Macrophage Activation Syndrome in Viral Sepsis
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. MAS and COVID-19
3.2. MAS and Other Viral Infections
3.2.1. Epstein–Barr Virus
3.2.2. Cytomegalovirus
3.2.3. Herpes Simplex Virus and Varicella Zoster Virus
3.2.4. Influenza Virus
3.2.5. Human Adenovirus and Parvovirus B19
3.2.6. Hepatitis Viruses
3.2.7. Human Immunodeficiency Virus
3.2.8. Hemorrhagic Fevers
3.3. Therapeutic Options
3.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carter, S.J.; Tattersall, R.S.; Ramanan, A.V. Macrophage activation syndrome in adults: Recent advances in pathophysiology, diagnosis and treatment. Rheumatology 2019, 58, 5–17. [Google Scholar] [CrossRef]
- Schulert, G.S.; Grom, A.A. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu. Rev. Med. 2015, 66, 145–159. [Google Scholar] [CrossRef]
- Lerkvaleekul, B.; Vilaiyuk, S. Macrophage activation syndrome: Early diagnosis is key. Open Access Rheumatol. 2018, 10, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Crayne, C.B.; Albeituni, S.; Nichols, K.E.; Cron, R.Q. The immunology of macrophage activation syndrome. Front. Immunol. 2019, 10, 433348. [Google Scholar] [CrossRef]
- Cron, R.Q.; Davi, S.; Minoia, F.; Ravelli, A. Clinical features and correct diagnosis of macrophage activation syndrome. Expert. Rev. Clin. Immunol. 2015, 11, 1043–1053. [Google Scholar] [CrossRef]
- Henter, J.I.; Horne, A.C.; Aricó, M.; Egeler, R.M.; Filipovich, A.H.; Imashuku, S.; Ladisch, S.; McClain, K.; Webb, D.; Winiarski, J.; et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 2007, 48, 124–131. [Google Scholar] [CrossRef]
- Fardet, L.; Galicier, L.; Lambotte, O.; Marzac, C.; Aumont, C.; Chahwan, D.; Coppo, P.; Hejblum, G. Development and validation of the hscore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014, 66, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Davì, S.; Pringe, A.B.; Pistorio, A.; Ruperto, N.; Magni-Manzoni, S.; Miettunen, P.; Bader-Meunier, B.; Espada, G.; Sterba, G.; et al. Macrophage activation syndrome in juvenile systemic lupus erythematosus: A multinational multicenter study of thirty-eight patients. Arthritis Rheum. 2009, 60, 3388–3399. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol. 2016, 68, 566–576. [Google Scholar]
- Soy, M.; Atagündüz, P.; Atagündüz, I.; Sucak, G.T. Hemophagocytic lymphohistiocytosis: A review inspired by the COVID-19 pandemic. Rheumatol. Int. 2021, 41, 7–18. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Morris, G.; Bortolasci, C.C.; Puri, B.K.; Marx, W.; O’Neil, A.; Athan, E.; Walder, K.; Berk, M.; Olive, L.; Carvalho, A.F.; et al. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021, 144, 155593. [Google Scholar] [CrossRef]
- Huntington, K.E.; Louie, A.D.; Lee, C.G.; Elias, J.A.; Ross, E.A.; El-Deiry, W.S. Cytokine ranking via mutual information algorithm correlates cytokine profiles with presenting disease severity in patients infected with SARS-CoV-2. eLife 2021, 10, e64958. [Google Scholar] [CrossRef] [PubMed]
- Satış, H.; Özger, H.S.; Aysert Yıldız, P.; Hızel, K.; Gulbahar, Ö.; Erbaş, G.; Aygencel, G.; Guzel Tunccan, O.; Öztürk, M.A.; Dizbay, M.; et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine 2021, 137, 155302. [Google Scholar] [CrossRef]
- Kerget, B.; Kerget, F.; Aksakal, A.; Aşkın, S.; Sağlam, L.; Akgün, M. Evaluation of alpha defensin, IL-1 receptor antagonist, and IL-18 levels in COVID-19 patients with macrophage activation syndrome and acute respiratory distress syndrome. J. Med. Virol. 2021, 93, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Nasser, S.M.T.; Rana, A.A.; Doffinger, R.; Kafizas, A.; Khan, T.A.; Nasser, S. Elevated free interleukin-18 associated with severity and mortality in prospective cohort study of 206 hospitalised COVID-19 patients. Intensive Care Med. Exp. 2023, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, B.; Sürmeli, C.D.; Alkan, M.; Satıcı, C.; Altunok, E.S.; Kamat, S.; Demirok, B.; Demirkol, M.A.; Börü, A. Cytokine storm in severe COVID-19 pneumonia. J. Med. Virol. 2021, 93, 5474–5480. [Google Scholar] [CrossRef]
- Viana-Llamas, M.C.; Arroyo-Espliguero, R.; Silva-Obregón, J.A.; Uribe-Heredia, G.; Núñez-Gil, I.; García-Magallón, B.; Torán-Martínez, C.G.; Castillo-Sandoval, A.; Díaz-Caraballo, E.; Rodríguez-Guinea, I.; et al. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med. Clin. 2021, 156, 428–436. [Google Scholar] [CrossRef]
- Volfovitch, Y.; Tsur, A.M.; Gurevitch, M.; Novick, D.; Rabinowitz, R.; Mandel, M.; Achiron, A.; Rubinstein, M.; Shoenfeld, Y.; Amital, H. The intercorrelations between blood levels of ferritin, sCD163, and IL-18 in COVID-19 patients and their association to prognosis. Immunol. Res. 2022, 70, 817–828. [Google Scholar] [CrossRef]
- Patel, J.M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr. Allergy Asthma Rep. 2022, 22, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Panaro, S.; Cattalini, M. The Spectrum of Manifestations of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2) Infection in Children: What We Can Learn from Multisystem Inflammatory Syndrome in Children (MIS-C). Front. Med. 2021, 8, 747190. [Google Scholar] [CrossRef]
- Boyarchuk, O.; Volokha, A. Editorial: Macrophage activation syndrome in children in the era of COVID-19. Front. Pediatr. 2023, 11, 1222522. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Smith, J.J.; Verweyen, E.L.; Clay, G.M.; Esteban, Y.M.; de Loizaga, S.R.; Baker, E.J.; Do, T.; Dhakal, S.; Lang, S.M.; Grom, A.A.; et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: A cohort study. Lancet Rheumatol. 2021, 3, e574–e584. [Google Scholar] [CrossRef]
- Vagrecha, A.; Zhang, M.; Acharya, S.; Lozinsky, S.; Singer, A.; Levine, C.; Al-ghafry, M.; Levy, C.F.; Cron, R.Q. Hemophagocytic Lymphohistiocytosis Gene Variants in Multisystem Inflammatory Syndrome in Children. Biology 2022, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Buda, P.; Strauss, E.; Januszkiewicz-Lewandowska, D.; Czerwinska, E.; Ludwikowska, K.; Szenborn, L.; Gowin, E.; Okarska-Napierała, M.; Kuchar, E.; Ksiązyk, J. Clinical characteristics of children with MIS-C fulfilling classification criteria for macrophage activation syndrome. Front. Pediatr. 2022, 10, 981711. [Google Scholar] [CrossRef] [PubMed]
- Avrusin, I.S.; Abramova, N.N.; Belozerov, K.E.; Bregel, L.V.; Efremova, O.S.; Vilnits, A.A.; Konstantinova, J.E.; Isupova, E.A.; Kornishina, T.L.; Masalova, V.V.; et al. Using HScore for Evaluation of Hemophagocytosis in Multisystem Inflammatory Syndrome Associated with COVID-19 in Children. Biomedicines 2024, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef] [PubMed]
- Kosyreva, A.; Dzhalilova, D.; Lokhonina, A.; Vishnyakova, P.; Fatkhudinov, T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front. Immunol. 2021, 12, 682871. [Google Scholar] [CrossRef]
- Marik, P.E.; Iglesias, J.; Varon, J.; Kory, P. A scoping review of the pathophysiology of COVID-19. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211048026. [Google Scholar] [CrossRef]
- Felix, J.C.; Sheinin, Y.M.; Suster, D.; Ronen, N.; Ratiani, M.; Vanden Heuvel, T.; Winge, E.; Patton, M.D.; Rau, M.J.; Ge, L.; et al. Diffuse interstitial pneumonia-like/macrophage activation syndrome-like changes in patients with COVID-19 correlate with length of illness. Ann. Diagn. Pathol. 2021, 53, 151744. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Seino, K.I. Macrophage activation syndrome and COVID-19. Inflamm. Regen. 2020, 40, 19. [Google Scholar] [CrossRef] [PubMed]
- Retamozo, S.; Brito-Zerón, P.; Sisó-Almirall, A.; Flores-Chávez, A.; Soto-Cárdenas, M.J.; Ramos-Casals, M. Haemophagocytic syndrome and COVID-19. Clin. Rheumatol. 2021, 40, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Hanff, T.C.; Mohareb, A.M.; Giri, J.; Cohen, J.B.; Chirinos, J.A. Thrombosis in COVID-19. Am. J. Hematol. 2020, 95, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Wood, H.; Jones, J.R.; Hui, K.; Mare, T.; Pirani, T.; Galloway, J.; Metaxa, V.; Benjamin, R.; Rutherford, A.; Cain, S.; et al. Secondary HLH is uncommon in severe COVID-19. Br. J. Haematol. 2020, 190, e283–e285. [Google Scholar] [CrossRef]
- Yongzhi, X. COVID-19-associated cytokine storm syndrome and diagnostic principles: An old and new Issue. Emerg. Microbes Infect. 2021, 10, 266–276. [Google Scholar] [CrossRef]
- Hakim, N.N.; Chi, J.; Olazagasti, C.; Liu, J.M. Secondary hemophagocytic lymphohistiocytosis versus cytokine release syndrome in severe COVID-19 patients. Exp. Biol. Med. 2020, 246, 5–9. [Google Scholar] [CrossRef]
- Webb, B.J.; Peltan, I.D.; Jensen, P.; Hoda, D.; Hunter, B.; Silver, A.; Starr, N.; Buckel, W.; Grisel, N.; Hummel, E.; et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study. Lancet Rheumatol. 2020, 2, e754–e763. [Google Scholar] [CrossRef]
- Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021, 80, 88–95. [Google Scholar] [CrossRef]
- Kessel, C.; Vollenberg, R.; Masjosthusmann, K.; Hinze, C.; Wittkowski, H.; Debaugnies, F.; Nagant, C.; Corazza, F.; Vély, F.; Kaplanski, G.; et al. Discrimination of COVID-19 From Inflammation-Induced Cytokine Storm Syndromes Using Disease-Related Blood Biomarkers. Arthritis Rheumatol. 2021, 73, 1791–1799. [Google Scholar] [CrossRef]
- Kerget, B.; Araz, Ö.; Akgün, M. The role of exhaled nitric oxide (FeNO) in the evaluation of lung parenchymal involvement in COVID-19 patients. Intern. Emerg. Med. 2022, 17, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Kerget, F.; Kerget, B. Frequency of Interleukin-6 rs1800795 (-174G/C) and rs1800797 (−597G/A) Polymorphisms in COVID-19 Patients in Turkey Who Develop Macrophage Activation Syndrome. Jpn. J. Infect. Dis. 2021, 74, 543–548. [Google Scholar] [CrossRef]
- Hailemichael, W.; Kiros, M.; Akelew, Y.; Getu, S.; Andualem, H. Neopterin: A Promising Candidate Biomarker for Severe COVID-19. J. Inflamm. Res. 2021, 14, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Franco-Martínez, L.; Cerón, J.J.; Vicente-Romero, M.R.; Bernal, E.; Cantero, A.T.; Tecles, F.; Resalt, C.S.; Martínez, M.; Tvarijonaviciute, A.; Martínez-Subiela, S. Salivary Ferritin Changes in Patients with COVID-19. Int. J. Environ. Res. Public Health 2021, 19, 41. [Google Scholar] [CrossRef] [PubMed]
- Zanchettin, A.C.; Barbosa, L.V.; Dutra, A.A.; Prá, D.M.M.; Pereira, M.R.C.; Stocco, R.B.; Martins, A.P.C.; Vaz de Paula, C.B.; Nagashima, S.; de Noronha, L.; et al. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022, 14, 1699. [Google Scholar] [CrossRef]
- El-Mallawany, N.K.; Curry, C.V.; Allen, C.E. Haemophagocytic lymphohistiocytosis and Epstein–Barr virus: A complex relationship with diverse origins, expression and outcomes. Br. J. Haematol. 2022, 196, 31–44. [Google Scholar] [CrossRef]
- Shamriz, O.; Kumar, D.; Shim, J.; Briones, M.; Quarmyne, M.O.; Chonat, S.; Lucas, L.; Edington, H.; White, M.H.; Mahajan, A.; et al. T Cell-Epstein-Barr Virus–Associated Hemophagocytic Lymphohistiocytosis (HLH) Occurs in Non-Asians and Is Associated with a T Cell Activation State that Is Comparable to Primary HLH. J. Clin. Immunol. 2021, 41, 1582–1596. [Google Scholar] [CrossRef]
- Ishii, E. Hemophagocytic lymphohistiocytosis in children: Pathogenesis and treatment. Front. Pediatr. 2016, 4, 202648. [Google Scholar] [CrossRef]
- Oh, E.J.; Yoon, J.H.; Park, K.H.; Bae, H.J.; Yun, S.J.; Min, G.J.; Park, S.S.; Park, S.; Lee, S.E.; Cho, B.S.; et al. Natural-killer cell cytotoxicity as a diagnostic and prognostic marker for adult patients with secondary hemophagocytic lymphohistiocytosis: A prospective phase II observational study. Ther. Adv. Hematol. 2021, 12, 20406207211020544. [Google Scholar] [CrossRef]
- Marsh, R.A. Epstein-Barr virus and hemophagocytic lymphohistiocytosis. Front. Immunol. 2018, 8, 317920. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; He, P.; Li, Y.; Si, M.; Fan, Z.; Chang, X.; Xie, Q.; Jiao, X. Viral etiology, clinical and laboratory features of adult hemophagocytic lymphohistiocytosis. J. Med. Virol. 2016, 88, 541–549. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, J.; Yao, R.; Cao, L.; Wang, Z.; Liang, R.; Jia, Y.; Su, Y. Prognostic factors in patients with secondary hemophagocytic lymphohistioc ytosis in a Chinese cohort. Ann. Hematol. 2024, 103, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; He, L.; Zhang, R.; Liu, M.; Hua, Z.; Zou, H.; Wang, Z.; Wang, Y. Improved hemophagocytic lymphohistiocytosis index predicts prognosis of adult Epstein-Barr virus-associated HLH patients. Ann. Med. 2023, 55, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wang, J.; Wang, Z. Epstein-Barr virus central nervous system involvement in Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. Ann. Hematol. 2022, 101, 2471–2476. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Wang, Y.; Wang, J.; Wu, L.; Jin, Z.; Wang, Z. Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adults and adolescents—A life-threatening disease: Analysis of 133 cases from a single center. Hematology 2018, 23, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Rolsdorph, L.A.; Mosevoll, K.A.; Helgeland, L.; Reikvam, H. Concomitant Hemophagocytic Lymphohistiocytosis and Cytomegalovirus Disease: A Case Based Systemic Review. Front. Med. 2022, 9, 819465. [Google Scholar] [CrossRef]
- von Bahr Greenwood, T.; Holzgraefe, B.; Chiang, S.C.C.; Wang, Y.; Tesi, B.; Bryceson, Y.T.; Henter, J.I. Clinical and laboratory signs of haemophagocytic lymphohistiocytosis associated with pandemic influenza A (H1N1) infection in patients needing extracorporeal membrane oxygenation A retrospective observational study. Eur. J. Anaesthesiol. 2021, 38, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Mellon, G.; Henry, B.; Aoun, O.; Boutolleau, D.; Laparra, A.; Mayaux, J.; Sanson, M.; Caumes, E. Adenovirus related lymphohistiocytic hemophagocytosis: Case report and literature review. J. Clin. Virol. 2016, 78, 53–56. [Google Scholar] [CrossRef]
- Leelaviwat, N.; Armin, S.; Mekraksakit, P.; Nugent, K.; Leelaviwat, N.; Armin, S.; Mekraksakit, P.; Nugent, K. Reactivation of Parvovirus B19 Infection: An Uncommon Trigger of Macrophage Activation Syndrome in Adult-Onset Still’s Disease. Cureus 2023, 15, e37231. [Google Scholar] [CrossRef]
- Soldo-Juresa, D.; Radman, M.; Pejsa, V.; Bozikov, V. Reactive macrophage activation syndrome in a patient with parvovirus B19 infection, lymphocytic lichenoid vasculitis, urticaria and angioedema. Ann. Saudi Med. 2010, 30, 88. [Google Scholar] [CrossRef]
- Orth, H.M.; Fuchs, A.; Lübke, N.; Jensen, B.E.O.; Luedde, T. Recurrent parvovirus B19 viremia resulting in two episodes of hemophagocytic lymphohistiocytosis. Virol. J. 2022, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Macauley, P.; Abu-Hishmeh, M.; Dumancas, C.; Alexander-Rajan, V.; Piedra-Chavez, F.; Nada, K.; Habtes, I.; Popescu, A.; Mamorska-Dyga, A. Hemophagocytic Lymphohistiocytosis Associated with Parvovirus B19 in a Patient with Acquired Immunodeficiency Syndrome. J. Investig. Med. High. Impact Case Rep. 2019, 7, 2324709619883698. [Google Scholar] [CrossRef] [PubMed]
- Mallick, B.; Daniel, P.; Dutta, U. Hepatitis A infection related haemophagocytic syndrome: A case report and systematic review. Trop. Dr. 2019, 49, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Fazal, F.; Gupta, N.; Mittal, A.; Ray, A. Haemophagocytic lymphohistiocytosis in human immunodeficiency virus: A systematic review of literature. Drug Discov. Ther. 2020, 14, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Tabaja, H.; Kanj, A.; El Zein, S.; Comba, I.Y.; Chehab, O.; Mahmood, M. A Review of Hemophagocytic Lymphohistiocytosis in Patients With HIV. Open Forum Infect. Dis. 2022, 9, ofac071. [Google Scholar] [CrossRef] [PubMed]
- Giang, H.T.N.; Banno, K.; Minh, L.H.N.; Trinh, L.T.; Loc, L.T.; Eltobgy, A.; Tai, L.L.T.; Khan, A.; Tuan, N.H.; Reda, Y.; et al. Dengue hemophagocytic syndrome: A systematic review and meta-analysis on epidemiology, clinical signs, outcomes, and risk factors. Rev. Med. Virol. 2018, 28, e2005. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, K.; Schmidt, J.; Coppo, P.; Galicier, L.; Noël, N.; Lambotte, O. Hemophagocytic Lymphohistiocytosis Associated with Cytomegalovirus Infection: 5 Cases and a Systematic Review of the Literature. Clin. Infect. Dis. 2023, 76, 351–358. [Google Scholar] [CrossRef]
- Geng, F.; Yang, M.; Zhang, X.; Zhao, H.; Zhou, D.; Hu, J. Typical hemophagocytic syndrome associated with cytomegalovirus infection in an immunocompetent patient: A case report and literature review. J. Zhejiang Univ. Sci. B 2023, 24, 1159–1164. [Google Scholar] [CrossRef]
- Patil, S.M.; Beck, P.P.; Patel, T.P.; Hunter, M.P.; Johnson, J.; Acevedo, B.A.; Roland, W. Cytomegalovirus pneumonitis-induced secondary hemophagocytic lymphohistiocytosis and SIADH in an immunocompetent elderly male literature review. IDCases 2020, 22, e00972. [Google Scholar] [CrossRef]
- Bonnecaze, A.K.; Willeford, W.G.; Lichstein, P.; Ohar, J.; Bonnecaze, A.K.; Willeford, W.G.; Lichstein, P.; Ohar, J. Acute Cytomegalovirus (CMV) Infection Associated with Hemophagocytic Lymphohistiocytosis (HLH) in an Immunocompetent Host Meeting All Eight HLH 2004 Diagnostic Criteria. Cureus 2017, 9, e1070. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, A.; Padole, V.; Chhabra, D.; Upneja, R. The great masquerader: Hemophagocytic lymphohistiocytosis secondary to cytomegalovirus infection in an immunocompetent young man. J. Fam. Med. Prim. Care 2020, 9, 3762. [Google Scholar]
- Brambilla, B.; Barbosa, A.M.; Scholze, C.D.S.; Riva, F.; Freitas, L.; Balbinot, R.A.; Balbinot, S.; Soldera, J. Hemophagocytic Lymphohistiocytosis and Inflammatory Bowel Disease: Case Report and Systematic Review. Inflamm. Intest. Dis. 2020, 5, 49–58. [Google Scholar] [CrossRef]
- Yabushita, T.; Yoshioka, S.; Koba, Y.; Ono, Y.; Hiramoto, N.; Tabata, S.; Itou, M.; Shimizu, N.; Tomii, K.; Ishikawa, T. Successful Treatment of Herpes Simplex Virus (HSV)-1-associated Hemophagocytic Lymphohistiocytosis (HLH) with Acyclovir: A Case Report and Literature Review. Intern. Med. 2017, 56, 2919–2923. [Google Scholar] [CrossRef] [PubMed]
- Halstead, E.S.; Rajasekaran, S.; Fitzgerald, J.C.; Weiss, S.L. Hyperferritinemic sepsis: An opportunity for earlier diagnosis and intervention? Front. Pediatr. 2016, 4, 206380. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, M.; Alali, M.; Hageman, J.R.; Nubani, R.; Chong, G.; Tran, L.; Husain, A.N.; Rosebush, J. Hyperferritinemia: A Diagnostic Marker for Disseminated Neonatal Herpes Simplex Virus Infection? Pediatr. Ann. 2021, 50, e264–e267. [Google Scholar] [CrossRef]
- Liew, J.W.; Jones, B.L.; Hunter, A.J. Disseminated Herpes Simplex Masquerading as Hemophagocytic Lymphohistiocytosis: A Case Report. Perm. J. 2019, 23, 18–202. [Google Scholar] [CrossRef] [PubMed]
- Jongbloed, E.M.; Hermans, M.A.W.; Wabbijn, M.; Van Kampen, J.J.A.; Van Laar, J.A.M. HLH caused by an HSV-2 infection: A case report and review of the literature. Neth J. Med. 2020, 78, 282–285. [Google Scholar] [PubMed]
- Sonoda, M.; Ishimura, M.; Eguchi, K.; Shiraishi, A.; Kanno, S.; Kaku, N.; Inoue, H.; Motomura, Y.; Ochiai, M.; Sakai, Y.; et al. Prognostic factors for survival of herpes simplex virus-associated hemophagocytic lymphohistiocytosis. Int. J. Hematol. 2020, 111, 131–136. [Google Scholar] [CrossRef]
- Nozawa, T.; Nishimura, K.; Ohara, A.; Hara, R.; Ito, S. Primary varicella infection in children with systemic juvenile idiopathic arthritis under tocilizumab therapy. Mod. Rheumatol. 2019, 29, 558–562. [Google Scholar] [CrossRef]
- Gur, G.; Cakar, N.; Uncu, N.; Ayar, G.; Basaran, O.; Taktak, A.; Koksoy, A.Y.; Acar, B.; Cayci, F.S. Hemophagocytic lymphohistiocytosis secondary to Varicella zoster infection in a child with Henoch–Schönlein purpura. Pediatr. Int. 2015, 57, e37–e38. [Google Scholar] [CrossRef]
- Nodehi, H.; Faranoush, M.; Arshi, S.; Nabavi, M.; Bemanian, M.H.; Shokri, S.; Saghafi, M.R.; Fallah, M.S.; Fallahpour, M. Neonatal Onset of Hemophagocytic Lymphohistiocytosis Due to Prenatal Varicella-Zoster Infection in a Neonate with Griscelli Syndrome Type 2. Iran. J. Allergy Asthma Immunol. 2022, 21, 488–493. [Google Scholar] [CrossRef]
- Drago, E.; Garbarino, F.; Signa, S.; Grossi, A.; Schena, F.; Penco, F.; Santori, E.; Candotti, F.; Boztug, K.; Volpi, S.; et al. Case Report: Susceptibility to viral infections and secondary hemophagocytic lymphohistiocytosis responsive to intravenous immunoglobulin as primary manifestations of adenosine deaminase 2 deficiency. Front. Immunol. 2022, 13, 937108. [Google Scholar] [CrossRef] [PubMed]
- Schulert, G.S.; Zhang, M.; Fall, N.; Husami, A.; Kissell, D.; Hanosh, A.; Zhang, K.; Davis, K.; Jentzen, J.M.; Napolitano, L.; et al. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J. Infect. Dis. 2016, 213, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Henter, J.I.; Chow, C.B.; Leung, C.W.; Lau, Y.L. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet 2006, 367, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018, 281, 138–153. [Google Scholar] [CrossRef]
- Otto, W.R.; Behrens, E.M.; Teachey, D.T.; Lamson, D.M.; Barrett, D.M.; Bassiri, H.; Lambert, M.P.; Mount, S.; Petrosa, W.L.; Romberg, N.; et al. Human Adenovirus 7-Associated Hemophagocytic Lymphohistiocytosis-like Illness: Clinical and Virological Characteristics in a Cluster of Five Pediatric Cases. Clin. Infect. Dis. 2021, 73, e1532–e1538. [Google Scholar] [CrossRef]
- Pal, P.; Bose, N.; Poddar, A.; Chowdhury, K.; Saha, A. Experience with Cidofovir as an adjunctive therapy in a patient of adenovirus-induced macrophage activation syndrome in systemic arthritis. Clin. Rheumatol. 2020, 39, 2449–2452. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.G.; Kastner, U.; Minkov, M.; Gadner, H. IVIG Treatment of Adenovirus Infection-Associated Macrophage Activation Syndrome in a Two-Year-Old Boy: Case Report and Review of the Literature. Pediatr. Hematol. Oncol. 2003, 20, 445–451. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xiao, M.; Yan, F.; Zhang, M.R.; Zhang, Y. Risk Factors for the Development of Hemophagocytic Lymphohistiocytosis in Children with Severe Adenovirus Pneumonia: A Single-Center Retrospective Study. Front. Pediatr. 2021, 9, 654002. [Google Scholar] [CrossRef]
- Kalmuk, J.; Matar, S.; Feng, G.; Kilb, E.; Lim, M.Y. Parvovirus B19-induced hemophagocytic lymphohistiocytosis: Case report and review of the literature. Clin. Case Rep. 2019, 7, 2076–2081. [Google Scholar] [CrossRef]
- Butin, M.; Mekki, Y.; Phan, A.; Billaud, G.; Di Filippo, S.; Javouhey, E.; Cochat, P.; Belot, A. Successful immunotherapy in life-threatening parvovirus B19 infection in a child. Pediatr. Infect. Dis. J. 2013, 32, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Aamri, H.; Elqadiry, R.; Nassih, H.; Bourrahouat, A.; Ait Sab, I. HAV Infection Associated with Hemophagocytic Syndrome. Case Rep. Infect. Dis. 2023, 2023, 7799252. [Google Scholar] [CrossRef] [PubMed]
- Canoz, P.Y.; Afat, E.; Temiz, F.; Azizoglu, N.O.; Citilcioglu, H.B.; Tumgor, G.; Leblebisatan, G.; Turgut, M. Reactive Hemophagocytic Lymphohistiocytosis After Hepatitis A Infection. Indian. J. Hematol. Blood Transfus. 2014, 30, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Bendari, M.; Delsa, H.; Bouanani, N.; Jabouri, R.; Darouich, S.; Nejjari, S.; Guessous, F.; Doghmi, K. Hemophagocytic lymphohistiocytosis associated with HBV-HCV coinfection in adult: Case report. Clin. Case Rep. 2021, 9, e04328. [Google Scholar] [CrossRef] [PubMed]
- Termsinsuk, P.; Sirisanthiti, P. Acute hepatitis A infection-associated hemophagocytic lymphohistiocytosis in adult presenting as impending acute liver failure: A case report and literature review. Clin. Case Rep. 2022, 10, e05334. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Choi, Y.W.; Pai, H.; Kim, J. A Case of Human Immunodeficiency Virus-triggered Hemophagocytic Lymphohistocytosis Presenting with Severe Bleeding Tendency. Infect. Chemother. 2021, 53, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Jariwal, R.; Jaber, F.S.; Ipalawatte, H.; Petersen, G. An Unusual Case of Hemophagocytic Lymphohistiocytosis Presentation in Acute Human Immunodeficiency Virus. J. Investig. Med. High Impact Case Rep. 2021, 9, 23247096211021696. [Google Scholar] [CrossRef] [PubMed]
- Divyashree, K.; Singh, H.; Parkhi, M.; Karmakar, I.; Sachdeva, M.; Suri, V.; Bhalla, A. Hemophagocytic lymphohistiocytosis due to disseminated histoplasmosis in a patient with HIV infection. J. Glob. Infect. Dis. 2023, 15, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Pipitò, L.; Medaglia, A.A.; Trizzino, M.; Mancuso, A.; Catania, B.; Mancuso, S.; Calà, C.; Florena, A.M.; Cascio, A. Hemophagocytic lymphohistiocytosis secondary to histoplasmosis: A case report in a patient with AIDS and recent SARS-CoV-2 infection and minireview. Heliyon 2023, 9, e18537. [Google Scholar] [CrossRef]
- Warren, B.C.; Yadav, H.; Graham, M.; Tudor, M.; Warren, B.C.; Yadav, H.; Graham, R.M.; Tudor, M. Hemophagocytic Lymphohistiocytosis in the Setting of Disseminated Histoplasmosis and Uncontrolled HIV. Cureus 2022, 14, 124–126. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Zhou, X.; Xie, Y.; Xiang, D.; Wan, Z.; Huang, Y.; Zhu, B. Case report: Ruxolitinib as first-line therapy for secondary hemophagocytic lymphohistiocytosis in patients with AIDS. Front. Immunol. 2022, 13, 1012643. [Google Scholar] [CrossRef] [PubMed]
- Rocco, J.M.; Laidlaw, E.; Galindo, F.; Anderson, M.; Rupert, A.; Higgins, J.; Sortino, O.; Ortega-Villa, A.M.; Sheikh, V.; Roby, G.; et al. Severe Mycobacterial Immune Reconstitution Inflammatory Syndrome (IRIS) in Advanced Human Immunodeficiency Virus (HIV) Has Features of Hemophagocytic Lymphohistiocytosis and Requires Prolonged Immune Suppression. Clin. Infect. Dis. 2023, 76, e561–e570. [Google Scholar] [CrossRef] [PubMed]
- Mo, P.; Deng, L.; Chen, X.; Xiong, Y.; Zhang, Y. Rapid Progression of Kaposi’s sarcoma complicated with hemophagocytic syndrome in a severely immunosuppressed patient with HIV-infection: A case report. AIDS Res. Ther. 2020, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Kanitthamniyom, C.; Osorio, A.; Saowapa, S.; Siladech, P.; Kanitthamniyom, C.; Osorio, A.; Saowapa, S.; Siladech, P. A Case of Subcutaneous Panniculitis-Like T-cell Lymphoma with Hemophagocytic Lymphohistiocytosis in an HIV Patient. Cureus 2023, 15, e49564. [Google Scholar] [CrossRef] [PubMed]
- van der Ven, A.J.A.M.; Netea, M.G.; van der Meer, J.W.M.; de Mast, Q. Ebola virus disease has features of hemophagocytic lymphohistiocytosis syndrome. Front. Med. 2015, 2, 132071. [Google Scholar] [CrossRef] [PubMed]
- McElroy, A.K.; Shrivastava-Ranjan, P.; Harmon, J.R.; Martines, R.B.; Silva-Flannery, L.; Flietstra, T.D.; Kraft, C.S.; Mehta, A.K.; Lyon, G.M.; Varkey, J.B.; et al. Macrophage Activation Marker Soluble CD163 Associated with Fatal and Severe Ebola Virus Disease in Humans1. Emerg. Infect. Dis. 2019, 25, 290–298. [Google Scholar] [CrossRef]
- Ab-Rahman, H.A.; Rahim, H.; Abubakar, S.; Wong, P.F. Macrophage Activation Syndrome-Associated Markers in Severe Dengue. Int. J. Med. Sci. 2016, 13, 179–186. [Google Scholar] [CrossRef]
- Vuong, N.L.; Cheung, K.W.; Periaswamy, B.; Vi, T.T.; Duyen, H.T.L.; Leong, Y.S.; Binte Hamis, Z.N.; Gregorova, M.; Ooi, E.E.; Sessions, O.; et al. Hyperinflammatory Syndrome, Natural Killer Cell Function, and Genetic Polymorphisms in the Pathogenesis of Severe Dengue. J. Infect. Dis. 2022, 226, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Raghunathan, V.; Dhaliwal, M.; Rastogi, N.; Chadha, R.; Yadav, S.P. Soluble Interleukin-2 Receptor Level as a Marker of Hemophagocytic Lymphohistiocytosis in Children with Severe Dengue. Front. Pediatr. 2021, 9, 721857. [Google Scholar] [CrossRef]
- Ellis, E.M.; Sharp, T.M.; Pérez-Padilla, J.; González, L.; Poole-Smith, B.K.; Lebo, E.; Baker, C.; Delorey, M.J.; Torres-Velasquez, B.; Ochoa, E.; et al. Incidence and Risk Factors for Developing Dengue-Associated Hemophagocytic Lymphohistiocytosis in Puerto Rico, 2008–2013. PLoS Negl. Trop. Dis. 2016, 10, e0004939. [Google Scholar] [CrossRef]
- Abdelgabar, A.; Abdelgabar, A.; Elsayed, M. A Case of Delayed COVID-19-Related Macrophage Activation Syndrome. J. Med. Cases 2022, 13, 207–211. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, F.J.F.; de Figueiredo, E.A.P.; Batista, F.P.; Gallindo, M.A.C.; Fernandes, A.C. da S. Coronavirus Disease 2019 Infection and Early Diagnosis of Macrophage Activation Syndrome: A Case Report of a 62-year-old man. Rev. Soc. Bras. Med. Trop. 2022, 55, e0377–e2021. [Google Scholar]
- Hieber, M.L.; Sprute, R.; Eichenauer, D.A.; Hallek, M.; Jachimowicz, R.D. Hemophagocytic lymphohistiocytosis after SARS-CoV-2 vaccination. Infection 2022, 50, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.D.; Zhang, M.; Smitherman, E.A.; Mannion, M.L.; Stoll, M.L.; Weiser, P.; Cron, R.Q. A Rare STXBP2 Mutation in Severe COVID-19 and Secondary Cytokine Storm Syndrome. Life 2022, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Macaraeg, M.; Schulert, G.S. Complications of complications: Diagnosis and treatment of recurrent macrophage activation syndrome in a patient with well-controlled systemic juvenile idiopathic arthritis. RMD Open 2023, 9, e002611. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.Y.; Schivo, M. Weathering a cytokine storm: A case of EBV-induced hemophagocytic lymphohistiocytosis. J. Investig. Med. High. Impact Case Rep. 2016, 4, 2324709616647409. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Shi, Q.; Sun, X.; Wang, H.; Sun, M.; Liu, Y. Rescue of HLH with T and B Lymphocyte Involvement Due to Epstein-Barr Virus by PD-1 Inhibitor/Ruxolitinib and Rituximab Combination Regimens: A Case Report. Iran. J. Immunol. 2023, 20, 466–472. [Google Scholar]
- Contreras-Chavez, P.; Anampa-Guzmán, A.; Gaznabi, S.; Lansigan, F.; Contreras-Chavez, P.; Anampa-Guzmán, A.; Gaznabi, S.; Lansigan, F. Epstein-Barr Virus Infection-associated Hemophagocytic Lymphohistiocytosis. Cureus 2020, 12, e7563. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Nagata, Y.; Terasaki, Y.; Takeyoshi, A.; Yasuda, S.; Honma, S.; Kinoshita, R.; Marumo, A.; Asayama, T.; Yui, S.; et al. Epstein-Barr Virus-Related Hemophagocytic Lymphohistiocytosis with Central Nervous System Symptoms. J. Nippon. Med. Sch. 2023, 90, 126–135. [Google Scholar] [CrossRef]
- Quadri, S.P.; Jain, N.K.; Brandon, B.L.; Modi, H.; Bawaadam, H.; Quadri, S.P.; Jain, N.K.; Brandon, B.L.; Modi, H.; Bawaadam, H. An Intriguing Presentation of Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis. Cureus 2020, 12, e9561. [Google Scholar] [CrossRef]
- Ioannou, P.; Akoumianaki, E.; Alexakis, K.; Proklou, A.; Psyllaki, M.; Stamatopoulos, E.; Koulentaki, M.; Kondili, E.; Kofteridis, D.P. Hemophagocytic lymphohistiocytosis syndrome associated with Epstein-Barr infection in an immunocompetent patient. A case study. Germs 2020, 10, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Upreti, S. Macrophage activation syndrome in a patient with systemic lupus erythematosus (SLE) and dual viremia. J. Community Hosp. Intern. Med. Perspect. 2020, 10, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Silwedel, C.; Frieauff, E.; Thomas, W.; Liese, J.G.; Speer, C.P. Secondary haemophagocytic lymphohistiocytosis triggered by postnatally acquired cytomegalovirus infection in a late preterm infant. Infection 2017, 45, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Youn, H.; Caricchio, R.; Brent, L.; Lau, A.; Youn, H.; Caricchio, R.; Brent, L. A Case of Cytomegalovirus-Induced Hemophagocytic Lymphohistiocytosis in a Patient with an Underlying Rheumatic Disease. Cureus 2020, 12, e8130. [Google Scholar] [CrossRef] [PubMed]
- Gullickson, M.; Nichols, L.; Scheibe, M.; Gullickson, M.; Nichols, L.; Scheibe, M. A Novel Therapy for a Rare Condition: Continuous Anakinra Infusion for a Patient with Macrophage Activation Syndrome. Cureus 2023, 15, e42968. [Google Scholar] [CrossRef] [PubMed]
- McKeone, D.J.; DeMartini, T.K.M.; Kavanagh, R.P.; Halstead, E.S. Case Report: Rapid Recognition and Immune Modulation of Secondary HLH Due to Disseminated HSV Infection. Front. Pediatr. 2021, 9, 681055. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Fiorda Diaz, J.; Echeverria-Villalobos, M.; Eisinger, G.; Sprauer, S.; Singha, A.; Lyaker, M.R. Case report: Disseminated herpes simplex virus 1 infection and hemophagocytic lymphohistiocytosis after immunomodulatory therapy in a patient with coronavirus disease 2019. Front. Med. 2022, 9, 1053012. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, K.; Rao, S.; Kamath, N. Influenza B Virus Triggering Macrophage Activation Syndrome in an Infant. Indian. J. Crit. Care Med. 2017, 21, 802–803. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, R.; Cresta, F.; Favilli, F.; Naselli, A.; De Alessandri, A.; Minicucci, L. Macrophage activation syndrome induced by A/H1N1 influenza in cystic fibrosis. Pediatr. Pulmonol. 2014, 49, E10–E12. [Google Scholar] [CrossRef]
- Dogan, A.; Demircioglu, S.; Ekinci, O. Acute hepatitis-a virus infection as a rare cause of hemophagocytic lymphohistiocytosis. J. Coll. Physicians Surg. Pak. 2021, 31, 232–234. [Google Scholar]
- Tong, Q.J.; Godbole, M.M.; Biniwale, N.; Jamshed, S.; Tong, Q.J.; Godbole, M.M.; Biniwale, N.; Jamshed, S. An Elusive Diagnosis: Case Reports of Secondary Hemophagocytic Lymphohistiocytosis and Review of Current Literature. Cureus 2019, 11, e4548. [Google Scholar] [CrossRef] [PubMed]
- Ray, U.; Dutta, S.; Mondal, S.; Bandyopadhyay, S. Severe dengue due to secondary hemophagocytic lymphohistiocytosis: A case study. IDCases 2017, 8, 50–53. [Google Scholar] [CrossRef]
- Acharya, S.; Shukla, S.; Sontakke, T.; VS, I.; Bagga, C.; Dronamraju, S.; Giri, A.; Acharya, S.; Shukla, S.; Sontakke, T.; et al. A Case Report of Hemophagocytic Lymphohistiocytosis (HLH)—An Unusual Complication of Dengue Infection. Cureus 2022, 14, e26504. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, C.; Karunathilake, P.; Abeyagunawardena, S.; Ralapanawa, U.; Jayalath, T. Hemophagocytic lymphohistiocytosis as a rare complication of dengue haemorrhagic fever: A case report. J. Med. Case Rep. 2023, 17, 224. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Wang, Z. Requirement for etoposide in the initial treatment of Epstein-Barr virus–associated haemophagocytic lymphohistiocytosis. Br. J. Haematol. 2019, 186, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Wang, Z. L-DEP regimen is effective as an initial therapy for adult EBV-HLH. Ann. Hematol. 2022, 101, 2461–2470. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Zhang, L.; Lian, H.; Ma, H.; Wang, D.; Zhao, X.; Zhang, Q.; Wang, T.; Zhang, R. L-DEP regimen salvage therapy for paediatric patients with refractory Epstein-Barr virus-associated haemophagocytic lymphohistiocytosis. Br. J. Haematol. 2020, 191, 453–459. [Google Scholar] [CrossRef]
- Chellapandian, D.; Das, R.; Zelley, K.; Wiener, S.J.; Zhao, H.; Teachey, D.T.; Nichols, K.E. Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br. J. Haematol. 2013, 162, 376–382. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.Z.; Ma, H.H.; Wang, D.; Cui, L.; Li, W.J.; Wei, A.; Wang, C.J.; Wang, T.Y.; Li, Z.G.; et al. A study of ruxolitinib response–based stratified treatment for pediatric hemophagocytic lymphohistiocytosis. Blood 2022, 139, 3493–3504. [Google Scholar] [CrossRef]
- Siyer, O.; Aksakal, B.; Basat, S. Evaluation of the effects of anakinra treatment on clinic and laboratory results in patients with COVID-19. N. Clin. Istanb. 2023, 10, 189–196. [Google Scholar] [CrossRef]
- Amikishiyev, S.; Deniz, R.; Gunver, M.G.; Aghamuradov, S.; Koca, N.; Ince, B.; Bektas, M.; Yilmaz, A.; Canturk, Y.; Durak, G.; et al. Pos1216 Potential Predictors of Outcome for Anakinra Treatment in COVID-19 Patients with Macrophage Activation Syndrome. Ann. Rheum. Dis. 2022, 81, 937–938. [Google Scholar] [CrossRef]
- Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; Bézie, Y.; Laplanche, S.; et al. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol. 2020, 2, e393–e400. [Google Scholar] [CrossRef] [PubMed]
- Guclu, K.G.; Geyiktepe-Guclu, C.; Bayramlar, O.F.; Tuncer, G.; Aydin, M. Use of high-dose steroid therapy: Addition of anakinra in the treatment of severe COVID-19. Rev. Assoc. Med. Bras. 2024, 70, e20230671. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, O.; Barg, W.; Slifirczyk, A.; Oliynyk, Y.; Gurianov, V.; Rorat, M. Efficacy of Tocilizumab Therapy in Different Subtypes of COVID-19 Cytokine Storm Syndrome. Viruses 2021, 13, 1067. [Google Scholar] [CrossRef] [PubMed]
- Mert, A.; Vahaboğlu, H.; Arslan, F.; Batirel, A.; Saraçoğlu, K.T.; Bastug, A.; Çağatay, A.; Irmak, İ.; Dizman, G.T.; Ertenli, İ.; et al. Tocilizumab treatment in severe COVID-19: A multicenter retrospective study with matched controls. Rheumatol. Int. 2022, 42, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Akleylek, C.; Gür, S.G.; Sever, İ.H.; Koçulu Demir, S.; Çevik, E.; Eken, E.; Gökkaya, Z.; Çağatay, Y.; Yılmaz, N. What are the main factors affecting the outcome of tocilizumab therapy in COVID-19-induced cytokine release syndrome? Diagn. Interv. Radiol. 2022, 9, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Karakike, E.; Dalekos, G.N.; Koutsodimitropoulos, I.; Saridaki, M.; Pourzitaki, C.; Papathanakos, G.; Kotsaki, A.; Chalvatzis, S.; Dimakopoulou, V.; Vechlidis, N.; et al. ESCAPE: An Open-Label Trial of Personalized Immunotherapy in Critically lll COVID-19 Patients. J. Innate Immun. 2022, 14, 218–228. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Chen, D.; Dong, L.; Chang, T.; Tang, Z.H. Advances in attractive therapeutic approach for macrophage activation syndrome in COVID-19. Front. Immunol. 2023, 14, 1200289. [Google Scholar] [CrossRef]
Viral Infection | Author | Year | Patient Population | Clinical and Laboratory Findings |
---|---|---|---|---|
EBV-HLH | Lai et al. [55] | 2018 | 133 adult patients 91 males 42 females | Fever 91.2% Splenomegaly 89.5% Hyperferritinemia 92% Cytopenia (reduction of 2 or 3 lines) 93.2% Hypertriglyceridemia 34.7% Hypofibrinogenemia 59% Elevated liver enzymes 80% Hemophagocytosis 86.2% sIL-2R 87.7% NK cell activity 44.5% |
CMV-HLH | Rolsdolph et al. [56] | 2022 | 71 adult patients 29 males 42 females | Fever 71/71 (100%) Hepatomegaly 3/71 Splenomegaly 18/71 Hepatomegaly and splenomegaly 18/71 Hyperferritinemia 61/71 (86.9%) Cytopenia (reduction of at least 2 lines) 57/71 (80.2%) Hypertriglyceridemia 21/71 Hypofibrinogenemia 5/71 Hemophagocytosis 62/71 (87.3%) sIL-2R (results available for 18 patients) 13/18 NK cell activity 6/71 |
H1N1-HLH | Bahr Greenwood et al. [57] | 2021 | 4 adult patients 4 males | Hepatomegaly 4/4 Splenomegaly 3/4 Hyperferritinemia 4/4 Cytopenia (reduction of 2 lines) ¾ Hypertriglyceridemia 4/4 Elevated liver enzymes 4/4 Hemophagocytosis 4/4 sIL-2R (results available for 3 patients) 3/3 NK cell activity 2/4 |
Adenovirus-HLH | Mellon et al. [58] | 2016 | 6 patients 1 adult 5 pediatric 4 males 3 females | Fever 6/6 Hepatomegaly 4/6 Splenomegaly 3/6 Anemia 5/6 Leukopenia 4/6 Thrombocytopenia 5/6 Hypofibrinogenemia 2/6 Elevated liver enzymes 6/6 |
Parvovirus B19-HLH | Leelaviwat et al. [59] Soldo-Juresa et al. [60] Orth et al. [61] Macauley et al. [62] | 2023 2010 2022 2019 | 4 patients 4 females | Fever 4/4 Splenomegaly 2/4 Hyperferritinemia 4/4 Anemia 3/4 Leukopenia 2/4 Thrombopenia 3/4 Hypertriglyceridemia 2/4 Hypofibrinogenemia 2/4 Elevated liver enzymes 3/4 Hemophagocytosis 3/4 sIL-2R 3/4 |
HAV-HLH | Mallick et al. [63] | 2019 | 27 patients 17 adults 10 pediatric 14 males 13 females | Fever 26/27 (96.2%) Hepatomegaly 17/27 (62.9%) Splenomegaly 22/27 (81.4%) Hyperferritinemia (results available for 21 patients) 21/21 (100%) Pancytopenia 15/23 (65.2%) Hypertriglyceridemia (results available for 19 patients) mean value 394.9 (range 74–690) Hypofibrinogenemia (results available for 14 patients) mean value 7.34 (range 0.3–76) Hemophagocytosis 26/27 (96.2%) sIL-2R (results available for 4 patients) 4/4 |
HIV-HLH | Fazal et al. [64] | 2020 | 52 patients 42 males 10 females | Fever 52/52 (100%) Splenomegaly 42/46 (91.3%) Hyperferritinemia 42/43 (97.6%) Anemia 40/52 (76.9%) Leukopenia 22/30 (73.3%) Thrombopenia 47/51 (92.1%) Hypertriglyceridemia 24/33 (72.7%) Hypofibrinogenemia 6/15 (40%) Hemophagocytosis 39/45 (86.6%) sIL-2R 10/11 (90.9%) NK cell activity 2/5 (40%) |
Tabaja et al. [65] | 2022 | 81 patients 63 males 18 females | Fever 80/81 (98.7%) Splenomegaly 52/71 (73.2%) Hyperferritinema 64/64 (100%) Cytopenia 53/70 (75.7%) Hypertriglyceridemia 34/47 (72.3%) Hypofibrinogenemia 10/25 (40%) Hemophagocytosis 70/80 (87.5%) sIL-2R 21/23 (91.3%) NK cell activity 10/10 (100%) | |
Dengue-HLH | Giang et al. [66] | 2018 | 122 patients 62 males 60 females | Fever 97.2% Splenomegaly 78.4% Hepatomegaly 70.2% Hyperferritinemia 97.1% Anemia 76% Thrombopenia 90.1% |
Viral Infection | Reference | Treatment | Outcome | Additional Information |
---|---|---|---|---|
COVID-19 | Abdelgabar et al., 2022 [111] | antibiotics remdesivir dexamethasone tocilizumab | Died | |
Cruz et al., 2022 [112] | pentaglobin pulse therapy with dexamethasone | Survived | Other regimes did not improve clinical condition | |
Hieber et al., 2022 [113] | IVIG dexamethasone anakinra | Survived | MAS due to vaccination anakinra led to improvement | |
Reiff et al., 2022 [114] | antibiotics remdesivir dexamethasone IVIG anakinra | Survived | Heterozygous pHLH gene mutation | |
EBV | Macaraeg et al., 2023 [115] | emapalumab acyclovir TMP/SMX | Survived | |
Shaw et al., 2016 [116] | dexamethasone etoposide anti-topoisomerase II agent rituximab | Died | Etoposide discontinued due to worsening liver failure | |
Zhu et al., 2023 [117] | PD-1 inhibitor rituximab | Survived | ||
Contreras-Chavez et al., 2020 [118] | etoposide dexamethasone rituximab | Died | ||
Shakaguchi et al., 2023 [119] | corticosteroids etoposide cyclosporine rituximab | Died | Reduced dose of etoposide due to hepatic dysfunction | |
Quadri et al., 2020 [120] | high dose dexamethasone | Died | ||
Ioannou et al., 2020 [121] | acyclovir multiple antibiotic courses IVIG prednisolone | Survived | ||
CMV | Awasthi et al., 2020 [122] | ganciclovir high dose steroids IVIG | ||
Silwedel et al., 2017 [123] | ganciclovir | Survived | Pediatric case | |
Lau et al., 2020 [124] | ganciclovir anakinra dexamethazone etoposide | Survived | Patient did not respond to anakinra and switched to etoposide | |
Gullickson et al., 2023 [125] | high dose steroids ganciclovir continuous anakinra infusion | Survived | ||
HSV | McKeone et al., 2021 [126] | dexamethasone etoposide emapalumab anakinra IVIG | Died | Pediatric case |
Mazzotta et al., 2022 [127] | antibiotics acyclovir dexamethasone | Died | ||
Influenza | Jayashree et al., 2017 [128] | methylprednisolone antibiotics IVIG | Survived | Pediatric case MAS due to influenza B virus |
Casciaro et al., 2014 [129] | prednisolone antibiotics oseltamivir | Survived | Pediatric case | |
Parvovirus B19 | Leelaviwat et al., 2023 [59] | high-dose methylprednisolone etoposide | Died | |
Macauley et al., 2019 [62] | etoposide high-dose dexamethasone IVIG | Survived | ||
HAV | Dogan et al., 2021 [130] | IVIG dexamethasone | Survived | |
HIV | Tong et al., 2019 [131] | etoposide dexamethazone | Died | |
Kim et al., 2021 [96] | high-dose dexamethasone elvitegravir/cobicistat/emtricitabine/tenofovir | Survived | ||
Dengue | Ray et al., 2017 [132] | IVIG | Survived | |
Acharya et al., 2022 [133] | antibiotics dexamethasone etoposide | Survived | ||
Pradeep et al., 2023 [134] | dexamethasone | Survived |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, D.; Gogos, C.; Akinosoglou, K. Macrophage Activation Syndrome in Viral Sepsis. Viruses 2024, 16, 1004. https://doi.org/10.3390/v16071004
Papageorgiou D, Gogos C, Akinosoglou K. Macrophage Activation Syndrome in Viral Sepsis. Viruses. 2024; 16(7):1004. https://doi.org/10.3390/v16071004
Chicago/Turabian StylePapageorgiou, Despoina, Charalambos Gogos, and Karolina Akinosoglou. 2024. "Macrophage Activation Syndrome in Viral Sepsis" Viruses 16, no. 7: 1004. https://doi.org/10.3390/v16071004
APA StylePapageorgiou, D., Gogos, C., & Akinosoglou, K. (2024). Macrophage Activation Syndrome in Viral Sepsis. Viruses, 16(7), 1004. https://doi.org/10.3390/v16071004