The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies
Abstract
:1. Introduction
2. The Broad-Spectrum Antiviral Activity of IFITMs
3. The Structure and Post-Translational Modifications of IFITM Proteins
4. The ifitm Genes in Different Species and Their Antiviral Ability
5. Mechanisms for IFITMs Inhibition of Membrane Fusion
6. IFITMs Inhibit the Production of Infectious Viruses in Infected Cells
7. Viral Glycoproteins Regulate the Viral Sensitivity to IFITMs
8. Immune Modulation by IFITMs
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, C.C.; Zhong, G.; Huang, I.-C.; Farzan, M. IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense. Annu. Rev. Virol. 2014, 1, 261–283. [Google Scholar] [CrossRef]
- Alber, D.; Staeheli, P. Partial Inhibition of Vesicular Stomatitis Virus by the Interferon-Induced Human 9-27 Protein. J. Interferon Cytokine Res. 1996, 16, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; et al. The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 2009, 139, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Du, S.; Xu, W.; Li, T.; Wu, S.; Jin, N.; Li, C. Current Progress on Host Antiviral Factor IFITMs. Front. Immunol. 2020, 11, 543444. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Li, M.; Yang, H.; Zhang, C. Evolutionary Dynamics of the Interferon-Induced Transmembrane Gene Family in Vertebrates. PLoS ONE 2012, 7, e49265. [Google Scholar] [CrossRef] [PubMed]
- Compton, A.A.; Roy, N.; Porrot, F.; Billet, A.; Casartelli, N.; Yount, J.S.; Liang, C.; Schwartz, O. Natural Mutations in IFITM3 Modulate Post-Translational Regulation and Toggle Antiviral Specificity. EMBO Rep. 2016, 17, 1657–1671. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Chen, Y.; Wang, S.; Liu, S.; Rai, K.R.; Chen, B.; Li, F.; Li, Y.; Maarouf, M.; Chen, J.-L. Long Noncoding RNA IFITM4P Regulates Host Antiviral Responses by Acting as a Competing Endogenous RNA. J. Virol. 2021, 95, e00277-21. [Google Scholar] [CrossRef]
- Pang, Z.; Hao, P.; Qu, Q.; Li, L.; Jiang, Y.; Xiao, S.; Jin, N.; Li, C. Interferon-Inducible Transmembrane Protein 3 (IFITM3) Restricts Rotavirus Infection. Viruses 2022, 14, 2407. [Google Scholar] [CrossRef]
- Huang, I.C.; Bailey, C.C.; Weyer, J.L.; Radoshitzky, S.R.; Becker, M.M.; Chiang, J.J.; Brass, A.L.; Ahmed, A.A.; Chi, X.; Dong, L.; et al. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog. 2011, 7, e1001258. [Google Scholar] [CrossRef]
- Meischel, T.; Fritzlar, S.; Villalon-Letelier, F.; Tessema, M.B.; Brooks, A.G.; Reading, P.C.; Londrigan, S.L. IFITM Proteins That Restrict the Early Stages of Respiratory Virus Infection Do Not Influence Late-Stage Replication. J. Virol. 2021, 95, e00837-21. [Google Scholar] [CrossRef]
- Yu, J.; Li, M.; Wilkins, J.; Ding, S.; Swartz, T.H.; Esposito, A.M.; Zheng, Y.-M.; Freed, E.O.; Liang, C.; Chen, B.K.; et al. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Rep. 2015, 13, 145–156. [Google Scholar] [CrossRef]
- Lu, J.; Pan, Q.; Rong, L.; He, W.; Liu, S.L.; Liang, C. The IFITM Proteins Inhibit HIV-1 Infection. J. Virol. 2011, 85, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Savidis, G.; Perreira, J.M.; Portmann, J.M.; Meraner, P.; Guo, Z.; Green, S.; Brass, A.L. The IFITMs Inhibit Zika Virus Replication. Cell Rep. 2016, 15, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Markosyan, R.M.; Zheng, Y.-M.; Golfetto, O.; Bungart, B.; Li, M.; Ding, S.; He, Y.; Liang, C.; Lee, J.C.; et al. IFITM Proteins Restrict Viral Membrane Hemifusion. PLoS Pathog. 2013, 9, e1003124. [Google Scholar] [CrossRef]
- Desai, T.M.; Marin, M.; Chin, C.R.; Savidis, G.; Brass, A.L.; Melikyan, G.B. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores Following Virus-Endosome Hemifusion. PLoS Pathog. 2014, 10, e1004048. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Golani, G.; Lolicato, F.; Lahr, C.; Beyer, D.; Herrmann, A.; Wachsmuth-Melm, M.; Reddmann, N.; Brecht, R.; Hosseinzadeh, M.; et al. IFITM3 Blocks Influenza Virus Entry by Sorting Lipids and Stabilizing Hemifusion. Cell Host Microbe 2023, 31, 616–633.e20. [Google Scholar] [CrossRef]
- Prelli Bozzo, C.; Nchioua, R.; Volcic, M.; Koepke, L.; Krüger, J.; Schütz, D.; Heller, S.; Stürzel, C.M.; Kmiec, D.; Conzelmann, C.; et al. IFITM Proteins Promote SARS-CoV-2 Infection and Are Targets for Virus Inhibition in Vitro. Nat. Commun. 2021, 12, 4584. [Google Scholar] [CrossRef]
- Xie, Q.; Bozzo, C.P.; Eiben, L.; Noettger, S.; Kmiec, D.; Nchioua, R.; Niemeyer, D.; Volcic, M.; Lee, J.-H.; Zech, F.; et al. Endogenous IFITMs Boost SARS-Coronavirus 1 and 2 Replication Whereas Overexpression Inhibits Infection by Relocalizing ACE2. iScience 2023, 26, 106395. [Google Scholar] [CrossRef]
- Spence, J.S.; He, R.; Hoffmann, H.-H.; Das, T.; Thinon, E.; Rice, C.M.; Peng, T.; Chandran, K.; Hang, H.C. IFITM3 Directly Engages and Shuttles Incoming Virus Particles to Lysosomes. Nat. Chem. Biol. 2019, 15, 259–268. [Google Scholar] [CrossRef]
- Winstone, H.; Lista, M.J.; Reid, A.C.; Bouton, C.; Pickering, S.; Galao, R.P.; Kerridge, C.; Doores, K.J.; Swanson, C.M.; Neil, S.J.D. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. J. Virol. 2021, 95, e02422-20. [Google Scholar] [CrossRef]
- Nchioua, R.; Schundner, A.; Kmiec, D.; Prelli Bozzo, C.; Zech, F.; Koepke, L.; Graf, A.; Krebs, S.; Blum, H.; Frick, M.; et al. SARS-CoV-2 Variants of Concern Hijack IFITM2 for Efficient Replication in Human Lung Cells. J. Virol. 2022, 96, e00594-22. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Zannella, C.; De Marco, M.; Sanna, G.; Franci, G.; Galdiero, M.; Manzin, A.; De Laurenzi, V.; Chetta, M.; Rosati, A.; et al. Spike-Mediated Viral Membrane Fusion Is Inhibited by a Specific Anti-IFITM2 Monoclonal Antibody. Antivir. Res. 2023, 211, 105546. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Kenney, A.D.; Kudryashova, E.; Zani, A.; Zhang, L.; Lai, K.K.; Hall-Stoodley, L.; Robinson, R.T.; Kudryashov, D.S.; Compton, A.A.; et al. Opposing Activities of IFITM Proteins in SARS-CoV-2 Infection. EMBO J. 2021, 40, e106501. [Google Scholar] [CrossRef] [PubMed]
- Buchrieser, J.; Dufloo, J.; Hubert, M.; Monel, B.; Planas, D.; Rajah, M.M.; Planchais, C.; Porrot, F.; Guivel-Benhassine, F.; Van der Werf, S.; et al. Syncytia Formation by SARS-CoV-2-Infected Cells. EMBO J. 2020, 39, e106267. [Google Scholar] [CrossRef] [PubMed]
- Mesner, D.; Reuschl, A.-K.; Whelan, M.V.X.; Bronzovich, T.; Haider, T.; Thorne, L.G.; Ragazzini, R.; Bonfanti, P.; Towers, G.J.; Jolly, C. SARS-CoV-2 Evolution Influences GBP and IFITM Sensitivity. Proc. Natl. Acad. Sci. USA 2023, 120, e2212577120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Guo, F.; Liu, F.; Cuconati, A.; Chang, J.; Block, T.M.; Guo, J.-T. Interferon Induction of IFITM Proteins Promotes Infection by Human Coronavirus OC43. Proc. Natl. Acad. Sci. USA 2014, 111, 6756–6761. [Google Scholar] [CrossRef] [PubMed]
- Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; et al. TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. J. Virol. 2013, 87, 6150–6160. [Google Scholar] [CrossRef] [PubMed]
- Wrensch, F.; Winkler, M.; Pöhlmann, S. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms. Viruses 2014, 6, 3683–3698. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Feng, S.; Cheng, J.; Zheng, F.; Li, Z.; Deng, Z.; Yuan, X. IFITM3 Is a Host Restriction Factor That Inhibits Porcine Transmissible Gastroenteritis Virus Infection. Vet. Microbiol. 2023, 277, 109622. [Google Scholar] [CrossRef]
- Li, H.; Ni, R.; Wang, K.; Tian, Y.; Gong, H.; Yan, W.; Tang, Y.; Lei, C.; Wang, H.; Yang, X. Chicken Interferon-Induced Transmembrane Protein 1 Promotes Replication of Coronavirus Infectious Bronchitis Virus in a Cell-Specific Manner. Vet. Microbiol. 2022, 275, 109597. [Google Scholar] [CrossRef]
- Lee, W.J.; Fu, R.M.; Liang, C.; Sloan, R.D. IFITM Proteins Inhibit HIV-1 Protein Synthesis. Sci. Rep. 2018, 8, 14551. [Google Scholar] [CrossRef] [PubMed]
- Tartour, K.; Appourchaux, R.; Gaillard, J.; Nguyen, X.N.; Durand, S.; Turpin, J.; Beaumont, E.; Roch, E.; Berger, G.; Mahieux, R.; et al. IFITM Proteins Are Incorporated onto HIV-1 Virion Particles and Negatively Imprint Their Infectivity. Retrovirology 2014, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Wrensch, F.; Hoffmann, M.; Gärtner, S.; Nehlmeier, I.; Winkler, M.; Pöhlmann, S. Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tuo, X.; Zhang, J.; Chai, K.; Tan, J.; Qiao, W. Antiviral Role of IFITM3 in Prototype Foamy Virus Infection. Virol. J. 2022, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, C.G. IFITM Proteins Inhibit the Late Step of Feline Foamy Virus Replication. Anim. Cells Syst. 2020, 24, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Frontiers | Canine Interferon-Inducible Transmembrane Protein Is a Host Restriction Factor That Potently Inhibits Replication of Emerging Canine Influenza Virus. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.710705/full (accessed on 20 March 2024).
- Smith, S.E.; Busse, D.C.; Binter, S.; Weston, S.; Diaz Soria, C.; Laksono, B.M.; Clare, S.; Van Nieuwkoop, S.; Van den Hoogen, B.G.; Clement, M.; et al. Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J. Virol. 2019, 93, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Du, S.-W.; Li, L.-T.; Shi, X.-S.; Wang, J.-M.; Li, T.-Y.; Jin, N.-Y.; Li, C. IFITM3 Promotes NiV Envelope Protein-Mediated Entry into MDCK Cells and Interacts with the Fusion Subunit of the F Protein. Int. J. Biochem. Cell Biol. 2022, 153, 106325. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, A.M.; Gómez-Herranz, M.; Gach, P.; Nekulova, M.; Bagnucka, M.A.; Lipińska, A.D.; Rychłowski, M.; Hoffmann, W.; Król, E.; Vojtesek, B.; et al. The Role of IFITM Proteins in Tick-Borne Encephalitis Virus Infection. J. Virol. 2022, 96, e0113021. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Weidner, J.M.; Qing, M.; Pan, X.B.; Guo, H.; Xu, C.; Zhang, X.; Birk, A.; Chang, J.; Shi, P.Y.; et al. Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections. J. Virol. 2010, 84, 8332–8341. [Google Scholar] [CrossRef]
- Wilkins, C.; Woodward, J.; Lau, D.T.; Barnes, A.; Joyce, M.; McFarlane, N.; McKeating, J.A.; Tyrrell, D.L.; Gale, M. IFITM1 Is a Tight Junction Protein That Inhibits Hepatitis C Virus Entry. Hepatology 2013, 57, 461–469. [Google Scholar] [CrossRef]
- Weidner, J.M.; Jiang, D.; Pan, X.-B.; Chang, J.; Block, T.M.; Guo, J.-T. Interferon-Induced Cell Membrane Proteins, IFITM3 and Tetherin, Inhibit Vesicular Stomatitis Virus Infection via Distinct Mechanisms. J. Virol. 2010, 84, 12646–12657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Duan, H.; Zhao, H.; Liao, H.; Du, Y.; Li, L.; Jiang, D.; Wan, B.; Wu, Y.; Ji, P.; et al. Interferon-Induced Transmembrane Protein 3 Is a Virus-Associated Protein Which Suppresses Porcine Reproductive and Respiratory Syndrome Virus Replication by Blocking Viral Membrane Fusion. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Pott, F.; Zillinger, T.; Schüler, C.; Dapa, S.; Fischer, C.; Passos, V.; Stenzel, S.; Chen, F.; Döhner, K.; et al. Human IFITM3 Restricts Chikungunya Virus and Mayaro Virus Infection and Is Susceptible to Virus-Mediated Counteraction. Life Sci. Alliance 2021, 4. [Google Scholar] [CrossRef] [PubMed]
- Weston, S.; Czieso, S.; White, I.J.; Smith, S.E.; Wash, R.S.; Diaz-Soria, C.; Kellam, P.; Marsh, M. Alphavirus Restriction by IFITM Proteins. Traffic 2016, 17, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Mudhasani, R.; Tran, J.P.; Retterer, C.; Radoshitzky, S.R.; Kota, K.P.; Altamura, L.A.; Smith, J.M.; Packard, B.Z.; Kuhn, J.H.; Costantino, J.; et al. IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus. J. Virol. 2013, 87, 8451–8464. [Google Scholar] [CrossRef] [PubMed]
- Hörnich, B.F.; Großkopf, A.K.; Dcosta, C.J.; Schlagowski, S.; Hahn, A.S. Interferon-Induced Transmembrane Proteins Inhibit Infection by the Kaposi’s Sarcoma-Associated Herpesvirus and the Related Rhesus Monkey Rhadinovirus in a Cell-Specific Manner. mBio 2021, 12, e02113-21. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Bi, Y.; Xu, S.; Han, Y.; Idris, A.; Zhang, H.; Li, X.; Bai, J.; Zhang, Y.; Feng, R. Host Antiviral Protein IFITM2 Restricts Pseudorabies Virus Replication. Virus Res. 2020, 287, 198105. [Google Scholar] [CrossRef]
- Xie, M.; Xuan, B.; Shan, J.; Pan, D.; Sun, Y.; Shan, Z.; Zhang, J.; Yu, D.; Li, B.; Qian, Z. Human Cytomegalovirus Exploits Interferon-Induced Transmembrane Proteins to Facilitate Morphogenesis of the Virion Assembly Compartment. J. Virol. 2015, 89, 3049–3061. [Google Scholar] [CrossRef] [PubMed]
- Tartour, K.; Nguyen, X.-N.; Appourchaux, R.; Assil, S.; Barateau, V.; Bloyet, L.-M.; Burlaud Gaillard, J.; Confort, M.-P.; Escudero-Perez, B.; Gruffat, H.; et al. Interference with the Production of Infectious Viral Particles and Bimodal Inhibition of Replication Are Broadly Conserved Antiviral Properties of IFITMs. PLoS Pathog. 2017, 13, e1006610. [Google Scholar] [CrossRef]
- Hussein, H.A.M.; Briestenska, K.; Mistrikova, J.; Akula, S.M. IFITM1 Expression Is Crucial to Gammaherpesvirus Infection, in Vivo. Sci. Rep. 2018, 8, 14105. [Google Scholar] [CrossRef]
- Li, C.; Du, S.; Tian, M.; Wang, Y.; Bai, J.; Tan, P.; Liu, W.; Yin, R.; Wang, M.; Jiang, Y.; et al. The Host Restriction Factor Interferon-Inducible Transmembrane Protein 3 Inhibits Vaccinia Virus Infection. Front. Immunol. 2018, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zheng, Z.; Cheng, J.; Zhong, L.; Shao, R.; Zheng, F.; Lai, Z.; Ou, J.; Xu, L.; Zhou, P.; et al. Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit African Swine Fever Virus Replication. Front. Immunol. 2022, 13, 827709. [Google Scholar] [CrossRef] [PubMed]
- Kenney, A.D.; Zani, A.; Kawahara, J.; Eddy, A.C.; Wang, X.-L.; Mahesh, K.; Lu, M.; Thomas, J.; Kohlmeier, J.E.; Suthar, M.S.; et al. Interferon-Induced Transmembrane Protein 3 (IFITM3) Limits Lethality of SARS-CoV-2 in Mice. EMBO Rep. 2023, 24, e56660. [Google Scholar] [CrossRef] [PubMed]
- Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3 Restricts the Morbidity and Mortality Associated with Influenza. Nature 2012, 484, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.C.; Huang, I.-C.; Kam, C.; Farzan, M. Ifitm3 Limits the Severity of Acute Influenza in Mice. PLoS Pathog. 2012, 8, e1002909. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.J.; Poddar, S.; Farzan, M.; Diamond, M.S. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J. Virol. 2016, 90, 8212–8225. [Google Scholar] [CrossRef]
- Poddar, S.; Hyde, J.L.; Gorman, M.J.; Farzan, M.; Diamond, M.S. The Interferon-Stimulated Gene IFITM3 Restricts Infection and Pathogenesis of Arthritogenic and Encephalitic Alphaviruses. J. Virol. 2016, 90, 8780–8794. [Google Scholar] [CrossRef] [PubMed]
- Everitt, A.R.; Clare, S.; McDonald, J.U.; Kane, L.; Harcourt, K.; Ahras, M.; Lall, A.; Hale, C.; Rodgers, A.; Young, D.B.; et al. Defining the Range of Pathogens Susceptible to Ifitm3 Restriction Using a Knockout Mouse Model. PLoS ONE 2013, 8, e80723. [Google Scholar] [CrossRef] [PubMed]
- Stacey, M.A.; Clare, S.; Clement, M.; Marsden, M.; Abdul-Karim, J.; Kane, L.; Harcourt, K.; Brandt, C.; Fielding, C.A.; Smith, S.E.; et al. The Antiviral Restriction Factor IFN-Induced Transmembrane Protein 3 Prevents Cytokine-Driven CMV Pathogenesis. J. Clin. Investig. 2017, 127, 1463–1474. [Google Scholar] [CrossRef]
- Wakim, L.M.; Gupta, N.; Mintern, J.D.; Villadangos, J.A. Enhanced Survival of Lung Tissue-Resident Memory CD8+ T Cells during Infection with Influenza Virus Due to Selective Expression of IFITM3. Nat. Immunol. 2013, 14, 238–245. [Google Scholar] [CrossRef]
- Kenney, A.D.; McMichael, T.M.; Imas, A.; Chesarino, N.M.; Zhang, L.; Dorn, L.E.; Wu, Q.; Alfaour, O.; Amari, F.; Chen, M.; et al. IFITM3 Protects the Heart during Influenza Virus Infection. Proc. Natl. Acad. Sci. USA 2019, 116, 18607–18612. [Google Scholar] [CrossRef] [PubMed]
- Makvandi-Nejad, S.; Laurenson-Schafer, H.; Wang, L.; Wellington, D.; Zhao, Y.; Jin, B.; Qin, L.; Kite, K.; Moghadam, H.K.; Song, C.; et al. Lack of Truncated IFITM3 Transcripts in Cells Homozygous for the Rs12252-C Variant That Is Associated with Severe Influenza Infection. J. Infect. Dis. 2018, 217, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Randolph, A.G.; Yip, W.-K.; Allen, E.K.; Rosenberger, C.M.; Agan, A.A.; Ash, S.A.; Zhang, Y.; Bhangale, T.R.; Finkelstein, D.; Cvijanovich, N.Z.; et al. Evaluation of IFITM3 Rs12252 Association with Severe Pediatric Influenza Infection. J. Infect. Dis. 2017, 216, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Jeong, M.-J.; Jeong, B.-H. Genetic Association between the Rs12252 SNP of the Interferon-Induced Transmembrane Protein Gene and Influenza A Virus Infection in the Korean Population. Mol. Cell. Toxicol. 2021, 17, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, I.; Afifipour, A.; Sakhaee, F.; Zamani, M.S.; Mirzaei Gheinari, F.; Anvari, E.; Fateh, A. Impact of Interferon-Induced Transmembrane Protein 3 Gene Rs12252 Polymorphism on COVID-19 Mortality. Cytokine 2022, 157, 155957. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Wang, J.; Li, H.; Wang, W. IFITM3 Rs12252 Polymorphism and Coronavirus Disease 2019 Severity: A Meta-analysis. Exp. Ther. Med. 2023, 25, 158. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, G.; Zhao, F.; Huang, Y.; Fan, Z.; Mei, S.; Xie, Y.; Wei, L.; Hu, Y.; Wang, C.; et al. IFITM3 Inhibits SARS-CoV-2 Infection and Is Associated with COVID-19 Susceptibility. Viruses 2022, 14, 2553. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, J.; Alaamery, M.; Barhoumi, T.; Rashid, M.; Alajmi, H.; Aljasser, N.; Alhendi, Y.; Alkhalaf, H.; Alqahtani, H.; Algablan, O.; et al. Interferon-Induced Transmembrane Protein-3 Genetic Variant Rs12252 Is Associated with COVID-19 Mortality. Genomics 2021, 113, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.K.; Randolph, A.G.; Bhangale, T.; Dogra, P.; Ohlson, M.; Oshansky, C.M.; Zamora, A.E.; Shannon, J.P.; Finkelstein, D.; Dressen, A.; et al. SNP-Mediated Disruption of CTCF Binding at the IFITM3 Promoter Is Associated with Risk of Severe Influenza in Humans. Nat. Med. 2017, 23, 975–983. [Google Scholar] [CrossRef]
- Mo, J.-S.; Na, K.-S.; Yu, J.-I.; Chae, S.-C. Identification of the Polymorphisms in IFITM1 Gene and Their Association in a Korean Population with Ulcerative Colitis. Immunol. Lett. 2013, 156, 118–122. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Won, S.-Y.; Jeong, B.-H. The First Association Study of Single-Nucleotide Polymorphisms (SNPs) of the IFITM1 Gene with Influenza H1N1 2009 Pandemic Virus Infection. Mol. Cell. Toxicol. 2021, 17, 179–186. [Google Scholar] [CrossRef]
- Ling, S.; Zhang, C.; Wang, W.; Cai, X.; Yu, L.; Wu, F.; Zhang, L.; Tian, C. Combined Approaches of EPR and NMR Illustrate Only One Transmembrane Helix in the Human IFITM3. Sci. Rep. 2016, 6, 24029. [Google Scholar] [CrossRef]
- Bailey, C.C.; Kondur, H.R.; Huang, I.-C.; Farzan, M. Interferon-Induced Transmembrane Protein 3 Is a Type II Transmembrane Protein. J. Biol. Chem. 2013, 288, 32184–32193. [Google Scholar] [CrossRef]
- Rahman, K.; Coomer, C.A.; Majdoul, S.; Ding, S.Y.; Padilla-Parra, S.; Compton, A.A. Homology-Guided Identification of a Conserved Motif Linking the Antiviral Functions of IFITM3 to Its Oligomeric State. eLife 2020, 9, e58537. [Google Scholar] [CrossRef]
- Yount, J.S.; Karssemeijer, R.A.; Hang, H.C. S-Palmitoylation and Ubiquitination Differentially Regulate Interferon-Induced Transmembrane Protein 3 (IFITM3)-Mediated Resistance to Influenza Virus. J. Biol. Chem. 2012, 287, 19631–19641. [Google Scholar] [CrossRef] [PubMed]
- Yount, J.S.; Moltedo, B.; Yang, Y.-Y.; Charron, G.; Moran, T.M.; López, C.B.; Hang, H.C. Palmitoylome Profiling Reveals S-Palmitoylation-Dependent Antiviral Activity of IFITM3. Nat. Chem. Biol. 2010, 6, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Garst, E.H.; Lee, H.; Das, T.; Bhattacharya, S.; Percher, A.; Wiewiora, R.; Witte, I.P.; Li, Y.; Peng, T.; Im, W.; et al. Site-Specific Lipidation Enhances IFITM3 Membrane Interactions and Antiviral Activity. ACS Chem. Biol. 2021, 16, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Yang, X.; Lee, H.; Garst, E.H.; Valencia, E.; Chandran, K.; Im, W.; Hang, H.C. S-Palmitoylation and Sterol Interactions Mediate Antiviral Specificity of IFITMs. ACS Chem. Biol. 2022, 17, 2109–2120. [Google Scholar] [CrossRef]
- Guo, X.; Steinkühler, J.; Marin, M.; Li, X.; Lu, W.; Dimova, R.; Melikyan, G.B. Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS Nano 2021, 15, 8155–8170. [Google Scholar] [CrossRef]
- McMichael, T.; Hach, J.; Chesarino, N.; Yount, J. Identifying the DHHC Palmitoyl Acyltransferase Responsible for Activating the Antiviral Protein IFITM3 (VIR1P.1008). J. Immunol. 2014, 192, 74.22. [Google Scholar] [CrossRef]
- ABHD16A Negatively Regulates the Palmitoylation and Antiviral Function of IFITM Proteins. Available online: https://journals.asm.org/doi/epub/10.1128/mbio.02289-22 (accessed on 21 February 2024).
- Chesarino, N.M.; McMichael, T.M.; Hach, J.C.; Yount, J.S. Phosphorylation of the Antiviral Protein Interferon-Inducible Transmembrane Protein 3 (IFITM3) Dually Regulates Its Endocytosis and Ubiquitination. J. Biol. Chem. 2014, 289, 11986–11992. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Pan, Q.; Ding, S.; Rong, L.; Liu, S.-L.; Geng, Y.; Qiao, W.; Liang, C. The N-Terminal Region of IFITM3 Modulates Its Antiviral Activity by Regulating IFITM3 Cellular Localization. J. Virol. 2012, 86, 13697–13707. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Xu, F.; Qian, J.; Yao, Y.; Miao, C.; Zheng, Y.; Liu, S.; Guo, F.; Geng, Y.; Qiao, W.; et al. Identification of an Endocytic Signal Essential for the Antiviral Action of IFITM3. Cell. Microbiol. 2014, 16, 1080–1093. [Google Scholar] [CrossRef]
- Shan, Z.; Han, Q.; Nie, J.; Cao, X.; Chen, Z.; Yin, S.; Gao, Y.; Lin, F.; Zhou, X.; Xu, K.; et al. Negative Regulation of Interferon-Induced Transmembrane Protein 3 by SET7-Mediated Lysine Monomethylation. J. Biol. Chem. 2013, 288, 35093–35103. [Google Scholar] [CrossRef] [PubMed]
- Benfield, C.T.; MacKenzie, F.; Ritzefeld, M.; Mazzon, M.; Weston, S.; Tate, E.; Teo, B.H.; Smith, S.E.; Kellam, P.; Holmes, E.C.; et al. Bat IFITM3 Restriction Depends on S-Palmitoylation and a Polymorphic Site within the CD225 Domain. Life Sci. Alliance 2020, 3, e201900542. [Google Scholar] [CrossRef] [PubMed]
- Benfield, C.T.O.; Smith, S.E.; Wright, E.; Wash, R.S.; Ferrara, F.; Temperton, N.J.; Kellam, P. Bat and Pig IFN-Induced Transmembrane Protein 3 Restrict Cell Entry by Influenza Virus and Lyssaviruses. J. Gen. Virol. 2015, 96, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Gibson, M.S.; Wash, R.S.; Ferrara, F.; Wright, E.; Temperton, N.; Kellam, P.; Fife, M. Chicken Interferon-Inducible Transmembrane Protein 3 Restricts Influenza Viruses and Lyssaviruses In Vitro. J. Virol. 2013, 87, 12957–12966. [Google Scholar] [CrossRef] [PubMed]
- Chesarino, N.M.; Compton, A.A.; McMichael, T.M.; Kenney, A.D.; Zhang, L.; Soewarna, V.; Davis, M.; Schwartz, O.; Yount, J.S. IFITM3 Requires an Amphipathic Helix for Antiviral Activity. EMBO Rep. 2017, 18, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Datta, S.A.K.; Beaven, A.H.; Jolley, A.A.; Sodt, A.J.; Compton, A.A. Cholesterol Binds the Amphipathic Helix of IFITM3 and Regulates Antiviral Activity. J. Mol. Biol. 2022, 434, 167759. [Google Scholar] [CrossRef]
- Sharma, A.; McLaughlin, R.N., Jr.; Basom, R.S.; Kikawa, C.; OhAinle, M.; Yount, J.S.; Overbaugh, J. Macaque Interferon-Induced Transmembrane Proteins Limit Replication of SHIV Strains in an Envelope-Dependent Manner. PLoS Pathog. 2019, 15, e1007925. [Google Scholar] [CrossRef]
- Vigant, F.; Santos, N.C.; Lee, B. Broad-Spectrum Antivirals against Viral Fusion. Nat. Rev. Microbiol. 2015, 13, 426. [Google Scholar] [CrossRef]
- Chernomordik, L.V.; Kozlov, M.M. Mechanics of Membrane Fusion. Nat. Struct. Mol. Biol. 2008, 15, 675–683. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chin, C.R.; Everitt, A.R.; Clare, S.; Perreira, J.M.; Savidis, G.; Aker, A.M.; John, S.P.; Sarlah, D.; Carreira, E.M.; et al. Amphotericin B Increases Influenza A Virus Infection by Preventing IFITM3-Mediated Restriction. Cell Rep. 2013, 5, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.L.; Bhatia, V.K.; Gether, U.; Stamou, D. BAR Domains, Amphipathic Helices and Membrane-Anchored Proteins Use the Same Mechanism to Sense Membrane Curvature. FEBS Lett. 2010, 584, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Unali, G.; Crivicich, G.; Pagani, I.; Abou-Alezz, M.; Folchini, F.; Valeri, E.; Matafora, V.; Reisz, J.A.; Giordano, A.M.S.; Cuccovillo, I.; et al. Interferon-inducible Phospholipids Govern IFITM3-dependent Endosomal Antiviral Immunity. EMBO J. 2023, 42, e112234. [Google Scholar] [CrossRef]
- Lee, J.; Robinson, M.E.; Ma, N.; Artadji, D.; Ahmed, M.A.; Xiao, G.; Sadras, T.; Deb, G.; Winchester, J.; Cosgun, K.N.; et al. IFITM3 Functions as a PIP3 Scaffold to Amplify PI3K Signalling in B Cells. Nature 2020, 588, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Amini-Bavil-Olyaee, S.; Choi, Y.J.; Lee, J.H.; Shi, M.; Huang, I.-C.; Farzan, M.; Jung, J.U. The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral Entry. Cell Host Microbe 2013, 13, 452–464. [Google Scholar] [CrossRef]
- Kühnl, A.; Musiol, A.; Heitzig, N.; Johnson, D.E.; Ehrhardt, C.; Grewal, T.; Gerke, V.; Ludwig, S.; Rescher, U. Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. mBio 2018, 9, 10–1128. [Google Scholar] [CrossRef]
- Compton, A.A.; Bruel, T.; Porrot, F.; Mallet, A.; Sachse, M.; Euvrard, M.; Liang, C.; Casartelli, N.; Schwartz, O. IFITM Proteins Incorporated into HIV-1 Virions Impair Viral Fusion and Spread. Cell Host Microbe 2014, 16, 736–747. [Google Scholar] [CrossRef]
- Ahi, Y.S.; Yimer, D.; Shi, G.; Majdoul, S.; Rahman, K.; Rein, A.; Compton, A.A. IFITM3 Reduces Retroviral Envelope Abundance and Function and Is Counteracted by glycoGag. mBio 2020, 11, e03088-19. [Google Scholar] [CrossRef]
- Foster, T.L.; Wilson, H.; Iyer, S.S.; Coss, K.; Doores, K.; Smith, S.; Kellam, P.; Finzi, A.; Borrow, P.; Hahn, B.H.; et al. Resistance of Transmitted Founder HIV-1 to IFITM-Mediated Restriction. Cell Host Microbe 2016, 20, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Beitari, S.; Pan, Q.; Finzi, A.; Liang, C. Differential Pressures of SERINC5 and IFITM3 on HIV-1 Envelope Glycoprotein over the Course of HIV-1 Infection. J. Virol. 2020, 94, 1110–1128. [Google Scholar] [CrossRef]
- Drouin, A.; Migraine, J.; Durand, M.-A.; Moreau, A.; Burlaud-Gaillard, J.; Beretta, M.; Roingeard, P.; Bouvin-Pley, M.; Braibant, M. Escape of HIV-1 Envelope Glycoprotein from the Restriction of Infection by IFITM3. J. Virol. 2021, 95, e01994-20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, Q.; Ding, S.; Wang, Z.; Yu, J.; Finzi, A.; Liu, S.-L.; Liang, C. The V3 Loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity. J. Virol. 2017, 91, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Pan, Q.; Liu, S.-L.; Liang, C. HIV-1 Mutates to Evade IFITM1 Restriction. Virology 2014, 454–455, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Ding, S.; Pan, Q.; Liu, S.-L.; Qiao, W.; Liang, C. The C-Terminal Sequence of IFITM1 Regulates Its Anti-HIV-1 Activity. PLoS ONE 2015, 10, e0118794. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, S.-L. The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage. Viruses 2018, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Evans, J.P.; Kurhade, C.; Zeng, C.; Zheng, Y.M.; Xu, K.; Liu, S.L. Determinants and Mechanisms of the Low Fusogenicity and High Dependence on Endosomal Entry of Omicron Subvariants. mBio 2023, 14, e03176-22. [Google Scholar] [CrossRef] [PubMed]
- Yánez, D.C.; Sahni, H.; Ross, S.; Solanki, A.; Lau, C.-I.; Papaioannou, E.; Barbarulo, A.; Powell, R.; Lange, U.C.; Adams, D.J.; et al. IFITM Proteins Drive Type 2 T Helper Cell Differentiation and Exacerbate Allergic Airway Inflammation. Eur. J. Immunol. 2019, 49, 66–78. [Google Scholar] [CrossRef]
- Solanki, A.; Yánez, D.C.; Lau, C.-I.; Rowell, J.; Barbarulo, A.; Ross, S.; Sahni, H.; Crompton, T. The Transcriptional Repressor Bcl6 Promotes Pre-TCR-Induced Thymocyte Differentiation and Attenuates Notch1 Activation. Development 2020, 147, dev192203. [Google Scholar] [CrossRef]
- Crotty, S.; Johnston, R.J.; Schoenberger, S.P. Effectors and Memories: Bcl-6 and Blimp-1 in T and B Lymphocyte Differentiation. Nat. Immunol. 2010, 11, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Sharma, A.; Oh, S.Y.; Moon, H.-G.; Hossain, M.Z.; Salay, T.M.; Leeds, K.E.; Du, H.; Wu, B.; Waterman, M.L.; et al. T Cell Factor 1 Initiates the T Helper Type 2 Fate by Inducing the Transcription Factor GATA-3 and Repressing Interferon-Gamma. Nat. Immunol. 2009, 10, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Yánez, D.C.; Lau, C.-I.; Chawda, M.M.; Ross, S.; Furmanski, A.L.; Crompton, T. Hedgehog Signaling Promotes TH2 Differentiation in Naive Human CD4 T Cells. J. Allergy Clin. Immunol. 2019, 144, 1419–1423.e1. [Google Scholar] [CrossRef] [PubMed]
- Clement, M.; Forbester, J.L.; Marsden, M.; Sabberwal, P.; Sommerville, M.S.; Wellington, D.; Dimonte, S.; Clare, S.; Harcourt, K.; Yin, Z.; et al. IFITM3 Restricts Virus-Induced Inflammatory Cytokine Production by Limiting Nogo-B Mediated TLR Responses. Nat. Commun. 2022, 13, 5294. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.-Q.; Xia, T.; Hu, Y.-H.; Sun, M.-S.; Yan, S.; Lei, C.-Q.; Shu, H.-B.; Guo, J.-H.; Liu, Y. IFITM3 Inhibits Virus-Triggered Induction of Type I Interferon by Mediating Autophagosome-Dependent Degradation of IRF3. Cell. Mol. Immunol. 2018, 15, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Motani, K.; Kosako, H. BioID Screening of Biotinylation Sites Using the Avidin-like Protein Tamavidin 2-REV Identifies Global Interactors of Stimulator of Interferon Genes (STING). J. Biol. Chem. 2020, 295, 11174–11183. [Google Scholar] [CrossRef]
- Wu, X.; Spence, J.S.; Das, T.; Yuan, X.; Chen, C.; Zhang, Y.; Li, Y.; Sun, Y.; Chandran, K.; Hang, H.C.; et al. Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/P97 ATPase. Cell Chem. Biol. 2020, 27, 571–585.e6. [Google Scholar] [CrossRef]
- Prabakaran, T.; Bodda, C.; Krapp, C.; Zhang, B.-C.; Christensen, M.H.; Sun, C.; Reinert, L.; Cai, Y.; Jensen, S.B.; Skouboe, M.K.; et al. Attenuation of cGAS-STING Signaling Is Mediated by a P62/SQSTM1-Dependent Autophagy Pathway Activated by TBK1. EMBO J. 2018, 37, e97858. [Google Scholar] [CrossRef]
- Gómez-Herranz, M.; Nekulova, M.; Faktor, J.; Hernychova, L.; Kote, S.; Sinclair, E.H.; Nenutil, R.; Vojtesek, B.; Ball, K.L.; Hupp, T.R. The Effects of IFITM1 and IFITM3 Gene Deletion on IFNγ Stimulated Protein Synthesis. Cell. Signal. 2019, 60, 39–56. [Google Scholar] [CrossRef]
- Friedlová, N.; Zavadil Kokáš, F.; Hupp, T.R.; Vojtěšek, B.; Nekulová, M. IFITM Protein Regulation and Functions: Far beyond the Fight against Viruses. Front. Immunol. 2022, 13, 1042368. [Google Scholar] [CrossRef]
- Gómez-Herranz, M.; Taylor, J.; Sloan, R.D. IFITM Proteins: Understanding Their Diverse Roles in Viral Infection, Cancer, and Immunity. J. Biol. Chem. 2023, 299, 102741. [Google Scholar] [CrossRef] [PubMed]
Viruses Targeted | Mechanisms of Action | Subcellular Localization | References |
---|---|---|---|
RNA viruses | |||
Coronaviridae | |||
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | SARS-CoV-2 spike (S) hijacks IFITM2 for efficient infection by interacting with ACE2. | Plasma membrane, endosomes | [17,21,22] |
IFITMs Inhibits SARS-CoV-2 S-mediated membrane fusion and impairs cell surface expression of ACE2. | Endosomes, plasma membrane | [18,23,24,25] | |
Severe acute respiratory syndrome coronavirus (SARS-CoV) | IFITMs inhibit SARS-CoV S-mediated entry, and the inhibition can be counteracted by trypsin treatment, which bypasses the SARS-CoV’s dependence on lysosomal cathepsin L. | Lysosomes | [9] |
Human coronavirus OC43 (hCoV-OC43) | HCoV-OC43 uses IFN-induced IFITM2 or IFITM3 as an entry factor to facilitate its infection in host cells. | Endosomes | [26] |
Human coronavirus 229E (hCoV-229E) | IFITMs inhibit hCoV-229E S-dependent entry. The inhibition can be rescued by TMPRSS2 treatment. | Endosomes | [27] |
Middle East respiratory syndrome coronavirus (MERS-CoV) | IFITMs inhibits MERS-CoV entry by a cholesterol-independent mechanism. | Endosomes | [28] |
Transmissible gastroenteritis virus (TGEV) | IFITM3 inhibits TGEV replication and interferes with its binding to PK15 cells. | Endosomes | [29] |
Coronavirus infectious bronchitis virus (IBV) | The antiviral effects of chIFITMs on IBV depend on virus and cell types. | Cell membrane | [30] |
Retroviridae | |||
Human immunodeficiency virus type 1 (HIV-1) | IFITMs restrict HIV-1 infection by antagonizing HIV-1 envelope glycoprotein (Env), modulating membrane property, reducing viral particle infectivity via incorporation into virus particles, and inhibiting viral protein synthesis by excluding viral mRNA from polysomes. | Cell surface, endosomes | [11,12,31,32] |
Simian immunodeficiency viruses (SIV) | IFITMs inhibit the cell entry of SIV, and the inhibition depends on the viral vectors and incorporation of SIV-Env. | Cell surface, endosomes | [33] |
Foamy virus (FVs) | IFITM1-3 overexpression inhibits prototype FV entry into target cells and reduces the number of prototype FV envelope proteins. | Plasma membrane, intracellular compartments | [34] |
Feline foamy virus (FFV) | IFITMs inhibit FFV at late steps of viral replication. | Intracellular membranes, plasma membrane | [35] |
Orthomyxoviridae | |||
Canine influenza virus (CIV) | caIFITM1, caIFITM2a, caIFITM2b, and caIFITM3 inhibit the fusion of viral and cellular membranes. | Cell surface and cytoplasm | [36] |
Influenza A viruses (IAV) | IFITM1, 2, and 3 restrict an early step in IAV replication by blocking the fusion pore enlargement and modulating membrane properties. | Late endosomes | [3,15,16] |
Paramyxoviridae | |||
Parainfluenza virus-3 (PIV-3) Metapneumovirus (MPV) Respiratory syncytial virus (RSV) | IFITM1 blocks the fusion between viral and cellular membranes. | Plasma membrane | [37] |
Nipah virus (NiV) | IFITM3 promotes NiV glycoproteins-mediated virus entry by interacting with the fusion protein. | Plasma membrane and endosome | [38] |
Flaviviridae | |||
Tick-borne encephalitis virus (TBEV) | IFITM1, IFITM2, and IFITM3 inhibit TBEV infection and prevent virus-induced cell death. | Plasma membrane, endosomal membrane, and lysosomal membranes | [39] |
Dengue virus (DENV) West Nile virus (WNV) | IFITM2 and IFITM3 disrupt early steps of the viral infection. | Endosomes | [40] |
Hepatitis C virus (HCV) | IFITM1 disrupts HCV viral entry by interruption of viral co-receptor functions at the tight junctions of HCV-infected liver cells. | Tight junction, cell surface | [41] |
Zika virus (ZIKV) | IFITM1 and IFITM3 inhibit ZIKV infection early in the viral life cycle. IFITM3 can prevent Zika virus-induced cell death. | late endosomes and lysosomes | [13] |
Yellow fever virus (YFV) | IFITMs, especially IFITM3, block membrane fusion by toughening the host membrane. | Late endosomes | [3] |
Rhabdoviridae | |||
Vesicular stomatitis virus (VSV) | IFITMs inhibit virus infection by blocking virus fusion with cell membranes. | Plasma membrane, endosomes | [2,42] |
Filoviridae | |||
Ebolavirus (EBOV) Marburg virus (MARV) | IFITMs inhibit the replication of infectious EBOV and MARV. EBOV and MARV are more susceptible to IFITM1 than IFITM3. | Lysosomes | [9] |
Reoviridae | |||
Rotavirus (RV) | IFITM3 limits RV infection by affecting the function of the late endosomal compartment. | Late endosome | [8] |
Arteriviridae | |||
Porcine reproductive and respiratory syndrome virus (PRRSV) | IFITM3 inhibits PRRSV by inducing cholesterol accumulation and impairing viral-cell membrane fusion. | Early endosomes, late endosomes, and lysosomes | [43] |
Togaviridae | |||
Chikungunya virus (CHIKV)Mayaro virus (MAYV) | IFITMs restrict CHIKV and MAYV infection at glycoprotein-mediated entry, both in the context of direct infection and cell–cell transmission. | Cell surface and endosomes | [44] |
Sindbis virus (SINV) Semliki Forest virus (SFV) | IFITMs, especially IFITM3, restricts SINV and SFV by inhibiting virus–cell membrane fusion. | Early endosomes | [45] |
Bunyaviriales | |||
Rift Valley fever virus (RVFV) La Crosse virus (LACV) Hantaan virus (HTNV) Andes virus (ANDV) | IFITM2 and 3 prevent virus membrane fusion in the endosomes. | Endosomes | [46] |
DNA viruses | |||
Herpesviridae | |||
Kaposi’s Sarcoma-associated herpesvirus (KSHV) and Rhesus Monkey Rhadinovirus (RRV) | IFITM1 restricts KSHV and RRV by acting at the level of membrane fusion. | Cell surface | [47] |
Pseudorabies virus (PRV) | IFITMs restrict PRV infection by interfering with PRV cell binding and entry. IFITM2 inhibits PRV by regulating cholesterol levels in endosomes. | Endosomes | [48] |
Herpes simplex virus-1 (HSV-1) | IFITM1 restricts infection of HSV-1 that enters at the plasma membrane. | Plasma membrane | [37] |
Human Cytomegalovirus (HCMV) | HCMV exploits IFITMs to facilitate the formation of the virion assembly compartment in human fibroblasts. | Cytoplasm | [49] |
Epstein–Barr virus (EBV) | IFITM1 enhances the initial entry of EBV, but the incorporation of IFITM2/3 into viral particles reduces the infectivity of progeny viruses. | Cytoplasm | [50,51] |
Poxviridae | |||
Vaccinia virus (VACV) | IFITM3 restricts VACV infection, replication, and proliferation by interfering with virus entry processes prior to virus nucleocapsid entry into the cytoplasm. VACV counteracts IFITM3 by inhibiting its translation. | Endosomes | [52] |
Asfarviridae | |||
African swine fever virus (ASFV) | SwIFITM1a, -1b, -2, -3, or -5 restrict the fusion of virus membrane and plasma membrane. | Plasma membrane, cytoplasm, and the perinuclear region. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Luo, Y.; Katiyar, H.; Liang, C.; Liu, Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024, 16, 734. https://doi.org/10.3390/v16050734
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses. 2024; 16(5):734. https://doi.org/10.3390/v16050734
Chicago/Turabian StyleWang, Jingjing, Yuhang Luo, Harshita Katiyar, Chen Liang, and Qian Liu. 2024. "The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies" Viruses 16, no. 5: 734. https://doi.org/10.3390/v16050734
APA StyleWang, J., Luo, Y., Katiyar, H., Liang, C., & Liu, Q. (2024). The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses, 16(5), 734. https://doi.org/10.3390/v16050734