Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Blood Samples
2.2. Cells
2.3. Viruses
2.4. Detection of Dengue and Chikungunya Viruses in Sera Patients
2.5. Detection of Anti-Dengue and Anti-Chikungunya IgM and IgG Antibodies by Capture ELISA in Sera Patients
2.6. Induction of Anti-DENV2 and Anti-CHIKV IgG Antibodies by Inoculation of CHIKV and DENV2 in BALB/c Mice
2.7. Anti-DENV2 and Anti-CHIKV IgG Antibody Mouse Titration by ELISA
2.8. Plaque Reduction Neutralization Test (PRNT)
2.9. Calculations and Statistical Analysis
3. Results
3.1. Neutralizing Capacity of Anti-Dengue and Anti-Chikungunya IgG Antibodies from Patients of the State of Veracruz, Mexico
3.2. Induction of Anti-CHIKV and Anti-DENV2 IgG Antibodies in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
3.3. Determination of the Anti-CHIKV and Anti-DENV2 IgG Antibody Titer in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
3.4. Determination of Neutralizing Capacity of IgG Antibodies in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef] [PubMed]
- de Lima Cavalcanti, T.Y.V.; Pereira, M.R.; de Paula, S.O.; Franca, R.F.O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Powers, A.M.; Pesik, N.; Cohen, N.J.; Staples, J.E. Nowcasting the spread of chikungunya virus in the Americas. PLoS ONE 2014, 9, e104915. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Govea, M.A.; Zamudio-Osuna, M.d.J.; Murillo, K.d.C.T.; Ponce, G.; de la O Cavazos, M.E.; Tavitas-Aguilar, M.I.; Flores-Suárez, A.E.; Villarreal-Perez, J.Z.; Rodriguez-Sanchez, I.P. Chikungunya fever in patients from northeastern Mexico. Southwest. Entomol. 2017, 42, 43–52. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner RCJr Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; Shirude, S.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Gromowski, G.D.; Li, L.; Barrett, A.D. Characterization of a dengue type-specific epitope on dengue 3 virus envelope protein domain III. J. Gen. Virol. 2010, 91 Pt 9, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Wahala, W.M.; Kraus, A.A.; Haymore, L.B.; Accavitti-Loper, M.A.; de Silva, A.M. Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology 2009, 392, 103–113. [Google Scholar] [CrossRef]
- Flipse, J.; Wilschut, J.; Smit, J.M. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2013, 14, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Dhama, N.; Gupta, R.D. Dengue virus neutralizing antibody: A review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 2023, 14, 1200195. [Google Scholar] [CrossRef] [PubMed]
- Van Leur, S.W.; Heunis, T.; Munnur, D.; Sanyal, S. Pathogenesis and virulence of flavivirus infections. Virulence 2021, 12, 2814–2838. [Google Scholar] [CrossRef] [PubMed]
- Endale, A.; Medhin, G.; Darfiro, K.; Kebede, N.; Legesse, M. Magnitude of Antibody Cross-Reactivity in Medically Important Mosquito-Borne Flaviviruses: A Systematic Review. Infect. Drug Resist. 2021, 14, 4291–4299. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.-W.; Pok, K.-Y.; Eng, K.E.; Tan, L.-K.; Kaur, S.; Lee, W.W.L.; Leo, Y.-S.; Ng, L.-C.; Ng, L.F.P. Sero-prevalence and cross-reactivity of chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLoS Negl. Trop. Dis. 2015, 9, e3445. [Google Scholar] [CrossRef] [PubMed]
- Rosso, F.; Pacheco, R.; Rodriguez, S.; Bautista, D. Co-infection by chikungunya virus (CHIK-V) and dengue virus (DEN-V) during a recent outbreak in Cali. Colombia: Report of a fatal case. Rev. Chilena Infectol. 2016, 33, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Saswat, T.; Kumar, A.; Kumar, S.; Mamidi, P.; Muduli, S.; Debata, N.K.; Pal, N.S.; Pratheek, B.; Chattopadhyay, S. High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect. Genet. Evol. 2015, 35, 134–141. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- González-Flores, A.M.; Salas-Benito, M.; Rosales-García, V.H.; Zárate-Segura, P.B.; Del Ángel, R.M.; De Nova-Ocampo, M.A.; Salas-Benito, J.S. Characterization of Viral Interference in Aedes albopictus C6/36 Cells Persistently Infected with Dengue Virus 2. Pathogens 2023, 12, 1135. [Google Scholar] [CrossRef]
- Díaz-Quiñonez, J.A.; Ortiz-Alcántara, J.; Fragoso-Fonseca, D.E.; Garcés-Ayala, F.; Escobar-Escamilla, N.; Vázquez-Pichardo, M.; Núñez-León, A.; Torres-Rodríguez, M.d.l.L.; Torres-Longoria, B.; López-Martínez, I.; et al. Complete genome sequences of chikungunya virus strains isolated in Mexico: First detection of imported and autochthonous cases. Genome Announc. 2015, 3, e00300-15. [Google Scholar] [CrossRef] [PubMed]
- Galan-Huerta, K.A.; Zomosa-Signoret, V.C.; Vidaltamayo, R.; Caballero-Sosa, S.; Fernández-Salas, I.; Ramos-Jiménez, J.; Rivas-Estilla, A.M. Genetic Variability of Chikungunya Virus in Southern Mexico. Viruses 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.J.; Liao, T.L.; Shu, P.Y.; Huang, J.H.; Gubler, D.J.; Chang, G.J. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J. Clin. Microbiol. 2006, 44, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya virus in US travelers returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd ed.; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Posadas-Mondragón, A.; Aguilar-Faisal, J.L.; Chávez-Negrete, A.; Guillén-Salomón, E.; Alcántara-Farfán, V.; Luna-Rojas, L.; Ávila-Trejo, A.M.; Del Carmen Pacheco-Yépez, J. Indices of anti-dengue immunoglobulin G subclasses in adult Mexican patients with febrile and hemorrhagic dengue in the acute phase. Microbiol. Immunol. 2017, 61, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Rezza, G. Dengue and Chikungunya: Long-distance spread and outbreaks in naive areas. Pathog. Glob. Health 2014, 108, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.M.; Young, M.C.; Byas, A.D.; Murrieta, R.A.; Fauver, J.R.; Ebel, G.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 2017, 8, 15412. [Google Scholar] [CrossRef] [PubMed]
- Cigarroa-Toledo, N.; Blitvich, B.J.; Cetina-Trejo, R.C.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; Torres-Chablé, O.M.; Hamid, M.-N.; Friedberg, I.; González-Martinez, P.; Alonzo-Salomon, G.; et al. Chikungunya virus in febrile humans and Aedes aegypti mosquitoes, Yucatan, Mexico. Emerg. Infect. Dis. 2016, 22, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Kautz, T.F.; Díaz-González, E.E.; Erasmus, J.H.; Malo-García, I.R.; Langsjoen, R.M.; Patterson, E.I.; Auguste, D.I.; Forrester, N.L.; Sanchez-Casas, R.M.; Hernández-Ávila, M.; et al. Chikungunya virus as cause of Febrile Illness outbreak, Chiapas, Mexico, 2014. Emerg Infect Dis. 2015, 21, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Afzal, S.; Yousaf, M.Z.; Shahid, M.; Amin, I.; Idrees, M.; Aftab, A. Paradoxical Role of Dengue Virus Envelope Protein Domain III Antibodies in Dengue Virus Infection. Crit. Rev. Eukaryot. Gene Exp. 2020, 30, 199–206. [Google Scholar] [CrossRef]
- Chong, H.Y.; Leow, C.Y.; Abdul Majeed, A.B.; Leow, C.H. Flavivirus infection-A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019, 274, 197770. [Google Scholar] [CrossRef] [PubMed]
- de Alwis, R.; Smith, S.A.; Olivarez, N.P.; Messer, W.B.; Huynh, J.P.; Wahala, W.M.; White, L.J.; Diamond, M.S.; Baric, R.S.; Crowe, J.E., Jr.; et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA 2012, 109, 7439–7444. [Google Scholar] [CrossRef] [PubMed]
- Tumkosit, U.; Siripanyaphinyo, U.; Takeda, N.; Tsuji, M.; Maeda, Y.; Ruchusatsawat, K.; Shioda, T.; Mizushima, H.; Chetanachan, P.; Wongjaroen, P.; et al. Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. J. Virol. 2020, 94, e00252-20. [Google Scholar] [CrossRef]
- Verma, A.; Nayak, K.; Chandele, A.; Singla, M.; Ratageri, V.H.; Lodha, R.; Kabra, S.K.; Murali-Krishna, K.; Ray, P. Chikungunya-specific IgG and neutralizing antibody responses in natural infection of Chikungunya virus in children from India. Arch. Virol. 2021, 166, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.K.; Srikiatkhachorn, A.; Alera, M.T.; Fernandez, S.; Cummings, D.A.T.; Salje, H. Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic infection and subclinical seroconversion in a Philippine cohort. Int. J. Infect. Dis. 2020, 95, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ochsenbein, A.F.; Fehr, T.; Lutz, C.; Suter, M.; Brombacher, F.; Hengartner, H.; Zinkernagel, R.M. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999, 286, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- New, J.S.; King, R.G.; Kearney, J.F. Glycan Reactive Natural Antibodies and Viral Immunity. Viral Immunol. 2020, 33, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Fischinger, S.; Fallon, J.K.; Michell, A.R.; Broge, T.; Suscovich, T.J.; Streeck, H.; Alter, G. A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activation. J. Immunol. Methods 2019, 473, 112630. [Google Scholar] [CrossRef] [PubMed]
- Lum, F.M.; Teo, T.H.; Lee, W.W.; Kam, Y.W.; Rénia, L.; Ng, L.F. An essential role of antibodies in the control of Chikungunya virus infection. J. Immunol. 2013, 190, 6295–6302. [Google Scholar] [CrossRef] [PubMed]
- Appassakij, H.; Khuntikij, P.; Kemapunmanus, M.; Wutthanarungsan, R.; Silpapojakul, K. Viremic profiles in asymptomatic and symptomatic chikungunya fever: A blood transfusion threat? Transfusion 2013, 53 Pt 2, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
Dengue, n (%) | Chikungunya, n (%) | ||
---|---|---|---|
IgM | 30 (18%) | IgM | 11 (7%) |
IgG | 2 (1%) | ||
IgG | 141 (84%) | IgM | 46 (28%) |
IgG | 9 (5%) |
Dengue, n (%) | Chikungunya, n (%) | ||
---|---|---|---|
IgM | 12 (14%) | IgM | 3 (3%) |
IgG | 0 (0%) | ||
IgG | 76 (86%) | IgM | 23 (26%) |
IgG | 2(2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posadas-Mondragón, A.; Santiago-Cruz, J.A.; Pérez-Juárez, A.; Herrera-González, N.E.; Sosa-Delgado, S.M.; Wong-Arámbula, C.E.; Rodríguez-Maldonado, A.P.; Vázquez-Pichardo, M.; Duran-Ayala, D.; Aguilar-Faisal, J.L. Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses 2024, 16, 1098. https://doi.org/10.3390/v16071098
Posadas-Mondragón A, Santiago-Cruz JA, Pérez-Juárez A, Herrera-González NE, Sosa-Delgado SM, Wong-Arámbula CE, Rodríguez-Maldonado AP, Vázquez-Pichardo M, Duran-Ayala D, Aguilar-Faisal JL. Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses. 2024; 16(7):1098. https://doi.org/10.3390/v16071098
Chicago/Turabian StylePosadas-Mondragón, Araceli, José Angel Santiago-Cruz, Angélica Pérez-Juárez, Norma Estela Herrera-González, Sara M. Sosa-Delgado, Claudia Elena Wong-Arámbula, Abril Paulina Rodríguez-Maldonado, Mauricio Vázquez-Pichardo, Daniel Duran-Ayala, and José Leopoldo Aguilar-Faisal. 2024. "Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses" Viruses 16, no. 7: 1098. https://doi.org/10.3390/v16071098
APA StylePosadas-Mondragón, A., Santiago-Cruz, J. A., Pérez-Juárez, A., Herrera-González, N. E., Sosa-Delgado, S. M., Wong-Arámbula, C. E., Rodríguez-Maldonado, A. P., Vázquez-Pichardo, M., Duran-Ayala, D., & Aguilar-Faisal, J. L. (2024). Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses, 16(7), 1098. https://doi.org/10.3390/v16071098