Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. RNA Isolation and RT-PCR
2.3. Sequencing and Sequence Analysis
3. Results
3.1. E11 Detection during 2017–2023
3.2. Geographic and Temporal Distribution of E11 Strains
3.3. Clinical Characteristics of E11 Cases
3.4. Phylogenetic Analysis of E11 Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khetsuriani, N.; Lamonte-Fowlkes, A.; Oberst, S.; Pallansch, M.A. Centers for Disease Control and Prevention. Enterovirus surveillance-United States, 1970–2005. MMWR Surveill. Summ. 2006, 55, 1–20. [Google Scholar] [PubMed]
- Bubba, L.; Broberg, E.K.; Jasir, A.; Simmonds, P.; Harvala, H. Enterovirus study collaborators. Circulation of non-polio enteroviruses in 24 EU and EEA countries between 2015 and 2017: A retrospective surveillance study. Lancet Infect. Dis. 2020, 20, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, M.; Xu, H.; Wang, T.; Liu, Y.; Yan, H.; Liu, P.; Qin, D.; Yang, Q. Analysis of enterovirus genotypes in the cerebrospinal fluid of children associated with aseptic meningitis in Liaocheng, China, from 2018 to 2019. BMC Infect. Dis. 2021, 21, 405. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lu, J.; Zhang, Y.; Yoshida, H.; Guo, X.; Liu, L.; Li, H.; Zeng, H.; Fang, L.; Mo, Y.; et al. Prevalence of nonpolio enteroviruses in the sewage of Guangzhou city, China, from 2009 to 2012. Appl. Environ. Microbiol. 2013, 79, 7679–7683. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, Y.; Zhang, W.; Chen, M.; Li, C.; Guo, X.; Zhu, S.; Zeng, H.; Fang, L.; Ke, B.; et al. Prevalence of Non-Polio Enteroviruses in the Sewage of Guangzhou City, China, from 2013 to 2021. Microbiol. Spectr. 2023, 11, e0363222. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Ciąćka, A.; Witek, A.; Kuryk, Ł.; Żuk-Wasek, A. Environmental Surveillance of Non-polio Enteroviruses in Poland, 2011. Food Environ. Virol. 2015, 7, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.M.; Mulkey, S.B.; Campos, J.M.; DeBiasi, R.L. Laboratory diagnosis of CNS infections in children due to emerging and re-emerging neurotropic viruses. Pediatr. Res. 2024, 95, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Forgie, S.; Robinson, J. Non-polio Enterovirus detection with acute flaccid paralysis: A systematic review. J. Med. Virol. 2018, 90, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Zhou, Y.; Zhu, Y.; Liu, Z.; Yang, F.; Yang, S.; Yu, Z.; Guo, C.; Ma, S. Molecular characterization of a new human echovirus 11 isolate associated with severe hand, foot and mouth disease in Yunnan, China, in 2010. Arch. Virol. 2015, 160, 2343–2347. [Google Scholar] [CrossRef]
- Lukashev, A.N.; Lashkevich, V.A.; Koroleva, G.A.; Karganova, G.G. Phylogenetic and serological characterization of echovirus 11 and echovirus 19 strains causing uveitis. Arch. Virol. 2002, 147, 131–142. [Google Scholar] [CrossRef]
- Klein, J.O.; Lerner, A.M.; Finland, M. Acute gastroenteritis associated with ECHO virus, Type 11. Am. J. Med. Sci. 1960, 240, 749–753. [Google Scholar] [CrossRef]
- Szendrõi, A.; El-Sageyer, M.; Takács, M.; Mezey, I.; Berencsi, G. Nucleotide sequences and mutations of the 5′-nontranslated region (5′NTR) of natural isolates of an epidemic echovirus 11′ (prime). Arch. Virol. 2000, 145, 2575–2600. [Google Scholar] [CrossRef]
- Wang, C.; Yang, R.; Yang, F.; Han, Y.; Ren, Y.; Xiong, X.; Wang, X.; Bi, Y.; Li, L.; Qiu, Y.; et al. Echovirus 11 infection induces pyroptotic cell death by facilitating NLRP3 inflammasome activation. PLoS Pathog. 2022, 18, e1010787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Tang, J.; He, Y.; Xiong, T.; Li, W.; Qu, Y.; Mu, D. Clinical characteristics of severe neonatal enterovirus infection: A systematic review. BMC Pediatr. 2021, 21, 127. [Google Scholar] [CrossRef] [PubMed]
- Tassin, M.; Martinovic, J.; Mirand, A.; Peigue-Lafeuille, H.; Picone, O.; Benachi, A.; Vauloup-Fellous, C. A case of congenital Echovirus 11 infection acquired early in pregnancy. J. Clin. Virol. 2014, 59, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Bendig, J.W.; Ossuetta, I. Vertical transmission of human echovirus 11 at the time of Bornholm disease in late pregnancy. Pediatr. Infect. Dis. J. 2005, 24, 88–89. [Google Scholar] [CrossRef]
- Hu, Y.L.; Lin, S.Y.; Lee, C.N.; Shih, J.C.; Cheng, A.L.; Chen, S.H.; Chang, L.Y.; Fang, C.T. Serostatus of echovirus 11, coxsackievirus B3 and enterovirus D68 in cord blood: The implication of severe newborn enterovirus infection. J. Microbiol. Immunol. Infect. 2023, 56, 766–771. [Google Scholar] [CrossRef]
- Laassri, M.; Zagorodnyaya, T.; Hassin-Baer, S.; Handsher, R.; Sofer, D.; Weil, M.; Karagiannis, K.; Simonyan, V.; Chumakov, K.; Shulman, L. Evolution of echovirus 11 in a chronically infected immunodeficient patient. PLoS Pathog. 2018, 14, e1006943. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Chiu, C.H.; Huang, Y.C.; Chen, C.J.; Lien, R.; Chu, S.M.; Huang, C.G.; Tsao, K.C.; Shih, S.R.; Hsu, J.F. Investigation and successful control of an echovirus 11 outbreak in neonatal intensive care units. Pediatr. Neonatol. 2020, 61, 180–187. [Google Scholar] [CrossRef]
- Rueca, M.; Lanini, S.; Giombini, E.; Messina, F.; Castilletti, C.; Ippolito, G.; Capobianchi, M.R.; Valli, M.B. Detection of recombinant breakpoint in the genome of human enterovirus E11 strain associated with a fatal nosocomial outbreak. Virol. J. 2022, 19, 97. [Google Scholar] [CrossRef]
- Somekh, E.; Shohat, T.; Handsher, R.; Serour, F. An outbreak of echovirus 11 in a children’s home. Epidemiol. Infect. 2001, 126, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cui, N.; Wang, H.; Tao, Z.; Liu, Y.; Zhang, H.; Yoshida, H.; Song, Y.; Zhang, Y.; Song, L.; et al. Evaluating the prevalence and molecular epidemiology of echovirus 11 isolated from sewage in Shandong Province, China in 2010. Virus Genes 2012, 44, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Bubba, L.; Benschop, K.S.M.; Blomqvist, S.; Duizer, E.; Martin, J.; Shaw, A.G.; Bailly, J.L.; Rasmussen, L.D.; Baicus, A.; Fischer, T.K.; et al. Wastewater Surveillance in Europe for Non-Polio Enteroviruses and Beyond. Microorganisms 2023, 11, 2496. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Disease Outbreak News. Enterovirus-Echovirus 11 Infection in the European Region. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON474 (accessed on 7 July 2023).
- European Centre for Disease Prevention and Control. Epidemiological Update, Epidemiological Update: Echovirus 11 Infections in Neonates. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-echovirus-11-infections-neonates (accessed on 19 July 2023).
- European Centre for Disease Control and Prevention. Communicable Disease Threat Report, Weekly Bulletin. 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/communicable-disease-threats-report-16-jun-2023.pdf (accessed on 16 June 2023).
- World Health Organization. Disease Outbreak News. Enterovirus Infection—France 31 May 2023. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON469 (accessed on 31 May 2023).
- European Centre for Disease Control (ECDC). Echovirus 11 in Newly Born Twins: Case in Italy Shows Close Genetic Relation to Strains Found in France among Neonates. Available online: https://www.eurekalert.org/news-releases/992726 (accessed on 15 June 2023).
- Grapin, M.; Mirand, A.; Pinquier, D.; Basset, A.; Bendavid, M.; Bisseux, M.; Jeannoël, M.; Kireche, B.; Kossorotoff, M.; L’Honneur, A.S.; et al. Severe and fatal neonatal infections linked to a new variant of echovirus 11, France, July 2022 to April 2023. Eurosurveillance 2023, 28, 2300253. [Google Scholar] [CrossRef] [PubMed]
- Piralla, A.; Borghesi, A.; Di Comite, A.; Giardina, F.; Ferrari, G.; Zanette, S.; Figar, T.A.; Angelini, M.; Pisoni, C.; Pitrolo, A.M.G.; et al. Fulminant echovirus 11 hepatitis in male non-identical twins in northern Italy, April 2023. Eurosurveillance 2023, 28, 2300289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, D.; Chen, L.; Zhang, Y.; Song, Y.; Zhu, S.; Ji, T.; Zhou, W.; Gan, F.; Wang, X.; et al. Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci. Rep. 2019, 9, 10583. [Google Scholar] [CrossRef] [PubMed]
- Oberste, M.S.; Nix, W.A.; Kilpatrick, D.R.; Flemister, M.R.; Pallansch, M.A. Molecular epidemiology and type-specific detection of echovirus 11 isolates from the Americas, Europe, Africa, Australia, southern Asia and the Middle East. Virus Res. 2003, 91, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Zurbriggen, S.; Tobler, K.; Abril, C.; Diedrich, S.; Ackermann, M.; Pallansch, M.A.; Metzler, A. Isolation of sabin-like polioviruses from wastewater in a country using inactivated polio vaccine. Appl. Environ. Microbiol. 2008, 74, 5608–5614. [Google Scholar] [CrossRef] [PubMed]
- WHO Expanded Programme on Immunization & World Health Organization Division of Communicable Diseases. World Health Organization Manual for the Virological Investigation of Poliomyelitis. 1990. Available online: https://apps.who.int/iris/handle/10665/62186 (accessed on 3 June 2022).
- Leitch, E.C.; Harvala, H.; Robertson, I.; Ubillos, I.; Templeton, K.; Simmonds, P. Direct identification of human enterovirus serotypes in cerebrospinal fluid by amplification and sequencing of the VP1 region. J. Clin. Virol. 2009, 44, 119–124, Erratum in J. Clin. Virol. 2011, 51, 286. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. PopART: Full Feature Software for Haplotype Network Construction. Methods Evol. Ecol. 2015, 6, 1110–1116. Available online: https://popart.maths.otago.ac.nz/?s=PopART%3A+Full+Feature+Software+for+Haplotype+Network+Construction (accessed on 18 May 2020). [CrossRef]
- Lee, B.R.; Sasidharan, A.; Harrison, C.J.; Selvarangan, R. Disruption of seasonal enterovirus and parechovirus detections in the CSF and plasma of children during the COVID-19 pandemic. J. Clin. Virol. 2023, 160, 105381. [Google Scholar] [CrossRef] [PubMed]
- Forero, E.L.; Knoester, M.; Gard, L.; Ott, A.; Brandenburg, A.H.; McCall, M.B.B.; Niesters, H.G.M.; Van Leer-Buter, C. Changes in enterovirus epidemiology after easing of lockdown measures. J. Clin. Virol. 2023, 169, 105617. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cai, S.; Wu, X.; Zhang, Y.; Li, D.; Chen, Y.; Chen, Q.; Zhu, S.; Yan, D.; Xu, W.; et al. Analysis of the distribution characteristics of enterovirus types based on environmental surveillance from 2013 to 2021 in Fujian Province, China. Biosaf. Health 2023, 5, 240–249. [Google Scholar] [CrossRef]
- Sedmak, G.; Bina, D.; MacDonald, J. Assessment of an enterovirus sewage surveillance system by comparison of clinical isolates with sewage isolates from milwaukee, wisconsin, collected August 1994 to December 2002. Appl. Environ. Microbiol. 2003, 69, 7181–7187. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, O.E.; Yarmolskaya, M.S.; Eremeeva, T.P.; Babkina, G.M.; Baykova, O.Y.; Akhmadishina, L.V.; Krasota, A.Y.; Kozlovskaya, L.I.; Lukashev, A.N. Environmental Surveillance for Poliovirus and Other Enteroviruses: Long-Term Experience in Moscow, Russian Federation, 2004–2017. Viruses 2019, 11, 424. [Google Scholar] [CrossRef]
- Tiwari, S.; Dhole, T.N. Assessment of enteroviruses from sewage water and clinical samples during eradication phase of polio in North India. Virol. J. 2018, 15, 157. [Google Scholar] [CrossRef]
- Delogu, R.; Battistone, A.; Buttinelli, G.; Fiore, S.; Fontana, S.; Amato, C.; Cristiano, K.; Gamper, S.; Simeoni, J.; Frate, R.; et al. Poliovirus and Other Enteroviruses from Environmental Surveillance in Italy, 2009–2015. Food Environ. Virol. 2018, 10, 333–342. [Google Scholar] [CrossRef]
- Ozawa, H.; Yoshida, H.; Usuku, S. Environmental Surveillance Can Dynamically Track Ecological Changes in Enteroviruses. Appl. Environ. Microbiol. 2019, 85, e01604-19. [Google Scholar] [CrossRef]
- Kitakawa, K.; Kitamura, K.; Yoshida, H. Monitoring Enteroviruses and SARS-CoV-2 in Wastewater Using the Polio Environmental Surveillance System in Japan. Appl. Environ. Microbiol. 2023, 89, e0185322. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Filizzolo, C.; Pizzo, M.; Sanfilippo, G.L.; Cacioppo, F.; Bonura, F.; Fontana, S.; Buttinelli, G.; Stefanelli, P.; De Grazia, S. Detection of Echovirus 11 lineage 1 in wastewater samples in Sicily. Sci. Total Environ. 2024, 918, 170519. [Google Scholar] [CrossRef] [PubMed]
- El-Sageyer, M.M.; Szendröi, A.; Hütter, E.; Uj, M.; Szücs, G.; Mezey, I.; Tóth, I.; Kátai, A.; Kapiller, Z.; Páll, G.; et al. Characterisation of an echovirus type 11′ (prime) epidemic strain causing haemorrhagic syndrome in newborn babies in Hungary. Acta Virol. 1998, 42, 157–166. [Google Scholar] [PubMed]
- Khetsuriani, N.; Lamonte, A.; Oberste, M.S.; Pallansch, M. Neonatal enterovirus infections reported to the national enterovirus surveillance system in the United States, 1983–2003. Pediatr. Infect. Dis. J. 2006, 25, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.W.; Lukes, H.; Wells, B.; Thompson, L.; Low, D.E.; Cheang, M. Maternal and neonatal neutralizing antibody titers to selected enteroviruses. Pediatr. Infect. Dis. 1985, 4, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Yarmolskaya, M.S.; Shumilina, E.Y.; Ivanova, O.E.; Drexler, J.F.; Lukashev, A.N. Molecular epidemiology of echoviruses 11 and 30 in Russia: Different properties of genotypes within an enterovirus serotype. Infect. Genet. Evol. 2015, 30, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, M.; Sharif, S.; Klapsa, D.; Wilton, T.; Alam, M.M.; Fernandez-Garcia, M.D.; Rehman, L.; Mujtaba, G.; McAllister, G.; Harvala, H.; et al. Environmental Surveillance Reveals Complex Enterovirus Circulation Patterns in Human Populations. Open Forum Infect. Dis. 2018, 5, ofy250. [Google Scholar] [CrossRef]
- Liu, B. Universal PCR Primers Are Critical for Direct Sequencing-Based Enterovirus Genotyping. J. Clin. Microbiol. 2016, 55, 339–340. [Google Scholar] [CrossRef]
No. | Name of Strain Accession Number | Gender/ Age | Date of Onset | Case Type | Symptoms/Treatment/Response |
---|---|---|---|---|---|
1 | PL20/4497/2018 PP534566 | F/17 years | June 2018 | mild | Meningitis, headaches, nausea, photophobia, fever, dehydration; CSF leukocyte count 7 cells/µL, CSF EV RNA: positive; Treatment: symptomatic; Response: recovered without sequelae; |
2 | PL04/5086/2019 PP534556 | M/7 years | May 2019 | ND | EV RNA in stool sample: positive; |
3 | PL12/2386/2022 PP534557 | M/2 months | June 2022 | mild | Fever, apathy, poor feeding, tachycardia, rash on the lower limbs; EV RNA in stool sample: positive; |
4 | PL14/3564/2022 PP534559 | F/6 years | August 2022 | mild | Meningitis; EV RNA in stool sample: positive; |
5 | PL14/4786/2022 PP534560 | F/12 days | November 2022 | severe | Severe hepatitis and multisystemic disease; EV RNA in stool sample: positive; |
6 | PL20/2472/2023 PP534562 | F/11 days | January 2023 | mild | Meningitis, irritability, fever, tachypnoea, tachycardia, elevated interleukin 6 (max. 102 pg/mL, low CRP, nasopharyngeal swab EV RNA: positive; CSF leukocyte count 8 cells/µL, CSF protein 77 mg/dL; CSF EV RNA: positive; Response: recovered without sequelae; |
7 | PL20/2486/2023 PP534563 | F/13 days | January 2023 | mild | Meningitis, fever, tachycardia, CSF leukocyte count 21 cells/µL; CSF EV RNA: positive; Treatment: symptomatic; Response: recovered without sequelae; |
8 | PL12/3636/2023 PP534558 | M/6 days | September 2023 | ND | CSF EV RNA: positive; |
9 | PL20/3983/2023 PP534564 | M/2 years_6 months | October 2023 | mild | Meningitis, vomiting, lethargy, poor feeding; CSF leukocyte count 15 cells/µL; CSF EV RNA: negative; EV RNA in stool sample: positive; Treatment: empirical antibiotics, symptomatic treatment; Response: recovered without sequelae; |
10 | PL20/3984/2023 PP534565 | F/1 year_6 months | October 2023 | mild | Meningitis, fever, headaches, vomiting, dehydration, preceded 2 weeks earlier by skin rash; CSF leucocyte count 263 cells/µL, CSF EV RNA: negative, EV RNA in stool sample: positive; Treatment: empirical antibiotics, symptomatic treatment; Response: recovered without sequelae; |
11 | PL14/4885/2023 PP534561 | M/2 months | November 2023 | ND | EV RNA in stool sample: positive; |
E11 Isolates | Year of Detection | No. of Isolates | Nucleotide Divergence [%] | Amino Acid Divergence [%] | Positive E11 Genotype Detection | ||
---|---|---|---|---|---|---|---|
All | 2017–2023 | 266 | 0.0–25.7 | 0.0–12.7 | C3 | D5 | E |
2017 | 7 | 0.1–23.7 | 0.3–11.6 | X | X | ||
2018 | 34 | 0.0–9.3 | 0.0–2.7 | X | |||
2019 | 42 | 0.0–24.2 | 0.0–11.0 | X | X | ||
2020 | 8 | 0.0–8.3 | 0.0–2.7 | X | |||
2021 | 13 | 0.1–24.7 | 0.0–10.6 | X | X | ||
2022 | 38 | 0.0–24.4 | 0.0–11.0 | X | X | ||
2023 | 124 | 0.0–25.3 | 0.0–12.3 | X | X | X | |
Environmental | 2017–2023 | 255 | 0.0–25.7 | 0.0–12.7 | X | X | X |
Clinical | 2018–2019 2022–2023 | 11 | 0.0–8.5 | 0.0–2.7 | X | ||
C3 | 2017, 2023 | 29 | 11.3 | 3.1 | |||
D5 | 2017–2023 | 255 | 0.0–9.9 | 0.0–4.8 | |||
E | 2019, 2021–2023 | 9 | 0.0–15.1 | 0.0–3.8 |
VP1 Amino Acid Sites | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N terminus | B# | B-D loop | C-D loop | D# | D-E loop | E# | E-F loop | G-H loop | H# | H-I | I# | C terminus | |||||||||||||||||||||||||||||||
7 | 9 | 19 | 23 | 43 | 45 | 48 | 54 | 63 | 78 | 80 | 84 | 86 | 87 | 89 | 96 | 109 | 117 | 131 | 132 | 144 | 157 | 161 | 186 | 215 | 219 | 221 | 227 | 238 | 245 | 247 | 267 | 268 | 270 | 271 | 273 | 276 | 279 | 280 | 283 | 289 | 290 | 292 | |
Gregory | V | N | G | S | T | S | M | K | S | G | H | T | Q | T | L | S | I | V | S | R | I | V | A | I | H | I | V | S | M | V | A | T | P | N | V | D | T | N | Y | E | L | S | Y |
C3 | V | N | G | S/L | T | S | V | K | S | E | H | T/S | Q | T | L | S | I | V | T | Q | I | V | T | I | H | I | V | S | M | I | A | S | P | D | I | D | E/N | T | Y | D | V | S | H/Y |
D5 | I | S | S | T | V | G | M | R | T | E | Y | T | E | T | R/K | N | M | V | T | Q | V | T | A | V | N | L | M | P | V | V | A | S | S | N | I | D | D | T | Y | D | V | T | H |
E | V | N | S | S | T | S | I | H | S | E | Y | E/T | T/A | S | L | N | M/L | I | T | Q | I | V | T | I | H | I | V | P | M | I/V | V | T | P | N | V/I | E | Q/N | N | Y/H | D | V | S | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, B.; Kłosiewicz, P.; Oleksiak, K.; Krzysztoszek, A.; Toczyłowski, K.; Sulik, A.; Wieczorek, T.; Wieczorek, M. Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses 2024, 16, 1011. https://doi.org/10.3390/v16071011
Gad B, Kłosiewicz P, Oleksiak K, Krzysztoszek A, Toczyłowski K, Sulik A, Wieczorek T, Wieczorek M. Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses. 2024; 16(7):1011. https://doi.org/10.3390/v16071011
Chicago/Turabian StyleGad, Beata, Paulina Kłosiewicz, Kinga Oleksiak, Arleta Krzysztoszek, Kacper Toczyłowski, Artur Sulik, Tobiasz Wieczorek, and Magdalena Wieczorek. 2024. "Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant" Viruses 16, no. 7: 1011. https://doi.org/10.3390/v16071011
APA StyleGad, B., Kłosiewicz, P., Oleksiak, K., Krzysztoszek, A., Toczyłowski, K., Sulik, A., Wieczorek, T., & Wieczorek, M. (2024). Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses, 16(7), 1011. https://doi.org/10.3390/v16071011