus Antibody Detection Based on K205R Protein. Int. J. Biol. Macromol. 2024, 254, 127724. [Google Scholar] [CrossRef]
- Wang, X.; Ji, P.; Fan, H.; Dang, L.; Wan, W.; Liu, S.; Li, Y.; Yu, W.; Li, X.; Ma, X.; et al. CRISPR/Cas12a Technology Combined with Immunochromatographic Strips for Portable Detection of African Swine Fever Virus. Commun. Biol. 2020, 3, 62. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zhang, Y.; Wang, Z.; Li, J.; Hu, Y.; Li, L.; Ge, S.; Wang, Q.; Wang, Y.; Wu, X.; et al. Development and Application of a TaqMan-Based Real-Time PCR Method for the Detection of the ASFV MGF505-7R Gene. Front. Vet. Sci. 2023, 10, 75–76. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Y.; Cai, G.; Meng, G.; Shi, S. Rapid and Sensitive RPA-Cas12a-Fluorescence Assay for Point-of-Care Detection of African Swine Fever Virus. PLoS ONE 2021, 16, e0254815. [Google Scholar] [CrossRef]
- Yang, B.; Shi, Z.; Ma, Y.; Wang, L.; Cao, L.; Luo, J.; Wan, Y.; Song, R.; Yan, Y.; Yuan, K.; et al. LAMP Assay Coupled with CRISPR/Cas12a System for Portable Detection of African Swine Fever Virus. Transbound. Emerg. Dis. 2022, 69, e216–e233. [Google Scholar] [CrossRef] [PubMed]
- Erickson, A.; Fisher, M.; Furukawa-Stoffer, T.; Ambagala, A.; Hodko, D.; Pasick, J.; King, D.P.; Nfon, C.; Ortega Polo, R.; Lung, O. A Multiplex Reverse Transcription PCR and Automated Electronic Microarray Assay for Detection and Differentiation of Seven Viruses Affecting Swine. Transbound. Emerg. Dis. 2018, 65, e272–e283. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Lin, X.Y.; Yang, Z.X.; Yao, X.P.; Li, G.L.; Peng, S.Z.; Wang, Y. A Multiplex PCR for Simultaneous Detection of Classical Swine Fever Virus, African Swine Fever Virus, Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus, Porcine Reproductive and Respiratory Syndrome Virus and Pseudorabies in Swines. Pol. J. Vet. Sci. 2015, 18, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.P.; Gordon, M.L. Review of Genome Sequencing Technologies in Molecular Characterization of Influenza A Viruses in Swine. J. Vet. Diagn. Investig. 2022, 34, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Crossley, B.M.; Rejmanek, D.; Baroch, J.; Stanton, J.B.; Young, K.T.; Killian, M.L.; Torchetti, M.K.; Hietala, S.K. Nanopore Sequencing as a Rapid Tool for Identification and Pathotyping of Avian Influenza A Viruses. J. Vet. Diagn. Investig. 2021, 33, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Graaf-Rau, A.; Hennig, C.; Lillie-Jaschniski, K.; Koechling, M.; Stadler, J.; Boehmer, J.; Ripp, U.; Pohlmann, A.; Schwarz, B.A.; Beer, M.; et al. Emergence of Swine Influenza A Virus, Porcine Respirovirus 1 and Swine Orthopneumovirus in Porcine Respiratory Disease in Germany. Emerg. Microbes Infect. 2023, 12, 2239938. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.; Hossain, M.E.; Hasan, R.; Alam, M.S.; Puspo, J.A.; Hasan, M.M.; Islam, A.; Chowdhury, S.; Rahman, M.Z. Culture-Independent Workflow for Nanopore MinION-Based Sequencing of Influenza A Virus. Microbiol. Spectr. 2023, 11, e04946-22. [Google Scholar] [CrossRef] [PubMed]
- Rambo-Martin, B.L.; Keller, M.W.; Wilson, M.M.; Nolting, J.M.; Anderson, T.K.; Vincent, A.L.; Bagal, U.R.; Jang, Y.; Neuhaus, E.B.; Davis, C.T.; et al. Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere 2020, 5, e00822-19. [Google Scholar] [CrossRef] [PubMed]
- Vandoorn, E.; Stadejek, W.; Parys, A.; Chepkwony, S.; Chiers, K.; Van Reeth, K. Pathobiology of an NS1-Truncated H3N2 Swine Influenza Virus Strain in Pigs. J. Virol. 2022, 96, e00519-22. [Google Scholar] [CrossRef]
- Vereecke, N.; Woźniak, A.; Pauwels, M.; Coppens, S.; Nauwynck, H.; Cybulski, P.; Theuns, S.; Stadejek, T. Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (SwIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses 2023, 15, 435. [Google Scholar] [CrossRef]
- Vereecke, N.; Zwickl, S.; Gumbert, S.; Graaf, A.; Harder, T.; Ritzmann, M.; Lillie-Jaschniski, K.; Theuns, S.; Stadler, J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol. Spectr. 2023, 11, e0009823. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sakuma, S.; Mine, J.; Uchida, Y.; Hangalapura, B.N. Genetic Diversity of the Hemagglutinin Genes of Influenza a Virus in Asian Swine Populations. Viruses 2022, 14, 747. [Google Scholar] [CrossRef] [PubMed]
- Van Reeth, K.; Brown, I.; Essen, S.; Pensaert, M. Genetic Relationships, Serological Cross-Reaction and Cross-Protection between H1N2 and Other Influenza A Virus Subtypes Endemic in European Pigs. Virus Res. 2004, 103, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Leuwerke, B.; Kitikoon, P.; Evans, R.; Thacker, E. Comparison of Three Serological Assays to Determine the Cross-Reactivity of Antibodies from Eight Genetically Diverse U.S. Swine Influenza Viruses. J. Vet. Diagn. Investig. 2008, 20, 426–432. [Google Scholar] [CrossRef]
- Er, J.C.; Lium, B.; Framstad, T. Antibodies of Influenza A(H1N1)Pdm09 Virus in Pigs’ Sera Cross-React with Other Influenza A Virus Subtypes. A Retrospective Epidemiological Interpretation of Norway’s Serosurveillance Data from 2009–2017. Epidemiol. Infect. 2020, 148, e73. [Google Scholar] [CrossRef]
Name of Taq Mixes or Kits | Manufacturer | Specificity | Sensitivity |
---|---|---|---|
AgPath-ID™ One-Step RT-PCR Reagents (Ampli Taq Gold™ DNA polymerase) | Applied Biosystems™ | 100% | 100% |
TaqPathTM 1-Step Multiplex Master Mix (Ampli Taq™ DNA polymerase) | Thermo Fisher | 100% | 100% |
SsoAdvanced Universal Probes Supermix (Sso7d fusion polymerase) | Bio-Rad | 98.96% | 97.20% |
Virotype ASFV 2.0 PCR kit | Indical | 98.45% | 98.13% |
Adiavet ASFV Fast Time | Adiagen | 100% | 99.07% |
Bio-T kit ASFV | Biosellal | 99.48% | 99.07% |
VetMax ASFV Detection kit | Thermofisher | 98.13% | 98.45% |
RealPCR ASFV DNA Test | IDEXX | 100% | 98.96% |
VetAlert ASF PCR Test kit | Tetracore | 98.96% | 97.20% |
ID Gene™ African Swine Fever Duplex | ID.vet | 99.14% | 98.67% |
ELISA Commercial Kits | Technical Basis of the Kit | Specificity |
---|---|---|
INgezim PPA Compac K3 (Gold Standard Diagnostics, Madrid, Spain) | Blocking ELISA which uses monoclonal antibody of the p72 ASFV protein | 84.3% |
ID Screen African swine fever indirect assay (IDvet, Grabels, France) | An indirect multi-antigen ELISA kit for the detection of antibodies against p32, p62, and p72 ASFV proteins | 100.0% |
Svanovir ASFV-Ab; (Boehringer Ingelheim Svanova, Uppsala, Sweden) | Based on indirect ELISA based on recombinant p30 ASFV protein | 91.4% |
PoC Tests, Manufacturer | References | DSe | DSp |
---|---|---|---|
INgezim ASF CROM Ag, Gold Standard Diagnostics | [49] | 67.86% | 97.98% |
INgezim ASFV-CSFV CROM Ab, Gold Standard Diagnostics | [50] | 100%/96% for ASFV/CSFV | 100% for both ASFV/CSFV. |
INgezim PPA CROM, Gold Standard Diagnostics | [51] | 81.8% | 95.9% |
Rapid ASFV Ag, Bionote | [52] | Not available | Not available |
Rapid Screening Test for ASFV, PenCheckTM | [53] | - | 99.4% |
SLB ASF Antigen Detection RDT, SLB Co | [54] | 65% | 76% |
GDX70-2 Herdscreen® ASF Antibody, Global DX | [55] | 86.2% | 100% |
Commercial Name of Kits | Manufacturer | Specificity | Sensitivity |
---|---|---|---|
VetMAX™-Gold SIV Detection kit | Applied Biosystems™ | 99.1% | 98.4% |
VetMAX™-Gold SIV Subtyping kit | Applied Biosystems™ | 100.0% | 98.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzykina, L.; Barrado-Gil, L.; Gonzalez-Bulnes, A.; Crespo-Piazuelo, D.; Cerón, J.J.; Alonso, C.; Montoya, M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses 2024, 16, 505. https://doi.org/10.3390/v16040505
Muzykina L, Barrado-Gil L, Gonzalez-Bulnes A, Crespo-Piazuelo D, Cerón JJ, Alonso C, Montoya M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses. 2024; 16(4):505. https://doi.org/10.3390/v16040505
Chicago/Turabian StyleMuzykina, Larysa, Lucía Barrado-Gil, Antonio Gonzalez-Bulnes, Daniel Crespo-Piazuelo, Jose Joaquin Cerón, Covadonga Alonso, and María Montoya. 2024. "Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses" Viruses 16, no. 4: 505. https://doi.org/10.3390/v16040505
APA StyleMuzykina, L., Barrado-Gil, L., Gonzalez-Bulnes, A., Crespo-Piazuelo, D., Cerón, J. J., Alonso, C., & Montoya, M. (2024). Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses, 16(4), 505. https://doi.org/10.3390/v16040505