Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020–2021 for Respiratory Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patient Samples
2.3. Serology
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. WNV Exposure and COVID-19 Severity
4. Discussion
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Uelmen, J.A.; Lamcyzk, B.; Irwin, P.; Bartlett, D.; Stone, C.; Mackay, A.; Arsenault-Benoit, A.; Ryan, S.J.; Mutebi, J.-P.; Hamer, G.L.; et al. Human biting mosquitoes and implications for West Nile virus transmission. Parasit. Vectors 2023, 16, 2. [Google Scholar] [CrossRef]
- Fulton, C.D.M.; Beasley, D.W.C.; Bente, D.A.; Dineley, K.T. Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav. Immun.—Health 2020, 7, 100105. [Google Scholar] [CrossRef] [PubMed]
- Beeman, S.P.; Downs, J.A.; Unnasch, T.R.; Unnasch, R.S. West Nile Virus and Eastern Equine Encephalitis Virus High Probability Habitat Identification for the Selection of Sentinel Chicken Surveillance Sites in Florida. J. Am. Mosq. Control Assoc. 2022, 38, 1–6. [Google Scholar] [CrossRef]
- Coatsworth, H.; Lippi, C.A.; Vasquez, C.; Ayers, J.B.; Stephenson, C.J.; Waits, C.; Florez, M.; Wilke, A.B.B.; Unlu, I.; Medina, J.; et al. A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. Lancet Reg. Health—Am. 2022, 11, 100231. [Google Scholar] [CrossRef]
- Lino, A.; Erickson, T.A.; Nolan, M.S.; Murray, K.O.; Ronca, S.E. A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection. Pathogens 2022, 11, 650. [Google Scholar] [CrossRef]
- Austgen, L.E.; Bowen, R.A.; Bunning, M.L.; Davis, B.S.; Mitchell, C.J.; Chang, G.-J.J. Experimental infection of cats and dogs with West Nile virus. Emerg. Infect. Dis. 2004, 10, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Klenk, K.; Snow, J.; Morgan, K.; Bowen, R.; Stephens, M.; Foster, F.; Gordy, P.; Beckett, S.; Komar, N.; Gubler, D.; et al. Alligators as West Nile virus amplifiers. Emerg. Infect. Dis. 2004, 10, 2150–2155. [Google Scholar] [CrossRef] [PubMed]
- St Leger, J.; Wu, G.; Anderson, M.; Dalton, L.; Nilson, E.; Wang, D. West Nile virus infection in killer whale, Texas, USA, 2007. Emerg. Infect. Dis. 2011, 17, 1531–1533. [Google Scholar] [CrossRef]
- Steinman, A.; Banet-Noach, C.; Simanov, L.; Grinfeld, N.; Aizenberg, Z.; Levi, O.; Lahav, D.; Malkinson, M.; Perk, S.; Shpigel, N.Y. Experimental infection of common garter snakes (Thamnophis sirtalis) with West Nile virus. Vector Borne Zoonotic Dis. 2006, 6, 361–368. [Google Scholar] [CrossRef]
- Sotomayor-Bonilla, J.; García-Suárez, O.; Cigarroa-Toledo, N.; Cetina-Trejo, R.C.; Espinosa-García, A.C.; Sarmiento-Silva, R.E.; Machain-Williams, C.; Santiago-Alarcón, D.; Mazari-Hiriart, M.; Suzán, G. Survey of mosquito-borne flaviviruses in the Cuitzmala River Basin, Mexico: Do they circulate in rodents and bats? Trop. Med. Health 2018, 46, 35. [Google Scholar] [CrossRef]
- Final Cumulative Maps & Data for 1999–2021: Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html (accessed on 22 January 2024).
- De Filette, M.; Ulbert, S.; Diamond, M.; Sanders, N.N. Recent progress in West Nile virus diagnosis and vaccination. Vet. Res. 2012, 43, 16. [Google Scholar] [CrossRef]
- Riles, M.T.; Martin, D.; Mulla, C.; Summers, E.; Duke, L.; Clauson, J.; Campbell, L.P.; Giordano, B.V. West Nile Virus Surveillance in Sentinel Chickens and Mosquitoes in Panama City Beach, Florida, from 2014 To 2020. J. Am. Mosq. Control Assoc. 2022, 38, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Senne, D.A.; Pedersen, J.C.; Hutto, D.L.; Taylor, W.D.; Schmitt, B.J.; Panigrahy, B. Pathogenicity of West Nile virus in chickens. Avian Dis. 2000, 44, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.A.; Nemeth, N.M. Experimental infections with West Nile virus. Curr. Opin. Infect. Dis. 2007, 20, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Florida Health. Non-Human Mosquito-Borne Disease Monitoring Activities; Florida Health: Tallahassee, FL, USA, 2016. [Google Scholar]
- Moise, I.K.; Ortiz-Whittingham, L.R.; Omachonu, V.; Clark, M.; Xue, R.D. Fighting mosquito bite during a crisis: Capabilities of Florida mosquito control districts during the COVID-19 pandemic. BMC Public Health 2021, 21, 687. [Google Scholar] [CrossRef] [PubMed]
- Hadler, J.; Patel, D.; Nasci, R.; Petersen, L.; Hughes, J.; Bradley, K.; Etkind, P.; Kan, L.; Engel, J. Assessment of Arbovirus Surveillance 13 Years after Introduction of West Nile Virus, United States. Emerg. Infect. Dis. 2015, 21, 1159–1166. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Lehman, J.A.; Staples, J.E.; Fischer, M. West Nile virus and other arboviral disease—United States, 2012. MMWR Morb. Mortal Wkly. Rep. 2013, 62, 513–517. [Google Scholar]
- Ouhoumanne, N.; Lowe, A.M.; Fortin, A.; Kairy, D.; Vibien, A.; Lensch, J.K.; Tannenbaum, T.N.; Milord, F. Morbidity, mortality and long-term sequelae of West Nile virus disease in Québec. Epidemiol. Infect. 2018, 146, 867–874. [Google Scholar] [CrossRef]
- Snyder, R.E.; Cooksey, G.S.; Kramer, V.; Jain, S.; Vugia, D.J. West Nile Virus-Associated Hospitalizations, California, 2004–2017. Clin. Infect. Dis. 2021, 73, 441–447. [Google Scholar] [CrossRef]
- Nolan, M.S.; Hause, A.M.; Murray, K.O. Findings of Long-Term Depression up to 8 Years Post Infection from West Nile Virus. J. Clin. Psychol. 2012, 68, 801–808. [Google Scholar] [CrossRef]
- Klee, A.L.; Maidin, B.; Edwin, B.; Poshni, I.; Mostashari, F.; Fine, A.; Layton, M.; Nash, D. Long-term prognosis for clinical West Nile virus infection. Emerg. Infect. Dis. 2004, 10, 1405–1411. [Google Scholar] [CrossRef]
- Feinstein, S.; Akov, Y.; Lachmi, B.E.; Lehrer, S.; Rannon, L.; Katz, D. Determination of human IgG and IgM class antibodies to West Nile virus by enzyme linked immunosorbent assay (ELISA). J. Med. Virol. 1985, 17, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Piantadosi, A.; Kanjilal, S. Diagnostic Approach for Arboviral Infections in the United States. J. Clin. Microbiol. 2020, 58, e01926-19. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Diagnostic Testing 2024. Available online: https://www.cdc.gov/westnile/healthcareproviders/healthCareProviders-Diagnostic.html (accessed on 24 January 2024).
- Parren, P.W.; Burton, D.R. The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 2001, 77, 195–262. [Google Scholar]
- Mansfield, K.L.; Horton, D.L.; Johnson, N.; Li, L.; Barrett, A.D.T.; Smith, D.J.; Galbraith, S.E.; Solomon, T.; Fooks, A.R. Flavivirus-induced antibody cross-reactivity. J. Gen. Virol. 2011, 92, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. St. Louis Encephalitis: Current Year Data (2023): Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/sle/statistics/current-season-data.html (accessed on 24 January 2024).
- QuickFacts: Hillsborough County, Florida: United States Census Bureau. Available online: https://www.census.gov/quickfacts/fact/table/hillsboroughcountyflorida/PST045222 (accessed on 1 February 2024).
- Harrigan, R.J.; Thomassen, H.A.; Buermann, W.; Cummings, R.F.; Kahn, M.E.; Smith, T.B. Economic conditions predict prevalence of West Nile virus. PLoS ONE 2010, 5, e15437. [Google Scholar] [CrossRef]
- Vanichanan, J.; Salazar, L.; Wootton, S.H.; Aguilera, E.; Garcia, M.N.; Murray, K.O.; Hasbun, R. Use of Testing for West Nile Virus and Other Arboviruses. Emerg. Infect. Dis. 2016, 22, 1587–1593. [Google Scholar] [CrossRef]
- Weber, I.B.; Lindsey, N.P.; Bunko-Patterson, A.M.; Briggs, G.; Wadleigh, T.J.; Sylvester, T.L.; Levy, C.; Komatsu, K.K.; Lehman, J.A.; Fischer, M.; et al. Completeness of West Nile virus testing in patients with meningitis and encephalitis during an outbreak in Arizona, USA. Epidemiol. Infect. 2012, 140, 1632–1636. [Google Scholar] [CrossRef]
- Zou, S.; Foster, G.A.; Dodd, R.Y.; Petersen, L.R.; Stramer, S.L. West Nile fever characteristics among viremic persons identified through blood donor screening. J. Infect. Dis. 2010, 202, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Wang, Y.; Carlson, S.A.; Greenlund, K.J.; Lu, H.; Liu, Y.; Croft, J.B.; Eke, P.I.; Town, M.; Thomas, C.W. National, State-Level, and County-Level Prevalence Estimates of Adults Aged ≥18 Years Self-Reporting a Lifetime Diagnosis of Depression—United States, 2020. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 644–650. [Google Scholar] [CrossRef]
- Behavioral Risk Factor Surveillance System (BRFSS): FLHealthCharts. Available online: https://www.flhealthcharts.gov/ChartsDashboards/rdPage.aspx?rdReport=BRFSS.Dataviewer&bid=106 (accessed on 20 January 2024).
- Witters, D.U.S. Depression Rates Reach New Highs: Gallup. Available online: https://news.gallup.com/poll/505745/depression-rates-reach-new-highs.aspx (accessed on 22 January 2024).
- Hale, J.M.; Schneider, D.C.; Gampe, J.; Mehta, N.K.; Myrskylä, M. Trends in the Risk of Cognitive Impairment in the United States, 1996–2014. Epidemiology 2020, 31, 745–754. [Google Scholar] [CrossRef]
- Wolters, F.J.; Chibnik, L.B.; Waziry, R.; Anderson, R.; Berr, C.; Beiser, A.; Bos, D.; Brayne, C.; Dartigues, J.F.; Darweesh, S.K.L.; et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium. Neurology 2020, 95, e519–e531. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical (accessed on 24 April 2024).
- Kaiser, J.A.; Barrett, A.D. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses 2019, 11, 823. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile virus live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Meghani, A.; Halstead, S.B.; Yaich, M. Use of the live attenuated Japanese Encephalitis vaccine SA 14-14-2 in children: A review of safety and tolerability studies. Hum. Vaccines Immunother. 2017, 13, 2222–2231. [Google Scholar] [CrossRef]
- Patel, H.; Sander, B.; Nelder, M.P. Long-term sequelae of West Nile virus-related illness: A systematic review. Lancet Infect. Dis. 2015, 15, 951–959. [Google Scholar] [CrossRef]
- Vittor, A.Y.; Long, M.; Chakrabarty, P.; Aycock, L.; Kollu, V.; DeKosky, S.T. West Nile Virus-Induced Neurologic Sequelae-Relationship to Neurodegenerative Cascades and Dementias. Curr. Trop. Med. Rep. 2020, 7, 25–36. [Google Scholar] [CrossRef]
- Clé, M.; Eldin, P.; Briant, L.; Lannuzel, A.; Simonin, Y.; Van de Perre, P.; Cabié, A.; Salinas, S. Neurocognitive impacts of arbovirus infections. J. Neuroinflamm. 2020, 17, 233. [Google Scholar] [CrossRef]
- Ronca, S.E.; Dineley, K.T.; Paessler, S. Neurological Sequelae Resulting from Encephalitic Alphavirus Infection. Front. Microbiol. 2016, 7, 959. [Google Scholar] [CrossRef]
- Lopes Marques, C.D.; Ranzolin, A.; Cavalcanti, N.G.; Branco Pinto Duarte, A.L. Arboviruses related with chronic musculoskeletal symptoms. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101502. [Google Scholar] [CrossRef]
COVID Positive | COVID Negative | Total | |
---|---|---|---|
Sex | |||
Female | 63 (52.1) | 70 (54.3) | 133 (53.2) |
Male | 58 (47.9) | 59 (45.7) | 117 (46.8) |
Age | |||
Mean (Years) ± SD | 53.38 ± 17.9999 | 53.39 ± 16.845 | 53.37 ± 17.378 |
WNV Status | |||
Positive | 23 (19.0) | 24 (18.6) | 47 (18.8) |
Negative | 98 (81.0) | 105 (81.4) | 203 (81.2) |
Total | 121 | 129 | 250 |
Odds Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Female | 1.00 (REF) | - | - | - |
Male | 1.602 | 0.841 | 3.055 | 0.152 |
WNV IgG Negative N (%) | WNV IgG Positive N (%) | Total N (%) | |
---|---|---|---|
Age Group (years) | |||
0–19 | 4 (1.6) | 1 (0.04) | 5 (2.0) |
20–29 | 13 (5.2) | 7 (2.8) | 20 (8.0) |
30–39 | 28 (11.2) | 4 (1.6) | 32 (12.8) |
40–49 | 33 (13.2) | 5 (2.0) | 38 (15.2) |
50–59 | 45 (18.0) | 13 (5.2) | 58 (23.2) |
60–69 | 38 (15.2) | 14 (5.6) | 51 (20.4) |
70+ | 42 (16.8) | 4 (1.6) | 46 (18.4) |
Total | 203 | 47 | 250 |
Odds Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
COVID-19 Status | ||||
Negative | 1.00 (REF) | - | - | - |
Positive | 0.982 | 0.518 | 1.862 | 0.956 |
Mortality | ||||
Survived | 1.00 (REF) | - | - | - |
Deceased | 1.044 | 0.271 | 4.027 | 0.950 |
Ventilator Use | ||||
No | 1.00 (REF) | - | - | - |
Yes | 0.967 | 0.295 | 3.174 | 0.956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Underwood, E.C.; Vera, I.M.; Allen, D.; Alvior, J.; O’Driscoll, M.; Silbert, S.; Kim, K.; Barr, K.L. Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020–2021 for Respiratory Symptoms. Viruses 2024, 16, 719. https://doi.org/10.3390/v16050719
Underwood EC, Vera IM, Allen D, Alvior J, O’Driscoll M, Silbert S, Kim K, Barr KL. Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020–2021 for Respiratory Symptoms. Viruses. 2024; 16(5):719. https://doi.org/10.3390/v16050719
Chicago/Turabian StyleUnderwood, Emma C., Iset M. Vera, Dylan Allen, Joshua Alvior, Marci O’Driscoll, Suzane Silbert, Kami Kim, and Kelli L. Barr. 2024. "Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020–2021 for Respiratory Symptoms" Viruses 16, no. 5: 719. https://doi.org/10.3390/v16050719
APA StyleUnderwood, E. C., Vera, I. M., Allen, D., Alvior, J., O’Driscoll, M., Silbert, S., Kim, K., & Barr, K. L. (2024). Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020–2021 for Respiratory Symptoms. Viruses, 16(5), 719. https://doi.org/10.3390/v16050719