First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
- -
- 189 samples (87 blood sera and 102 tissue samples, among which 76 had a history of reproductive failure) from domestic pigs throughout the Sardinian regional territory;
- -
- 86 samples (44 blood sera and 42 spleens) from hunted wild boars collected during the 2020–2022 hunting seasons in north Sardinia (Sassari province);
- -
- 36 spleen samples obtained from feral free-ranging pigs culled between 2021 and 2022 in central Sardinia (Nuoro province), during the depopulation action of the Sardinian African Swine Fever Virus (ASFV) eradication plan.
2.2. DNA Isolation, PPV7, PCV2, and PCV3 Detection
2.3. PPV7 ORF1 Sequencing
2.4. Phylogenetic Analysis
2.5. Data Analysis and Statistics
3. Results
3.1. PPV7 Presence in Sardinian Domestic Pigs and Wild Populations
3.2. PPV7 Co-Infection with PCV2 and PCV3
3.3. Sequencing and Phylogenetic Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Streck, A.F.; Canal, C.W.; Truyen, U. Molecular Epidemiology and Evolution of Porcine Parvoviruses. Infect. Genet. Evol. 2015, 36, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Cotmore, S.F.; Agbandje-McKenna, M.; Chiorini, J.A.; Mukha, D.V.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P.; Tijssen, P.; Gatherer, D.; et al. The Family Parvoviridae. Arch. Virol. 2014, 159, 1239. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; et al. Changes to Virus Taxonomy and the Statutes Ratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 2020, 165, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yan, G.; Chen, S.; Han, H.; Li, J.; Zhang, H.; Luo, S.; Liu, M.; Wu, Q.; Li, Q.; et al. Identification and Genomic Characterization of a Novel Porcine Parvovirus in China. Front. Vet. Sci. 2022, 9, 1009103. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bermudez, D.S.; Mogollon, J.D.; Franco-Rodriguez, C.; Jaime, J. The Novel Porcine Parvoviruses: Current State of Knowledge and Their Possible Implications in Clinical Syndromes in Pigs. Viruses 2023, 15, 2398. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Wu, G.; Wang, D.; Bayles, D.O.; Lager, K.M.; Vincent, A.L. Identification and Molecular Cloning of a Novel Porcine Parvovirus. Arch. Virol. 2010, 155, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.T.; Giménez-Lirola, L.G.; Jiang, Y.H.; Halbur, P.G.; Opriessnig, T. Characterization of a Novel Porcine Parvovirus Tentatively Designated PPV5. PLoS ONE 2013, 8, e65312. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Qiao, C.; Han, X.; Han, T.; Kang, W.; Zi, Z.; Cao, Z.; Zhai, X.; Cai, X. Identification and Genomic Characterization of a Novel Porcine Parvovirus (PPV6) in China. Virol. J. 2014, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Palinski, R.M.; Mitra, N.; Hause, B.M. Discovery of a Novel Parvovirinae Virus, Porcine Parvovirus 7, by Metagenomic Sequencing of 1. Palinski, R.M.; Mitra, N.; Hause, B.M. Discovery of a Novel Parvovirinae Virus, Porcine Parvovirus 7, by Metagenomic Sequencing of Porcine Rectal Swabs. Virus G. Virus Genes 2016, 52, 564–567. [Google Scholar] [CrossRef]
- Wen, S.; Song, Y.; Lv, X.; Meng, X.; Liu, K.; Yang, J.; Diao, F.; He, J.; Huo, X.; Chen, Z.; et al. Detection and Molecular Characterization of Porcine Parvovirus 7 in Eastern Inner Mongolia Autonomous Region, China. Front. Vet. Sci. 2022, 9, 930123. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, K.K.; Wang, J.; Wang, X.p.; Zhao, L.; Sun, P.; Li, Y. Detection and Molecular Characterization of Novel Porcine Parvovirus 7 in Anhui Province from Central-Eastern China. Infect. Genet. Evol. 2019, 71, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Streck, A.F.; Truyen, U. Porcine Parvovirus. Curr. Issues Mol. Biol. 2020, 37, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Mengeling, W.L.; Lager, K.M.; Vorwald, A.C. The Effect of Porcine Parvovirus and Porcine Reproductive and Respiratory Syndrome Virus on Porcine Reproductive Performance. Anim. Reprod. Sci. 2000, 60–61, 199–210. [Google Scholar] [CrossRef]
- Chung, H.C.; Nguyen, V.G.; Huynh, T.M.L.; Park, Y.H.; Park, K.T.; Park, B.K. PCR-Based Detection and Genetic Characterization of Porcine Parvoviruses in South Korea in 2018. BMC Vet. Res. 2020, 16, 113. [Google Scholar] [CrossRef]
- Ouh, I.O.; Park, S.; Lee, J.Y.; Song, J.Y.; Cho, I.S.; Kim, H.R.; Park, C.K. First Detection and Genetic Characterization of Porcine Parvovirus 7 from Korean Domestic Pig Farms. J. Vet. Sci. 2018, 19, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.; Wang, D.; Zou, Y.; Zhang, S.; Meng, C.; Wang, A.; Wang, N. High Co-Infection Status of Novel Porcine Parvovirus 7 With Porcine Circovirus 3 in Sows That Experienced Reproductive Failure. Front. Vet. Sci. 2021, 8, 695553. [Google Scholar] [CrossRef]
- Krakowka, S.; Ellis, J.A.; Meehan, B.; Kennedy, S.; McNeilly, F.; Allan, G. Viral Wasting Syndrome of Swine: Experimental Reproduction of Postweaning Multisystemic Wasting Syndrome in Gnotobiotic Swine by Coinfection with Porcine Circovirus 2 and Porcine Parvovirus. Vet. Pathol. 2000, 37, 254–263. [Google Scholar] [CrossRef]
- Hawko, S.; Burrai, G.P.; Polinas, M.; Angioi, P.P.; Dei Giudici, S.; Oggiano, A.; Alberti, A.; Hosri, C.; Antuofermo, E. A Review on Pathological and Diagnostic Aspects of Emerging Viruses- Senecavirus A, Torque Teno Sus Virus and Linda Virus-In Swine. Vet. Sci. 2022, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Miłek, D.; Woźniak, A.; Podgórska, K.; Stadejek, T. Do Porcine Parvoviruses 1 through 7 (PPV1-PPV7) Have an Impact on Porcine Circovirus Type 2 (PCV2) Viremia in Pigs? Vet. Microbiol. 2020, 242, 108613. [Google Scholar] [CrossRef]
- Opriessnig, T.; Halbur, P.G. Concurrent Infections Are Important for Expression of Porcine Circovirus Associated Disease. Virus Res. 2012, 164, 20–32. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Y.; Qiu, M.; Li, X.; Li, S.; Lin, H.; Li, X.; Zhu, J.; Chen, N. A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. Microbiol. Spectr. 2021, 9, e01294-21. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cao, L.; Sun, W.; Xin, J.; Zheng, M.; Tian, M.; Lu, H.; Jin, N. Sequence and Phylogenetic Analysis of Novel Porcine Parvovirus 7 Isolates from Pigs in Guangxi, China. PLoS ONE 2019, 14, e0219560. [Google Scholar] [CrossRef] [PubMed]
- Jager, M.C.; Tomlinson, J.E.; Lopez-Astacio, R.A.; Parrish, C.R.; Van de Walle, G.R. Small but Mighty: Old and New Parvoviruses of Veterinary Significance. Virol. J. 2021, 18, 210. [Google Scholar] [CrossRef] [PubMed]
- Burrai, G.P.; Hawko, S.; Dei Giudici, S.; Polinas, M.; Angioi, P.P.; Mura, L.; Alberti, A.; Hosri, C.; Hassoun, G.; Oggiano, A.; et al. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet. Sci. 2023, 10, 595. [Google Scholar] [CrossRef]
- Vargas-Bermudez, D.S.; Rendon-Marin, S.; Ruiz-Saenz, J.; Mogollón, D.; Jaime, J. The First Report of Porcine Parvovirus 7 (PPV7) in Colombia Demonstrates the Presence of Variants Associated with Modifications at the Level of the VP2-Capsid Protein. PLoS ONE 2021, 16, e0258311. [Google Scholar] [CrossRef] [PubMed]
- Paim, W.P.; Maggioli, M.F.; Weber, M.N.; Rezabek, G.; Narayanan, S.; Ramachandran, A.; Canal, C.W.; Bauermann, F.V. Virome Characterization in Serum of Healthy Show Pigs Raised in Oklahoma Demonstrated Great Diversity of SsDNA Viruses. Virology 2021, 556, 87–95. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Budaszewski, R.F.; Weber, M.N.; Cibulski, S.P.; Paim, W.P.; Mósena, A.C.S.; Canova, R.; Varela, A.P.M.; Mayer, F.Q.; Pereira, C.W.; et al. Liver Virome of Healthy Pigs Reveals Diverse Small SsDNA Viral Genomes. Infect. Genet. Evol. 2020, 81, 104203. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Zhang, X.; Xue, S.; Yang, X.; Liu, J.; Fan, K.; Dai, A. Detection and Genetic Evolution Analysis of Porcine Parvovirus Type 7 (PPV7) in Fujian Province. Infect. Genet. Evol. 2023, 115, 105515. [Google Scholar] [CrossRef]
- Park, G.N.; Song, S.; Cha, R.M.; Choe, S.E.; Shin, J.; Kim, S.Y.; Hyun, B.H.; Park, B.K.; An, D.J. Genetic Analysis of Porcine Parvoviruses Detected in South Korean Wild Boars. Arch. Virol. 2021, 166, 2249–2254. [Google Scholar] [CrossRef]
- Kim, S.C.; Jeong, C.G.; Nazki, S.; Lee, S.I.; Baek, Y.C.; Jung, Y.J.; Kim, W. Evaluation of a Multiplex PCR Method for the Detection of Porcine Parvovirus Types 1 through 7 Using Various Field Samples. PLoS ONE 2021, 16, e0245699. [Google Scholar] [CrossRef]
- Bhatta, T.R.; Chamings, A.; Alexandersen, S. Exploring the Cause of Diarrhoea and Poor Growth in 8–11-Week-Old Pigs from an Australian Pig Herd Using Metagenomic Sequencing. Viruses 2021, 13, 1608. [Google Scholar] [CrossRef] [PubMed]
- Miłek, D.; Woźniak, A.; Stadejek, T. The Detection and Genetic Diversity of Novel Porcine Parvovirus 7 (PPV7) on Polish Pig Farms. Res. Vet. Sci. 2018, 120, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Blomström, A.L.; Ye, X.; Fossum, C.; Wallgren, P.; Berg, M. Characterisation of the Virome of Tonsils from Conventional Pigs and from Specific Pathogen-Free Pigs. Viruses 2018, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Faustini, G.; Tucciarone, C.M.; Franzo, G.; Donneschi, A.; Boniotti, M.B.; Alborali, G.L.; Drigo, M. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses 2024, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Yu, S.; Gallup, J.M.; Evans, R.B.; Fenaux, M.; Pallares, F.; Thacker, E.L.; Brockus, C.W.; Ackermann, M.R.; Thomas, P.; et al. Effect of Vaccination with Selective Bacterins on Conventional Pigs Infected with Type 2 Porcine Circovirus. Vet. Pathol. 2003, 40, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Legnardi, M.; Centelleghe, C.; Tucciarone, C.M.; Cecchinato, M.; Cortey, M.; Segalés, J.; Drigo, M. Development and Validation of Direct PCR and Quantitative PCR Assays for the Rapid, Sensitive, and Economical Detection of Porcine Circovirus 3. J. Vet. Diagnostic Investig. 2018, 30, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A Computer Program for Analyzing Recombination in, and Removing Signals of Recombination from, Nucleotide Sequence Datasets. Virus Evol. 2021, 7, 87. [Google Scholar] [CrossRef]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-Length Human Immunodeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters in India, with Evidence of Intersubtype Recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef]
- Posada, D. JModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.A.; Strimmer, K.; Vingron, M.; Von Haeseler, A. TREE-PUZZLE: Maximum Likelihood Phylogenetic Analysis Using Quartets and Parallel Computing. Bioinformatics 2002, 18, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K.; Dudley, J. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed]
- Baele, G.; Li, W.L.S.; Drummond, A.J.; Suchard, M.A.; Lemey, P. Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Mol. Biol. Evol. 2013, 30, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Palinski, R. The Application of Metagenomic Sequencing to Detect and Characterize Emerging Porcine Viruses. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2016. [Google Scholar]
- Kim, S.C.; Kim, J.H.; Kim, J.Y.; Park, G.S.; Jeong, C.G.; Kim, W. Prevalence of Porcine Parvovirus 1 through 7 (PPV1-PPV7) and Co-Factor Association with PCV2 and PRRSV in Korea. BMC Vet. Res. 2022, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Dei Giudici, S.; Mura, L.; Bonelli, P.; Hawko, S.; Angioi, P.P.; Sechi, A.M.; Denti, S.; Sulas, A.; Burrai, G.P.; Madrau, M.P.; et al. Evidence of Porcine Circovirus Type 2 (PCV2) Genetic Shift from PCV2b to PCV2d Genotype in Sardinia, Italy. Viruses 2023, 15, 2157. [Google Scholar] [CrossRef] [PubMed]
- Ha, Z.; Xie, C.Z.; Li, J.F.; Wen, S.B.; Zhang, K.L.; Nan, F.L.; Zhang, H.; Guo, Y.C.; Wang, W.; Lu, H.J.; et al. Molecular Detection and Genomic Characterization of Porcine Circovirus 3 in Pigs from Northeast China. BMC Vet. Res. 2018, 14, 321. [Google Scholar] [CrossRef]
- Chen, S.; Liu, F.; Yang, A.; Shang, K. For Better or Worse: Crosstalk of Parvovirus and Host DNA Damage Response. Front. Immunol. 2024, 15, 1324531. [Google Scholar] [CrossRef]
- Pénzes, J.J.; Söderlund-Venermo, M.; Canuti, M.; Eis-Hübinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the Family Parvoviridae: A Revised Taxonomy Independent of the Canonical Approach Based on Host Association. Arch. Virol. 2020, 165, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mai, J.; Yang, Y.; Wang, N. Porcine Parvovirus 7: Evolutionary Dynamics and Identification of Epitopes toward Vaccine Design. Vaccines 2020, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Shangjin, C.; Cortey, M.; Segalés, J. Phylogeny and Evolution of the NS1 and VP1/VP2 Gene Sequences from Porcine Parvovirus. Virus Res. 2009, 140, 209–215. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence | Reference |
---|---|---|
PPV7-1F PPV7-1R | 5′-GCAGCCGCTTCCTGGTGAG-3’ 5′-CCAGRTCGGGYGCGTTTC-3’ | This study |
PPV7-2F PPV7-2R | 5′-CAGGGAGCCTGATGGAATAC-3’ 5′-CTGGATCTGCGAACGAA-3’ | [9] |
PPV7-3F PPV7-3R | 5′-ATCATCATGACGACCAACCACGCAC-3’ 5′-AGGCGCTTTATTGATCACCGAAGC-3’ | [11] |
Sample | Domestic Pigs Infection Rate (%) | Wild Boars Infection Rate (%) | Free-Ranging Pigs Infection Rate (%) | Total Infection Rate (%) |
---|---|---|---|---|
Blood serum | 4/87 (4.6) a | 12/44 (27.3) b | / | 16/131 (12.21) |
Tissues | 2/102 (1.96) a | 20/42 (47.62) b | 26/36 (72.22) c | 48/180 (26.67) |
Total | 6/189 (3.17) a | 32/86 (37.21) b | 26/36 (72.22) c | 64/311 (20.59%) |
Sample | PCV2 Infection Rate (%) | PCV3 Infection Rate (%) | PCV2/PCV3 Infection Rate (%) |
---|---|---|---|
Domestic pigs | 61/189 (32.27) a | 30/189 (15.87) a | 10/189 (5.29) a |
Wild boar | 61/86 (70.93) b | 31/86 (36.04) b | 23/86 (26.74) b |
Free-ranging pigs | 34/36 (94.44) c | 28/36 (77.78) c | 28/36 (77.77) c |
Total | 156/311(50.16) | 88/311 (28.29) | 61/311 (19.61) |
Proportion of Samples (%) | PCV2 Infection Rate (%) | PCV3 Infection Rate (%) | PCV2-PCV3 Infection Rate (%) | ||
---|---|---|---|---|---|
Domestic pigs | PPV7+ | 6/189 (3.17%) | 5/6 a (83.33%) | 3/6 a (50%) | 2/6 a (33.33%) |
PPV7− | 183/189 (96.83%) | 56/183 b(30.60%) | 27/183 a (14.75%) | 8/183 b (4.37%) | |
Wild boars | PPV7+ | 32/86 (37.21%) | 23/32 a (71.87%) | 14/32 a (43.75%) | 10/32 a (31.25%) |
PPV7− | 54/86 (62.79%) | 38/54 a (70.37%) | 17/54 a (31.48%) | 13/54 a (24.07%) | |
Free-ranging pigs | PPV7+ | 26/36 (72.22) | 25/26 a (96.15%) | 21/26 a (80.77%) | 21/26 a (80.77%) |
PPV7− | 10/36 (27.78%) | 9/10 a (90%) | 7/10 a (70%) | 7/10 a (70%) |
Strain | Year | Host | Municipality/Province | BEAST ID | Accession Number |
---|---|---|---|---|---|
397/Italy|2020 | 2020 | Domestic pig | S. Gavino Monreale (SU) | 53IT@20 | PP472466 |
422/Italy|2020 | 2020 | Domestic pig | S. Gavino Monreale (SU) | 54IT@20 | PP472467 |
80282-15/Italy|2021 | 2021 | Free-ranging pig | Talana (NU) | 55IT@21 | PP472468 |
80282-19/Italy|2021 | 2021 | Free-ranging pig | Talana (NU) | 56IT@21 | PP472469 |
2040/Italy|2020 | 2020 | Wild boar | Muros (SS) | 57IT@20 | PP472470 |
2230/Italy|2020 | 2020 | Wild boar | Erula (SS) | 58IT@20 | PP472471 |
2240/Italy|2020 | 2020 | Wild boar | Tergu (SS) | 59IT@20 | PP472472 |
80143/Italy|2021 | 2021 | Wild boar | Illorai (SS) | 60IT@21 | PP472473 |
63170/Italy|2022 | 2022 | Wild boar | Padru (SS) | 61IT@22 | PP472474 |
Dataset2 | Dataset3 | Dataset4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
BEAST ID | Strain | tMRCA | 95% HPD | PP | tMRCA | 95% HPD | PP | tMRCA | 95% HPD | PP |
53IT@20 | 397/Italy|2020 | 2019,39 | 1966,00–2019,50 | 1 | 2010,06 | 1997,75–2014,8 | 0.99 | 2015,42 | 2013,21–2017,65 | 0.33 |
54IT@20 | 422/Italy|2020 | 2019,39 | 1966,00–2019,50 | 1 | 2016,69 | 2011,62–2019,90 | 1 | 2015,73 | 2014,23–2017,40 | 0.32 |
55IT@21 | 80282-15/Italy|2021 | 1984,04 | 1933,03–2000,60 | 0.94 | 2012,83 | 2000,52–2019,32 | 0.98 | 2015,42 | 2013,21–2017,65 | 0.33 |
56IT@21 | 80282-19/Italy|2021 | 2010,87 | 1995,74–2016,68 | 0.9 | 2012,83 | 2000,52–2019,32 | 0.98 | 2016,08 | 2014,15–2018,28 | 0.54 |
57IT@20 | 2040/Italy|2020 | 2013,72 | 2007,28–2015,99 | 0.96 | 2007,08 | 1989,52–2014-10 | 0.27 | 2014,94 | 2013,33–2016,68 | 0.02 |
58IT@20 | 2230/Italy|2020 | 2015,04 | 1977,00–2015,90 | 1 | 2014,9 | 2011,37–2016,00 | 1 | 2016,08 | 2014,15–2018,28 | 0.54 |
59IT@20 | 2240/Italy|2020 | 2014,80 | 1970,00–2015,89 | 0.96 | 2011,17 | 2001,00–2015,36 | 0.93 | 2015,10 | 1981,00–2015,20 | 0.65 |
60IT@21 | 80143/Italy|2021 | 2005,4 | 1981,64–2015,88 | 0.78 | 2016,69 | 2011,62–2019,90 | 1 | 2016,25 | 2013,44–2016,68 | 0.29 |
61IT@22 | 63170/Italy|2022 | 2008,45 | 1993,38–2014,76 | 0.99 | 2010,77 | 1999,45–2014,94 | 0.55 | 2015,50 | 2013,62–2017,09 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dei Giudici, S.; Mura, L.; Bonelli, P.; Ferretti, L.; Hawko, S.; Franzoni, G.; Angioi, P.P.; Ladu, A.; Puggioni, G.; Antuofermo, E.; et al. First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy. Viruses 2024, 16, 932. https://doi.org/10.3390/v16060932
Dei Giudici S, Mura L, Bonelli P, Ferretti L, Hawko S, Franzoni G, Angioi PP, Ladu A, Puggioni G, Antuofermo E, et al. First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy. Viruses. 2024; 16(6):932. https://doi.org/10.3390/v16060932
Chicago/Turabian StyleDei Giudici, Silvia, Lorena Mura, Piero Bonelli, Luca Ferretti, Salwa Hawko, Giulia Franzoni, Pier Paolo Angioi, Anna Ladu, Graziella Puggioni, Elisabetta Antuofermo, and et al. 2024. "First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy" Viruses 16, no. 6: 932. https://doi.org/10.3390/v16060932
APA StyleDei Giudici, S., Mura, L., Bonelli, P., Ferretti, L., Hawko, S., Franzoni, G., Angioi, P. P., Ladu, A., Puggioni, G., Antuofermo, E., Sanna, M. L., Burrai, G. P., & Oggiano, A. (2024). First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy. Viruses, 16(6), 932. https://doi.org/10.3390/v16060932