Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia
Abstract
:1. Introduction
2. The Culex Mosquito Lifecycle and Its Role in Pathogen Transmission
Mosquito | Pathogen(s) They Transmit |
---|---|
Cx. annulirostris | JEV [32], Murray Valley encephalitis virus (MVEV) [33], Ross River virus (RRV) [34], Barmah Forest Virus [35] |
Cx. australicus | MVEV [34], WNV [36] |
Cx. erraticus | EEEV [37], WNV [38] |
Cx. gelidus | RRV, JEV, WNV, MVEV [39] |
Cx. modestus | WNV, Usutu [40] |
Cx. pipiens | WEEV, WNV, JEV [41,42,43], Avian Plasmodium [26] |
Cx. quinquefaciatus | SLEV [44], WNV [45] Avian Plasmodium [46] |
Cx. restuans | WNV [47] |
Cx. tarsalis | WNV [48], Cache valley virus [49], Rift Valley fever virus (RVFV) [50], WEEV, SLEV [51] |
Cx. territans | Batrachochytrium dendrobatidis [52] |
Cx. theileri | Dirofilariasis [53], WNV [54], RVFV [55], Avian plasmodium [56] |
Cx. tritaeniorhynchus | JEV [57], CQV [58], WNV [59] |
3. Molecular and Cellular Interactions between Culex Mosquitoes and Viruses
4. Impact of Climate Change, Habitat Alterations, and Urbanisation on Culex-Transmitted Diseases
5. Current Control Strategies for Culex Mosquitoes
6. Wolbachia-Based Innovative Approach for Culex Mosquito Control
Species | Geographical Location | Wolbachia Status | Reference | |
---|---|---|---|---|
1. | Cx. quinquefasciatus | USA, Cambodia, France, Thailand, Mexico, Republic of Cape Verde, Brazil, Italy, Cuba, Malaysia, Indonesia, Singapore, Argentina, West Indies, French West Indies, Philippines, Turkey, Pakistan, Sri Lanka, India, French Polynesia, Martinique, Taiwan, Russia, Colombia, Iran, South Africa, Benin, Australia, Africa, Madagascar, Mauritius, Comoros, China, Guyana, Venezuela, Costa Rica, Puerto Rico, Haiti | + | [140,141,142,144,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199] |
2. | Cx. molestus | France, Sweden, UK, Australia, Tunisia, Taiwan, Russia, China, Germany, Lebanon, Belgium, Netherlands, Spain | + | [142,144,166,173,183,187,188,190,191,200,201,202] |
3. | Cx. pipiens | Cape Verde, Leuven, Sweden, UK, Tunisia, Iran, UK, China, USA, Turkey, Algeria, Brazil, Morocco, Russia, La Reunion Island, Cyprus, Germany, Italy, Portugal, Canada, Algeria, France, South Africa, Israel, Spain, Greece, Netherlands | + | [88,141,142,143,160,166,177,178,183,187,190,197,200,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225] |
4. | Cx. tigripes | Cape Verde | + | [160] |
5. | Cx. thalassius | Cape Verde | − | [160] |
6. | Cx. gelidus | China, Thailand, India | + | [161,184,185,198,199] |
7 | Cx. gelidus | Sri Lanka | − | [181] |
8 | Cx. tritaeniorhynchus | China, Sri Lanka, Thailand | − | [161,181,198,199] |
9 | Cx. modestus | Belgium | − | [200] |
10 | Cx. torrentium | Belgium, Russia | − | [190,200] |
11 | Cx. conservator | Brazil | − | [164] |
12 | Cx. spp | Thailand, Egypt | + | [226,227] |
13 | Cx. theileri | Iran, Portugal | + | [206,219] |
14 | Cx. theileri | Iran | − | [192] |
15 | Cx. restuans | USA | + | [218] |
16 | Cx. vishnui | Malaysia, Singapore, India, Thailand, China | + | [167,169,184,185,198,228] |
17 | Cx. pseudovishnui | Malaysia, Singapore | + | [167,169] |
18 | Cx. pseudovishnui | India, Thailand | − | [184,185] |
19 | Cx. sinensis | Malaysia | + | [167] |
20 | Cx. sinensis | Thailand | − | [199] |
21 | Cx. triataeniorhynchus | China, Singapore, Thailand | + | [169,198,209] |
22 | Cx. triataeniorhynchus | Madagascar, Taiwan, Thailand, India | − | [184,185,188,229] |
23 | Cx. sitiens | Singapore, Thailand, India | + | [169,184,185,199] |
24 | Cx. stigmatosoma | USA | + | [210] |
25 | Cx. stigmatosoma | USA | − | [203] |
26 | Cx. torrentium | Germany | − | [211] |
27 | Cx. perexigus | Turkey | − | [178] |
28 | Cx. tarsalis | USA, Canada | − | [203,221,230,231] |
29 | Cx. bitaeniorhynchus | Singapore, Madagascar, Thailand, India | − | [169,184,185,199,229] |
30 | Cx. bitaeniorhynchus | Thailand | − | [198] |
31 | Cx. brevipalpis | Singapore | − | [169] |
32 | Cx. brevipalpis | Thailand | + | [185,199] |
33 | Cx. nigropunctatus | Singapore, Thailand | − | [169,185,199] |
34 | Cx. antennatus | Madagascar | + | [229] |
35 | Cx. decens | Madagascar | + | [229] |
36 | Cx. duttoni | Madagascar | + | [229] |
37 | Cx. giganteus | Madagascar | − | [229] |
38 | Cx. poicilipes | Madagascar | − | [229] |
39 | Cx. annulirostris | Sri Lanka | − | [181] |
40 | Cx. mimulus | Sri Lanka, Thailand | − | [181,185,199] |
41 | Cx. murrelli | Taiwan | + | [188] |
42 | Cx. mimeticus | Thailand | − | [185,199] |
43 | Cx. mimeticus | Singapore | + | [188] |
44 | Cx. whitmorei | Thailand | − | [185] |
45 | Cx. whitmorei | Thailand | + | [199] |
46 | Cx. fuscancs | Thailand, Taiwan | − | [185,188,199] |
47 | Cx. pallidothorax | Thailand | − | [185] |
48 | Cx. pallidothorax | Taiwan, Thailand | + | [185,199] |
49 | Cx. fuscocephole | Thailand, China | + | [185,198,199] |
50 | Cx. eomimulus | Taiwan | + | [188] |
51 | Cx biocortus | Taiwan | + | [188] |
52 | Cx. halifaxia | Taiwan | − | [188] |
53 | Cx. okinawae | Taiwan | − | [188] |
54 | Cx. foliatus | Taiwan | − | [188] |
55 | Cx. erythrothorax | USA | − | [214] |
56 | Cx. pallens | Japan, China | + | [190,232,233] |
57 | Cx. nigripalpus | USA | + | [233] |
58 | Cx. salinarius | Canada | + | [221] |
7. Opportunities and Strategies for Culex Population Suppression Using Wolbachia
8. Wolbachia-Derived CI Gene Editing for Population Control of Culex Mosquitoes
9. Replacement of Wild Culex Population with Wolbachia-Infected Mosquitoes to Block Pathogen Transmission
10. Modification of Wolbachia to Drive Desirable Novel Traits for Control of Culex-Borne Diseases
11. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to Zoonotic Spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Chala, B.; Hamde, F. Emerging and Re-Emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master Manipulators of Invertebrate Biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Zug, R.; Hammerstein, P. Bad Guys Turned Nice? A Critical Assessment of Wolbachia Mutualisms in Arthropod Hosts. Biol. Rev. 2015, 90, 89–111. [Google Scholar] [CrossRef] [PubMed]
- Mains, J.W.; Brelsfoard, C.L.; Rose, R.I.; Dobson, S.L. Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes. Sci. Rep. 2016, 6, srep33846. [Google Scholar] [CrossRef] [PubMed]
- Mains, J.W.; Kelly, P.H.; Dobson, K.L.; Petrie, W.D.; Dobson, S.L. Localized Control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via Inundative Releases of Wolbachia-Infected Male Mosquitoes. J. Med. Entomol. 2019, 56, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.D.A.; Sylvestre, G.; Aguiar, R.; da Costa, G.B.; Martins, A.J.; Lima, J.B.P.; Petersen, M.T.; Lourenço-de-Oliveira, R.; Shadbolt, M.F.; Rašić, G.; et al. Matching the Genetics of Released and Local Aedes aegypti Populations Is Critical to Assure Wolbachia Invasion. PLoS Negl. Trop. Dis. 2019, 13, e0007023. [Google Scholar] [CrossRef] [PubMed]
- Caputo, B.; Moretti, R.; Manica, M.; Serini, P.; Lampazzi, E.; Bonanni, M.; Fabbri, G.; Pichler, V.; della Torre, A.; Calvitti, M. A Bacterium against the Tiger: Preliminary Evidence of Fertility Reduction after Release of Aedes Albopictus Males with Manipulated Wolbachia Infection in an Italian Urban Area. Pest. Manag. Sci. 2020, 76, 1324–1332. [Google Scholar] [CrossRef]
- Ryan, P.A.; Turley, A.P.; Wilson, G.; Hurst, T.P.; Retzki, K.; Brown-Kenyon, J.; Hodgson, L.; Kenny, N.; Cook, H.; Montgomery, B.L.; et al. Establishment of WMel Wolbachia in Aedes aegypti Mosquitoes and Reduction of Local Dengue Transmission in Cairns and Surrounding Locations in Northern Queensland, Australia. Gates Open Res. 2020, 3, 1547. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Le Nguyen, H.; Nguyen, T.Y.; Vu, S.N.; Tran, N.D.; Le, T.N.; Vien, Q.M.; Bui, T.C.; Le, H.T.; Kutcher, S.; et al. Field Evaluation of the Establishment Potential of Wmelpop Wolbachia in Australia and Vietnam for Dengue Control. Parasites Vectors 2015, 8, 563. [Google Scholar] [CrossRef]
- Tantowijoyo, W.; Andari, B.; Arguni, E.; Budiwati, N.; Nurhayati, I.; Fitriana, I.; Ernesia, I.; Daniwijaya, E.W.; Supriyati, E.; Yusdiana, D.H.; et al. Stable Establishment of WMel Wolbachia in Aedes aegypti Populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 2020, 14, e0008157. [Google Scholar] [CrossRef] [PubMed]
- Ching, N.L. The Project Wolbachia—Singapore Consortium Wolbachia-Mediated Sterility Suppresses Aedes aegypti Populations in the Urban Tropics. medRxiv 2021. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and Sterile Insect Techniques Combined Eliminate Mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Ahmad, N.W.; Keong, W.M.; Ling, C.Y.; Ahmad, N.A.; Golding, N.; Tierney, N.; Jelip, J.; Putit, P.W.; Mokhtar, N.; et al. Introduction of Aedes aegypti Mosquitoes Carrying WAlbB Wolbachia Sharply Decreases Dengue Incidence in Disease Hotspots. iScience 2024, 27, 108942. [Google Scholar] [CrossRef] [PubMed]
- Anders, K.L.; Indriani, C.; Tantowijoyo, W.; Rancès, E.; Andari, B.; Prabowo, E.; Yusdi, D.; Ansari, M.R.; Wardana, D.S.; Supriyati, E.; et al. Reduced Dengue Incidence Following Deployments of Wolbachia-Infected Aedes aegypti in Yogyakarta, Indonesia: A Quasi-Experimental Trial Using Controlled Interrupted Time Series Analysis. Gates Open Res. 2020, 4, 50. [Google Scholar] [CrossRef]
- Brugman, V.A.; Hernández-Triana, L.M.; Medlock, J.M.; Fooks, A.R.; Carpenter, S.; Johnson, N. The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. Int. J. Environ. Res. Public Health 2018, 15, 389. [Google Scholar] [CrossRef] [PubMed]
- Manimegalai, K.; Manimegalai, K.; Sukanya, S. Biology of the Filarial Vector, Culex quinquefasciatus (Diptera:Culicidae). Int. J. Curr. Microbiol. App. Sci. 2014, 3, 718–724. [Google Scholar]
- Moser, S.K.; Barnard, M.; Frantz, R.M.; Spencer, J.A.; Rodarte, K.A.; Crooker, I.K.; Bartlow, A.W.; Romero-Severson, E.; Manore, C.A. Scoping Review of Culex Mosquito Life History Trait Heterogeneity in Response to Temperature. Parasites Vectors 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Beament, J.; Corbet, S.A. Surface Properties of Culex pipiens Pipiens Eggs and the Behaviour of the Female during Egg-raft Assembly. Physiol. Entomol. 1981, 6, 135–148. [Google Scholar] [CrossRef]
- Cardo, M.V.; Carbajo, A.E.; Mozzoni, C.; Kliger, M.; Vezzani, D. Blood Feeding Patterns of the Culex pipiens Complex in Equestrian Land Uses and Their Implications for Arboviral Encephalitis Risk in Temperate Argentina. Zoonoses Public Health 2023, 70, 256–268. [Google Scholar] [CrossRef]
- Faizah, A.N.; Kobayashi, D.; Matsumura, R.; Watanabe, M.; Higa, Y.; Sawabe, K.; Isawa, H. Blood Meal Source Identification and RNA Virome Determination in Japanese Encephalitis Virus Vectors Collected in Ishikawa Prefecture, Japan, Show Distinct Avian/Mammalian Host Preference. J. Med. Entomol. 2023, 60, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Hamer, G.L.; Kitron, U.D.; Goldberg, T.L.; Brawn, J.D.; Loss, S.R.; Ruiz, M.O.; Hayes, D.B.; Walker, E.D. Host Selection by Culex pipiens Mosquitoes and West. Nile Virus Amplification. Am. J. Trop. Med. Hyg. 2009, 80, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Lura, T.; Cummings, R.; Velten, R.; De Collibus, K.; Morgan, T.; Nguyen, K.; Gerry, A. Host (Avian) Biting Preference of Southern California Culex Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.R.; Kokkinn, M.J.; Smith, B.P. Intraspecific Variation in Odor-Mediated Host Preference of the Mosquito Culex annulirostris. J. Chem. Ecol. 2002, 29. [Google Scholar]
- Burkett-Cadena, N.D.; Graham, S.P.; Hassan, H.K.; Guyer, C.; Eubanks, M.D.; Katholi, C.R.; Unnasch, T.R. Blood Feeding Patterns of Potential. Arbovirus Vectors of the Genus Culex Targeting Ectothermic Hosts. Am. J. Trop. Med. Hyg. 2008, 79, 809. [Google Scholar] [CrossRef] [PubMed]
- Martínez-De La Puente, J.; Ferraguti, M.; Ruiz, S.; Roiz, D.; Soriguer, R.C.; Figuerola, J. Culex pipiens Forms and Urbanization: Effects on Blood Feeding Sources and Transmission of Avian Plasmodium. Malar. J. 2016, 15, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Molaei, G.; Andreadis, T.G.; Armstrong, P.M.; Anderson, J.F.; Vossbrinck, C.R. Host Feeding Patterns of Culex Mosquitoes and West Nile Virus Transmission, Northeastern United States. Emerg. Infect. Dis. 2006, 12, 468–474. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Basu, P.; Sajal Bhattacharya, C. The Southern House Mosquito, Culex quinquefasciatus: Profile of a Smart Vector. J. Entomol. Zool. Stud. 2016, 4, 73–81. [Google Scholar]
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Marm Kilpatrick, A. “Bird Biting” Mosquitoes and Human Disease: A Review of the Role of Culex pipiens Complex Mosquitoes in Epidemiology. Infect. Genet. Evol. 2011, 11, 1577–1585. [Google Scholar] [CrossRef]
- Gil, P.; Exbrayat, A.; Loire, E.; Rakotoarivony, I.; Charriat, F.; Morel, C.; Baldet, T.; Boisseau, M.; Marie, A.; Frances, B.; et al. Spatial Scale Influences the Distribution of Viral Diversity in the Eukaryotic Virome of the Mosquito Culex pipiens. Virus Evol. 2023, 9, vead054. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sarkar, B.; Bag, S.; Biswal, D.; Mandal, A.; Bandyopadhyay, R.; Sarkar (Paria), D.; Chatterjee, A.; Saha, N.C. Mitigating the Public Health Issues Caused by the Filarial Vector, Culex quinquefasciatus (Diptera: Culicidae) through Phytocontrol and Larval Source Marker Management. Appl. Biochem. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Kay, B.H.; Edman, J.D.; Fanning, I.D.; Mottram, P. Larval Diet and the Vector Competence of Culex Annulirostris (Diptera: Culicidae) for Murray Valley Encephalitis Virus. J. Med. Entomol. 1989, 26, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Marshall, I.D.; Woodroofe, G.M.; Hirsch, S. Viruses Recovered from Mosquitoes and Wildlife Serum Collected in the Murray Valley of South-Eastern Australia, February 1974, during an Epidemic of Encephalitis. Aust. J. Exp. Biol. Med. Sci. 1982, 60, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.M.; Kay, B.H. Vector Competence of Aedes aegypti, Culex sitiens, Culex annulirostris, and Culex quinquefasciatus (Diptera: Culicidae) for Barmah Forest Virus. J. Med. Entomol. 2000, 37, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.; Ritchie, S.; Van den Hurk, A. The Role of Australian Mosquito Species in the Transmission of Endemic and Exotic West Nile Virus Strains. Int. J. Environ. Res. Public Health 2013, 10, 3735–3752. [Google Scholar] [CrossRef] [PubMed]
- Bingham, A.M.; Burkett-Cadena, N.D.; Hassan, H.K.; Unnasch, T.R. Vector Competence and Capacity of Culex erraticus (Diptera: Culicidae) for Eastern Equine Encephalitis Virus in the Southeastern United States. J. Med. Entomol. 2015, 53, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Cupp, E.W.; Hassan, H.K.; Yue, X.; Oldland, W.K.; Lilley, B.M.; Unnasch, T.R. West Nile Virus Infection in Mosquitoes in the Mid-South USA, 2002–2005. J. Med. Entomol. 2007, 44, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.H.; Hall-Mendelin, S.; Whelan, P.I.; Frances, S.P.; Jansen, C.C.; Mackenzie, D.O.; Northill, J.A.; Van Den Hurk, A.F. Vector Competence of Australian Culex gelidus Theobald (Diptera: Culicidae) for Endemic and Exotic Arboviruses. Aust. J. Entomol. 2009, 48, 234–240. [Google Scholar] [CrossRef]
- Soto, A.; Delang, L. Culex Modestus: The Overlooked Mosquito Vector. Parasites Vectors 2023, 16, 373. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Li, C.; Zhang, Y.; Xin, D.; Zhao, T. Dissemination of Western Equine Encephalomyelitis Virus in the Potential Vector, Culex pipiens Pallens. J. Vector Ecol. 2010, 35, 313–317. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Meola, M.A.; Moudy, R.M.; Kramer, L.D. Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes. PLoS Pathog. 2008, 4, e1000092. [Google Scholar] [CrossRef]
- De Wispelaere, M.; Desprès, P.; Rie Choumet, V. European Aedes Albopictus and Culex pipiens Are Competent Vectors for Japanese Encephalitis Virus. PLOS Neglected Trop. Dis. 2017, 11, e0005294. [Google Scholar] [CrossRef]
- Adriá, N.; Diaz, L.; Sebastiá, N.; Flores, F.; Beranek, M.; Rivarola, M.E.; Almiró, W.R.; Contigiani, M.S. Transmission of Endemic St Louis Encephalitis Virus Strains by Local Culex quinquefasciatus Populations in Có Rdoba, Argentina. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 332–334. [Google Scholar] [CrossRef]
- Richards, S.L.; Anderson, S.L.; Lord, C.C.; Smartt, C.T.; Tabachnick, W.J. Relationships Between Infection, Dissemination, and Transmission of West Nile Virus RNA in Culex pipiens Quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 132–142. [Google Scholar] [CrossRef]
- LaPointe, D.A.; Atkinson, C.T.; Samuel, M.D. Ecology and Conservation Biology of Avian Malaria. Ann. N. Y. Acad. Sci. 2012, 1249, 211–226. [Google Scholar] [CrossRef]
- Ebel, G.D.; Rochlin, I.; Longacker, J.; Kramer, L.D. Culex restuans (Diptera: Culicidae) Relative Abundance and Vector Competence for West Nile Virus. J. Med. Entomol. 2005, 42, 838–843. [Google Scholar] [CrossRef]
- Dunphy, B.M.; Kovach, K.B.; Gehrke, E.J.; Field, E.N.; Rowley, W.A.; Bartholomay, L.C.; Smith, R.C. Long-Term Surveillance Defines Spatial and Temporal Patterns Implicating Culex Tarsalis as the Primary Vector of West Nile Virus. Sci. Rep. 2019, 9, 6637. [Google Scholar] [CrossRef]
- Ayers, V.B.; Huang, Y.-J.S.; Lyons, A.C.; Park, S.L.; Higgs, S.; Dunlop, J.I.; Kohl, A.; Alto, B.W.; Unlu, I.; Blitvich, B.J.; et al. Culex Tarsalis Is a Competent Vector Species for Cache Valley Virus. Parasites Vectors 2018, 11, 519. [Google Scholar] [CrossRef]
- Bergren, N.A.; Borland, E.M.; Hartman, D.A.; Kading, R.C. Laboratory Demonstration of the Vertical Transmission of Rift Valley Fever Virus by Culex Tarsalis Mosquitoes. PLoS Negl. Trop. Dis. 2021, 15, e0009273. [Google Scholar] [CrossRef] [PubMed]
- Reisen, W.K.; Meyer, R.P.; Presser, S.B.; Hardy, J.L. Effect of Temperature on the Transmission of Western Equine Encephalomyelitis and St. Louis Encephalitis Viruses by Culex Tarsalis (Diptera: Culicidae). J. Med. Entomol. 1993, 30, 151–160. [Google Scholar] [CrossRef]
- Reinhold, J.M.; Halbert, E.; Roark, M.; Smith, S.N.; Stroh, K.M.; Siler, C.D.; McLeod, D.S.; Lahondère, C. The Role of Culex Territans Mosquitoes in the Transmission of Batrachochytrium Dendrobatidis to Amphibian Hosts. Parasites Vectors 2023, 16, 424. [Google Scholar] [CrossRef]
- Santa-Ana, M.; Khadem, M.; Capela, R. Natural Infection of Culex Theileri (Diptera: Culicidae) with Dirofilaria Immitis (Nematoda: Filarioidea) on Madeira Island, Portugal. J. Med. Entomol. 2006, 43, 104–106. [Google Scholar] [CrossRef]
- Shahhosseini, N.; Moosa-Kazemi, S.H.; Sedaghat, M.M.; Wong, G.; Chinikar, S.; Hajivand, Z.; Mokhayeri, H.; Nowotny, N.; Kayedi, M.H. Autochthonous Transmission of West Nile Virus by a New Vector in Iran, Vector-Host Interaction Modeling and Virulence Gene Determinants. Viruses 2020, 12, 1449. [Google Scholar] [CrossRef]
- Tantely, L.M.; Boyer, S.; Fontenille, D. A Review of Mosquitoes Associated with Rift Valley Fever Virus in Madagascar. Am. J. Trop. Med. Hyg. 2015, 92, 722–729. [Google Scholar] [CrossRef]
- Ventim, R.; Ramos, J.A.; Osório, H.; Lopes, R.J.; Pérez-Tris, J.; Mendes, L. Avian Malaria Infections in Western European Mosquitoes. Parasitol. Res. 2012, 111, 637–645. [Google Scholar] [CrossRef]
- Chu, H.; Wu, Z.; Chen, H.; Li, C.; Guo, X.; Liu, R.; Wang, G.; Zhou, M.; Zhao, T. Japanese Encephalitis Virus Infection Rate and Detection of Genotype I From Culex Tritaeniorhynchus Collected From Jiangsu, China. Vector-Borne Zoonot. Dis. 2017, 17, 503–509. [Google Scholar] [CrossRef]
- Shete, A.; Yadav, P.D.; Gokhale, M.; Jain, R.; Pardeshi, P.; Majumdar, T.; Mourya, D.T. Proactive Preparedness for Cat Que Virus: An Orthobunyavirus Existing in India. Indian. J. Med. Res. 2020, 151, 571–577. [Google Scholar] [CrossRef]
- Hayes, C.G.; Basit, A.; Bagar, S.; Akhter, R. Vector Competence of Culex Tritaeniorhynchus (Diptera: Culicidae) for West Nile Virus1. J. Med. Entomol. 1980, 17, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, M.; Heesterbeek, H.; Martínez-de la Puente, J.; Jiménez-Clavero, M.Á.; Vázquez, A.; Ruiz, S.; Llorente, F.; Roiz, D.; Vernooij, H.; Soriguer, R.; et al. The Role of Different Culex Mosquito Species in the Transmission of West Nile Virus and Avian Malaria Parasites in Mediterranean Areas. Transbound. Emerg. Dis. 2021, 68, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Nchoutpouen, E.; Talipouo, A.; Djiappi-Tchamen, B.; Djamouko-Djonkam, L.; Kopya, E.; Ngadjeu, C.S.; Doumbe-Belisse, P.; Awono-Ambene, P.; Kekeunou, S.; Wondji, C.S.; et al. Culex Species Diversity, Susceptibility to Insecticides and Role as Potential Vector of Lymphatic Filariasis in the City of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 2019, 13, e0007229. [Google Scholar] [CrossRef] [PubMed]
- Samy, A.M.; Elaagip, A.H.; Kenawy, M.A.; Ayres, C.F.J.; Peterson, A.T.; Soliman, D.E. Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis. PLoS ONE 2016, 11, e0163863. [Google Scholar] [CrossRef] [PubMed]
- Tolsá-García, M.J.; Wehmeyer, M.L.; Lühken, R.; Roiz, D. Worldwide Transmission and Infection Risk of Mosquito Vectors of West Nile, St. Louis Encephalitis, Usutu and Japanese Encephalitis Viruses: A Systematic Review. Sci. Rep. 2023, 13, 1–13. [Google Scholar] [CrossRef]
- Paslaru, A.I.; Maurer, L.M.; Vögtlin, A.; Hoffmann, B.; Torgerson, P.R.; Mathis, A.; Veronesi, E. Putative Roles of Mosquitoes (Culicidae) and Biting Midges (Culicoides Spp.) as Mechanical or Biological Vectors of Lumpy Skin Disease Virus. Med. Vet. Entomol. 2022, 36, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, T.; Dong, Y.; Lu, B. Different Binding Characteristics of Dengue-2 Virus to Midgut of Aedes Albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae). Appl. Entomol. Zool. 2008, 43, 49–55. [Google Scholar] [CrossRef]
- Neelakanta, G.; Sultana, H. Viral Receptors of the Gut: Vector-Borne Viruses of Medical Importance. Curr. Opin. Insect Sci. 2016, 16, 44–50. [Google Scholar] [CrossRef]
- Smartt, C.T.; Richards, S.L.; Anderson, S.L.; Erickson, J.S. West Nile Virus Infection Alters Midgut Gene Expression in Culex pipiens Quinquefasciatus Say (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 2009, 81, 258–263. [Google Scholar] [CrossRef]
- Yun, S.I.; Lee, Y.M. Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018, 7, 68. [Google Scholar] [CrossRef]
- Lee, W.S.; Webster, J.A.; Madzokere, E.T.; Stephenson, E.B.; Herrero, L.J. Mosquito Antiviral Defense Mechanisms: A Delicate Balance between Innate Immunity and Persistent Viral Infection. Parasites Vectors 2019, 12, 165. [Google Scholar] [CrossRef]
- Medigeshi, G.R. Mosquito-Borne Flaviviruses: Overview of Viral Life-Cycle and Host–Virus Interactions. Future Virol. 2011, 6, 1075–1089. [Google Scholar] [CrossRef]
- Franz, A.W.E.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef] [PubMed]
- Eleftherianos, I.; Heryanto, C.; Bassal, T.; Zhang, W.; Tettamanti, G.; Mohamed, A. Haemocyte-Mediated Immunity in Insects: Cells, Processes and Associated Components in the Fight against Pathogens and Parasites. Immunology 2021, 164, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Chun, J.; Schwartz, A.; Nelson, S.; Paskewitz, S.M. Induction of Mosquito Hemolymph Proteins in Response to Immune Challenge and Wounding. Dev. Comp. Immunol. 1999, 23, 553–562. [Google Scholar] [CrossRef] [PubMed]
- García-Longoria, L.; Ahrén, D.; Berthomieu, A.; Kalbskopf, V.; Rivero, A.; Hellgren, O. Immune Gene Expression in the Mosquito Vector Culex quinquefasciatus during an Avian Malaria Infection. Mol. Ecol. 2023, 32, 904–919. [Google Scholar] [CrossRef] [PubMed]
- Núñez, A.I.; Esteve-Codina, A.; Gómez-Garrido, J.; Brustolin, M.; Talavera, S.; Berdugo, M.; Dabad, M.; Alioto, T.; Bensaid, A.; Busquets, N. Alteration in the Culex pipiens Transcriptome Reveals Diverse Mechanisms of the Mosquito Immune System Implicated upon Rift Valley Fever Phlebovirus Exposure. PLoS Negl. Trop. Dis. 2020, 14, e0008870. [Google Scholar] [CrossRef] [PubMed]
- Paradkar, P.N.; Trinidad, L.; Voysey, R.; Duchemin, J.-B.; Walker, P.J. Secreted Vago Restricts West Nile Virus Infection in Culex Mosquito Cells by Activating the Jak-STAT Pathway. Proc. Natl. Acad. Sci. USA 2012, 109, 18915–18920. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.D. Mosquito RNAi Is the Major Innate Immune Pathway Controlling Arbovirus Infection and Transmission. Future Microbiol. 2011, 6, 265–277. [Google Scholar] [CrossRef]
- Blair, C.; Olson, K. The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions. Viruses 2015, 7, 820–843. [Google Scholar] [CrossRef]
- Tikhe, C.V.; Dimopoulos, G. Mosquito Antiviral Immune Pathways. Dev. Comp. Immunol. 2021, 116, 103964. [Google Scholar] [CrossRef]
- Cardoso-Jaime, V.; Tikhe, C.V.; Dong, S.; Dimopoulos, G. The Role of Mosquito Hemocytes in Viral Infections. Viruses 2022, 14, 2088. [Google Scholar] [CrossRef]
- Brackney, D.E. Implications of Autophagy on Arbovirus Infection of Mosquitoes. Curr. Opin. Insect Sci. 2017, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brackney, D.E.; Correa, M.A.; Cozens, D.W. The Impact of Autophagy on Arbovirus Infection of Mosquito Cells. PLoS Negl. Trop. Dis. 2020, 14, e0007754. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Nie, K.; Zhu, Y.; Liu, Y.; Wu, P.; Liu, Z.; Du, S.; Fan, H.; Chen, C.-H.; Zhang, R.; et al. A Mosquito Salivary Protein Promotes Flavivirus Transmission by Activation of Autophagy. Nat. Commun. 2020, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.F.; Al Ahmed, A.M.; Abdel-Dayem, M.S.; Abdullah, M.A.R. Ecological Niche Modeling and Land Cover Risk Areas for Rift Valley Fever Vector, Culex Tritaeniorhynchus Giles in Jazan, Saudi Arabia. PLoS ONE 2013, 8, e65786. [Google Scholar] [CrossRef] [PubMed]
- Steiger, D.M.; Johnson, P.; Hilbert, D.W.; Ritchie, S.; Jones, D.; Laurance, S.G.W. Effects of Landscape Disturbance on Mosquito Community Composition in Tropical Australia. J. Vector Ecol. 2012, 37, 69–76. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Vasquez, C.; Carvajal, A.; Moreno, M.; Fuller, D.O.; Cardenas, G.; Petrie, W.D.; Beier, J.C. Urbanization Favors the Proliferation of Aedes aegypti and Culex quinquefasciatus in Urban Areas of Miami-Dade County, Florida. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Samson, D.M.; Archer, R.S.; Alimi, T.O.; Arheart, K.L.; Impoinvil, D.E.; Oscar, R.; Fuller, D.O.; Qualls, W.A. New Baseline Environmental Assessment of Mosquito Ecology in Northern Haiti during Increased Urbanization. J. Vector Ecol. 2015, 40, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Field, E.N.; Tokarz, R.E.; Smith, R.C. Satellite Imaging and Long-Term Mosquito Surveillance Implicate the Influence of Rapid Urbanization on Culex Vector Populations. Insects 2019, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Byrne, K.; Nichols, R.A. Culex pipiens in London Underground Tunnels: Differentiation between Surface and Subterranean Populations. Heredity 1999, 82, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hongoh, V.; Berrang-Ford, L.; Scott, M.E.; Lindsay, L.R. Expanding Geographical Distribution of the Mosquito, Culex pipiens, in Canada under Climate Change. Appl. Geogr. 2012, 33, 53–62. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Zheng, K.; Ma, J.; Jiao, Z.; Xiao, J.; Wang, H. The Potential Distribution and Dynamics of Important Vectors Culex pipiens Pallens and Culex pipiens Quinquefasciatus in China under Climate Change Scenarios: An Ecological Niche Modelling Approach. Pest. Manag. Sci. 2020, 76, 3096–3107. [Google Scholar] [CrossRef]
- Tong, Y.; Jiang, H.; Xu, N.; Wang, Z.; Xiong, Y.; Yin, J.; Huang, J.; Chen, Y.; Jiang, Q.; Zhou, Y. Global Distribution of Culex Tritaeniorhynchus and Impact Factors. Int. J. Environ. Res. Public Health 2023, 20, 701. [Google Scholar] [CrossRef] [PubMed]
- Ruybal, J.E.; Kramer, L.D.; Kilpatrick, A.M. Geographic Variation in the Response of Culex pipiens Life History Traits to Temperature. Parasites Vectors 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Artsob, H.; Gubler, D.J.; Enria, D.A.; Morales, M.A.; Pupo, M.; Bunning, M.L.; Dudley, J.P. West Nile Virus in the New World: Trends in the Spread and Proliferation of West Nile Virus in the Western Hemisphere. Zoonoses Public Health 2009, 56, 357–369. [Google Scholar] [CrossRef]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile Virus in Africa: An Underestimated Threat. PLoS Negl. Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef] [PubMed]
- Kramer, L.D.; Ciota, A.T.; Kilpatrick, A.M. Introduction, Spread, and Establishment of West Nile Virus in the Americas. J. Med. Entomol. 2019, 56, 1448–1455. [Google Scholar] [CrossRef]
- Carnes, A.; Ogneva-Himmelberger, Y. Temporal Variations in the Distribution of West Nile Virus within the United States; 2000–2008. Appl. Spat. Anal. Policy 2012, 5, 211–229. [Google Scholar] [CrossRef]
- Frost, M.J.; Zhang, J.; Edmonds, J.H.; Prow, N.A.; Gu, X.; Davis, R.; Hornitzky, C.; Arzey, K.E.; Finlaison, D.; Hick, P.; et al. Characterization of Virulent West Nile Virus Kunjin Strain, Australia, 2011. Emerg. Infect. Dis. 2012, 18, 792–800. [Google Scholar] [CrossRef]
- Murgue, B.; Murri, S.; Triki, H.; Deubel, V.; Zeller, H.G. West Nile in the Mediterranean Basin: 1950–2000. Ann. N. Y. Acad. Sci. 2001, 951, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Khan, S. Global Emergence of West Nile Virus: Threat & Preparedness in Special Perspective to India. Indian J. Med. Res. 2021, 154, 36. [Google Scholar] [CrossRef]
- Watts, M.J.; Sarto i Monteys, V.; Mortyn, P.G.; Kotsila, P. The Rise of West Nile Virus in Southern and Southeastern Europe: A Spatial–Temporal Analysis Investigating the Combined Effects of Climate, Land Use and Economic Changes. One Health 2021, 13, 100315. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, H.; Li, X.; Fu, S.; Cao, L.; Shao, N.; Zhang, W.; Wang, Q.; Lu, Z.; Lei, W.; et al. Changing Geographic Distribution of Japanese Encephalitis Virus Genotypes, 1935–2017. Vector-Borne Zoonotic Dis. 2019, 19, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ravanini, P.; Huhtamo, E.; Ilaria, V.; Crobu, M.G.; Nicosia, A.M.; Servino, L.; Rivasi, F.; Allegrini, S.; Miglio, U.; Magri, A.; et al. Japanese Encephalitis Virus RNA Detected in Culex pipiens Mosquitoes in Italy. Eurosurveillance 2012, 17, 20221. [Google Scholar] [CrossRef] [PubMed]
- Platonov, A.E.; Rossi, G.; Karan, L.S.; Mironov, K.O.; Busani, L.; Rezza, G. Does the Japanese Encephalitis Virus (JEV) Represent a Threat for Human Health in Europe? Detection of JEV RNA Sequences in Birds Collected in Italy. Eurosurveillance 2012, 17, 20241. [Google Scholar] [CrossRef] [PubMed]
- Simon-Loriere, E.; Faye, O.; Prot, M.; Casademont, I.; Fall, G.; Fernandez-Garcia, M.D.; Diagne, M.M.; Kipela, J.-M.; Fall, I.S.; Holmes, E.C.; et al. Autochthonous Japanese Encephalitis with Yellow Fever Coinfection in Africa. N. Engl. J. Med. 2017, 376, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.N.; Ritchie, S.A.; Phillips, D.A.; Shield, J.; Bailey, M.C.; Mackenzie, J.S.; Poidinger, M.; McCall, B.J.; Mills, P.J. An Outbreak of Japanese Encephalitis in the Torres Strait, Australia, 1995. Med. J. Aust. 1996, 165, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.; Adamu, A.M.; Hoskins, A.; Russell, T.L.; Gummow, B.; Golchin, M.; Hickson, R.I.; Horwood, P.F. Japanese Encephalitis Enzootic and Epidemic Risks across Australia. Viruses 2023, 15, 450. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, S.L.; Muhi, S.; Britton, P.N.; Leder, K. Japanese Encephalitis: Emergence in Australia. Curr. Infect. Dis. Rep. 2023, 25, 111–122. [Google Scholar] [CrossRef]
- Oliver, J.A.; Tan, Y.; Haight, J.D.; Tober, K.J.; Gall, W.K.; Zink, S.D.; Kramer, L.D.; Campbell, S.R.; Howard, J.J.; Das, S.R.; et al. Spatial and Temporal Expansions of Eastern Equine Encephalitis Virus and Phylogenetic Groups Isolated from Mosquitoes and Mammalian Cases in New York State from 2013 to 2019. Emerg. Microbes Infect. 2020, 9, 1638–1650. [Google Scholar] [CrossRef]
- Benzarti, E.; Sarlet, M.; Franssen, M.; Cadar, D.; Schmidt-Chanasit, J.; Rivas, J.F.; Linden, A.; Desmecht, D.; Garigliany, M. Usutu Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events. Vector-Borne Zoonot. Dis. 2020, 20, 43–50. [Google Scholar] [CrossRef]
- Theodosopoulos, A.N.; Grabenstein, K.C.; Bensch, S.; Taylor, S.A. A Highly Invasive Malaria Parasite Has Expanded Its Range to Non-Migratory Birds in North America. Biol. Lett. 2021, 17, 20210271. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, C.; Harrigan, R.J.; Bichet, C.; Julliard, R.; Garnier, S.; Lendvai, Á.Z.; Chastel, O.; Sorci, G. Predictions of Avian Plasmodium Expansion under Climate Change. Sci. Rep. 2013, 3, srep01126. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Farnsworth, M.L.; Burdett, C.L.; Theobald, D.M.; Gray, M.; Miller, R.S. Biotic and Abiotic Factors Predicting the Global Distribution and Population Density of an Invasive Large Mammal. Sci. Rep. 2017, 7, srep44152. [Google Scholar] [CrossRef] [PubMed]
- Hone, J. How Many Feral Pigs in Australia? An Update. Aust. J. Zool. 2020, 67, 215–220. [Google Scholar] [CrossRef]
- Mclean, R.G. West Nile Virus in North American Birds. Ornithol. Monogr. 2006, 60, 44–64. [Google Scholar] [CrossRef]
- Di Giallonardo, F.; Geoghegan, J.L.; Docherty, D.E.; McLean, R.G.; Zody, M.C.; Qu, J.; Yang, X.; Birren, B.W.; Malboeuf, C.M.; Newman, R.M.; et al. Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment. J. Virol. 2016, 90, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Brault, A.C.; Huang, C.Y.H.; Langevin, S.A.; Kinney, R.M.; Bowen, R.A.; Ramey, W.N.; Panella, N.A.; Holmes, E.C.; Powers, A.M.; Miller, B.R. A Single Positively Selected West Nile Viral Mutation Confers Increased Virogenesis in American Crows. Nat. Genet. 2007, 39, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Musto, C.; Tamba, M.; Calzolari, M.; Torri, D.; Marzani, K.; Cerri, J.; Bonilauri, P.; Delogu, M. Usutu Virus in Blackbirds (Turdus Merula) with Clinical Signs, a Case Study from Northern Italy. Eur. J. Wildl. Res. 2022, 68, 1–7. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Outlaw, D.C.; Svensson-Coelho, M.; Medeiros, M.C.I.; Ellis, V.A.; Latta, S. Species Formation by Host Shifting in Avian Malaria Parasites. Proc. Natl. Acad. Sci. USA 2014, 111, 14816–14821. [Google Scholar] [CrossRef]
- Savage, H.M.; Anderson, M.; Gordon, E.; Mcmillen, L.; Colton, L.; Charnetzky, D.; Delorey, M.; Aspen, S.; Burkhalter, K.; Biggerstaff, B.J.; et al. Oviposition Activity Patterns and West Nile Virus Infection Rates for Members of the Culex pipiens Complex at Different Habitat Types within the Hybrid Zone, Shelby County, TN, 2002 (Diptera: Culicidae). J. Med. Entomol. 2006, 43, 1227–1238. [Google Scholar] [CrossRef]
- Elnaiem, D.-E.A.; Kelley, K.; Wright, S.; Laffey, R.; Yoshimura, G.; Reed, M.; Goodman, G.; Thiemann, T.; Reimer, L.; Reisen, W.K.; et al. Impact of Aerial Spraying of Pyrethrin Insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) Abundance and West Nile Virus Infection Rates in an Urban/Suburban Area of Sacramento County, California. J. Med. Entomol. 2008, 45, 751–757. [Google Scholar] [CrossRef]
- MacEdo, P.A.; Schleier, J.J.; Reed, M.; Kelley, K.; Goodman, G.W.; Brown, D.A.; Peterson, R.K.D. Evaluation of Efficacy and Human Health Risk of Aerial Ultra-Low Volume Applications of Pyrethrins and Piperonyl Butoxide for Adult Mosquito Management in Response to West Nile Virus Activity in Sacramento County, California. J. Am. Mosq. Control Assoc. 2010, 26, 57–66. [Google Scholar] [CrossRef]
- Trout, R.T.; Brown, G.C.; Potter, M.F.; Hubbard, J.L. Efficacy of Two Pyrethroid Insecticides Applied as Barrier Treatments for Managing Mosquito (Diptera: Culicidae) Populations in Suburban Residential Properties. J. Med. Entomol. 2007, 44, 470–477. [Google Scholar] [CrossRef]
- Chaskopoulou, A.; Latham, M.D.; Pereira, R.M.; Connelly, R.; Bonds, J.A.S.; Koehler, P.G. Efficacy of Aerial Ultra-Low Volume Applications of Two Novel Water-Based Formulations of Unsynergized Pyrethroids against Riceland Mosquitoes in Greece. J. Am. Mosq. Control Assoc. 2011, 27, 414–422. [Google Scholar] [CrossRef]
- Bellini, R.; Zeller, H.; Van Bortel, W. A Review of the Vector Management Methods to Prevent and Control Outbreaks of West Nile Virus Infection and the Challenge for Europe. Parasites Vectors 2014, 7, 323. [Google Scholar] [CrossRef]
- Su, T.; Yu, J.; Zhang, Y.; Qian, X.; Su, H. Comparative Bioactivity of S-Methoprene and Novel S-Methobutene against Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2023, 60, 1357–1363. [Google Scholar] [CrossRef]
- Seccacini, E.; Lucia, A.; Harburguer, L.; Zerba, E.; Licastro, S.; Masuh, H. Effectiveness of Pyriproxyfen and Diflubenzuron Formulations as Larvicides against Aedes aegypti. J. Am. Mosq. Control Assoc. 2008, 24, 398–403. [Google Scholar] [CrossRef]
- Belinato, T.A.; Martins, A.J.; Lima, J.B.P.; Valle, D. Effect of Triflumuron, a Chitin Synthesis Inhibitor, on Aedes aegypti, Aedes Albopictus and Culex quinquefasciatus under Laboratory Conditions. Parasites Vectors 2013, 6, 83. [Google Scholar] [CrossRef]
- Rubio, A.; Cardo, M.V.; Junges, M.T.; Carbajo, A.E.; Vezzani, D. Field Efficacy of Triflumuron against Aedes and Culex Mosquitoes in Temperate Argentina. J. Asia Pac. Entomol. 2018, 21, 150–155. [Google Scholar] [CrossRef]
- Mwangangi, J.M.; Kahindi, S.C.; Kibe, L.W.; Nzovu, J.G.; Luethy, P.; Githure, J.I.; Mbogo, C.M. Wide-Scale Application of Bti/Bs Biolarvicide in Different Aquatic Habitat Types in Urban and Peri-Urban Malindi, Kenya. Parasitol. Res. 2011, 108, 1355–1363. [Google Scholar] [CrossRef]
- Arich, S.; Assaid, N.; Weill, M.; Tmimi, F.-Z.; Taki, H.; Sarih, M.; Labbé, P. Human Activities and Densities Shape Insecticide Resistance Distribution and Dynamics in the Virus-Vector Culex pipiens Mosquitoes from Morocco. Parasites Vectors 2024, 17, 72. [Google Scholar] [CrossRef]
- Lopes, R.P.; Lima, J.B.P.; Martins, A.J. Insecticide Resistance in Culex quinquefasciatus Say, 1823 in Brazil: A Review. Parasit Vectors 2019, 12, 591. [Google Scholar] [CrossRef]
- Scott, J.G.; Yoshimizu, M.H.; Kasai, S. Pyrethroid Resistance in Culex pipiens Mosquitoes. Pestic. Biochem. Physiol. 2015, 120, 68–76. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, H.; Zhang, L.; Liu, N. Resistance in the Mosquito, Culex quinquefasciatus, and Possible Mechanisms for Resistance. Pest. Manag. Sci. 2005, 61, 1096–1102. [Google Scholar] [CrossRef]
- Tabbabi, A.; Laamari, A.; Ben Cheikh, R.; Jha, I.B.; Daaboub, J.; Cheikh, H.B. Resistance Development and Insecticide Susceptibility in Culex pipiens Pipiens, an Important Vector of Human Diseases, against Selection Pressure of Temephos and Its Relationship to Cross-Resistance towards Organophosphates and Pyrethroids Insecticides. Afr. Health Sci. 2018, 18, 1175. [Google Scholar] [CrossRef]
- Hafez, A.M.; Abbas, N. Insecticide Resistance to Insect Growth Regulators, Avermectins, Spinosyns and Diamides in Culex quinquefasciatus in Saudi Arabia. Parasites Vectors 2021, 14, 558. [Google Scholar] [CrossRef]
- Hertig, M.; Wolbach, S.B. Studies on Rickettsia-Like Micro-Organisms in Insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar]
- Baldo, L.; Hotopp, J.C.D.; Jolley, K.A.; Bordenstein, S.R.; Biber, S.A.; Choudhury, R.R.; Hayashi, C.; Maiden, M.C.J.; Tettelin, H.; Werren, J.H. Multilocus Sequence Typing System for the Endosymbiont Wolbachia Pipientis. Appl. Environ. Microbiol. 2006, 72, 7098–7110. [Google Scholar] [CrossRef]
- Gerth, M. Classification of Wolbachia (Alphaproteobacteria, Rickettsiales): No Evidence for a Distinct Supergroup in Cave Spiders. Infect. Genet. Evol. 2016, 43, 378–380. [Google Scholar] [CrossRef]
- Guillemaud, T.; Pasteur, N.; Rousset, F. Contrasting Levels of Variability between Cytoplasmic Genomes and Incompatibility Types in the Mosquito Culex pipiens. Proc. R. Soc. Lond. B Biol. Sci. 1997, 264, 245–251. [Google Scholar] [CrossRef]
- Atyame, C.M.; Delsuc, F.; Pasteur, N.; Weill, M.; Duron, O. Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito. Mol. Biol. Evol. 2011, 28, 2761–2772. [Google Scholar] [CrossRef]
- Dumas, E.; Atyame, C.M.; Milesi, P.; Fonseca, D.M.; Shaikevich, E.V.; Unal, S.; Makoundou, P.; Weill, M.; Duron, O. Population Structure of Wolbachia and Cytoplasmic Introgression in a Complex of Mosquito Species. BMC Evol. Biol. 2013, 13, 181. [Google Scholar] [CrossRef]
- Altinli, M.; Gunay, F.; Alten, B.; Weill, M.; Sicard, M. Wolbachia Diversity and Cytoplasmic Incompatibility Patterns in Culex pipiens Populations in Turkey. Parasites Vectors 2018, 11, 198. [Google Scholar] [CrossRef]
- Duron, O.; Lagnel, J.; Raymond, M.; Bourtzis, K.; Fort, P.; Weill, M. Transposable Element Polymorphism of Wolbachia in the Mosquito Culex pipiens : Evidence of Genetic Diversity, Superinfection and Recombination. Mol. Ecol. 2005, 14, 1561–1573. [Google Scholar] [CrossRef]
- Zug, R.; Hammerstein, P. Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef]
- Hochstrasser, M. Molecular Biology of Cytoplasmic Incompatibility Caused by Wolbachia Endosymbionts. Annu. Rev. Microbiol. 2023, 77, 299–316. [Google Scholar] [CrossRef]
- Hoffmann, A.A. Partial Cytoplasmic Incompatibility between Two Australian Populations of Drosophila Melanogaster. Entomol. Exp. Appl. 1988, 48, 61–67. [Google Scholar] [CrossRef]
- Walker, T.; Johnson, P.H.; Moreira, L.A.; Iturbe-Ormaetxe, I.; Frentiu, F.D.; McMeniman, C.J.; Leong, Y.S.; Dong, Y.; Axford, J.; Kriesner, P.; et al. The WMel Wolbachia Strain Blocks Dengue and Invades Caged Aedes aegypti Populations. Nature 2011, 476, 450–453. [Google Scholar] [CrossRef]
- Merçot, H.; Charlat, S. Wolbachia Infections in Drosophila Melanogaster and D. Simulans: Polymorphism and Levels of Cytoplasmic Incompatibility. In Drosophila Melanogaster, Drosophila Simulans: So Similar, So Different; Springer: Dordrecht, the Netherlands, 2004; pp. 51–59. [Google Scholar]
- Clark, M.E.; Veneti, Z.; Bourtzis, K.; Karr, T.L. Wolbachia Distribution and Cytoplasmic Incompatibility during Sperm Development: The Cyst as the Basic Cellular Unit of CI Expression. Mech. Dev. 2003, 120, 185–198. [Google Scholar] [CrossRef]
- Cooper, B.S.; Ginsberg, P.S.; Turelli, M.; Matute, D.R. Wolbachia in the Drosophila Yakuba Complex: Pervasive Frequency Variation and Weak Cytoplasmic Incompatibility, but No Apparent Effect on Reproductive Isolation. Genetics 2017, 205, 333–351. [Google Scholar] [CrossRef]
- Reynolds, K.T.; Hoffman, A.A. Male Age, Host Effects and the Weak Expression or Non-Expression of Cytoplasmic Incompatibility in Drosophila Strains Infected by Maternally Transmitted Wolbachia. Genet. Res. 2002, 80, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Trpis, M.; Perrone, J.B.; Reissig, M.; Parker, K.L. Control of Cytoplasmic Incompatibility in the Aedes Scutellaris Complex. J. Hered. 1981, 72, 313–317. [Google Scholar] [CrossRef]
- Ross, P.A.; Axford, J.K.; Yang, Q.; Staunton, K.M.; Ritchie, S.A.; Richardson, K.M.; Hoffmann, A.A. Heatwaves Cause Fluctuations in WMel Wolbachia Densities and Frequencies in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0007958. [Google Scholar] [CrossRef]
- Ant, T.H.; Mancini, M.V.; McNamara, C.J.; Rainey, S.M.; Sinkins, S.P. Wolbachia-Virus Interactions and Arbovirus Control through Population Replacement in Mosquitoes. Pathog. Glob. Health 2023, 117, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Iturbe-Ormaetxe, I.; Callahan, A.G.; Phillips, B.L.; Billington, K.; Axford, J.K.; Montgomery, B.; Turley, A.P.; O’Neill, S.L. Stability of the WMel Wolbachia Infection Following Invasion into Aedes aegypti Populations. PLoS Negl. Trop. Dis. 2014, 8, e3115. [Google Scholar] [CrossRef] [PubMed]
- Beebe, N.W.; Pagendam, D.; Trewin, B.J.; Boomer, A.; Bradford, M.; Ford, A.; Liddington, C.; Bondarenco, A.; De Barro, P.J.; Gilchrist, J.; et al. Releasing Incompatible Males Drives Strong Suppression across Populations of Wild and Wolbachia-Carrying Aedes aegypti in Australia. Proc. Natl. Acad. Sci. 2021, 118, e2106828118. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient Production of Male Wolbachia-Infected Aedes aegypti Mosquitoes Enables Large-Scale Suppression of Wild Populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.A.; O’Neill, S.L. Controlling Vector-Borne Diseases by Releasing Modified Mosquitoes. Nat. Rev. Microbiol. 2018, 16, 508–518. [Google Scholar] [CrossRef] [PubMed]
- da Moura, A.J.F.; Valadas, V.; Da Veiga Leal, S.; Montalvo Sabino, E.; Sousa, C.A.; Pinto, J. Screening of Natural Wolbachia Infection in Mosquitoes (Diptera: Culicidae) from the Cape Verde Islands. Parasites Vectors 2023, 16, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zou, J.; Zhong, D.; Liu, R.; Zhu, C.; Li, W.; Zhou, Y.; Cui, L.; Zhou, G.; et al. Characterizing the Wolbachia Infection in Field-Collected Culicidae Mosquitoes from Hainan Province, China. Parasites Vectors 2023, 16, 1–12. [Google Scholar] [CrossRef]
- Shi, C.; Beller, L.; Wang, L.; Rosas, A.R.; De Coninck, L.; Héry, L.; Mousson, L.; Pagès, N.; Raes, J.; Delang, L.; et al. Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022, 13, e01021–e01022. [Google Scholar] [PubMed]
- Schrieke, H.; Maignien, L.; Constancias, F.; Trigodet, F.; Chakloute, S.; Rakotoarivony, I.; Marie, A.; L’Ambert, G.; Makoundou, P.; Pages, N.; et al. The Mosquito Microbiome Includes Habitat-Specific but Rare Symbionts. Comput. Struct. Biotechnol. J. 2022, 20, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Chaves, E.B.; Nascimento-Pereira, A.C.; Pinto, J.L.M.; Rodrigues, B.L.; De Andrade, M.S.; Rêbelo, J.M.M. Detection of Wolbachia in Mosquitoes (Diptera: Culicidae) in the State of Maranhão, Brazil. J. Med. Entomol. 2022, 59, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Tokash-Peters, A.G.; Jabon, J.D.; Fung, M.E.; Peters, J.A.; Lopez, S.G.; Woodhams, D.C. Trans-Generational Symbiont Transmission Reduced at High Temperatures in a West Nile Virus Vector Mosquito Culex quinquefasciatus. Front. Trop. Dis. 2022, 3, 762132. [Google Scholar] [CrossRef]
- Bertilsson, F.; Lilja, T. Using the Eminent Toolkit of Wolbachia to Study Culex pipiens Populations and Their Relations in Europe; 2022. (Dissertation). Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-475716 (accessed on 10 July 2024).
- Wong, M.L.; Liew, J.W.K.; Wong, W.K.; Pramasivan, S.; Mohamed Hassan, N.; Wan Sulaiman, W.Y.; Jeyaprakasam, N.K.; Leong, C.S.; Low, V.L.; Vythilingam, I. Natural Wolbachia Infection in Field-Collected Anopheles and Other Mosquito Species from Malaysia. Parasites Vectors 2020, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-M.; Ophine, L.; Chao, L.-L. Molecular Detection and Genetic Identification of Wolbachia Endosymbiont in Wild-Caught Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes from Sumatera Utara, Indonesia. Invertebr. Microbiol. 2021, 81, 1064–1074. [Google Scholar] [CrossRef]
- Ding, H.; Yeo, H.; Puniamoorthy, N. Wolbachia Infection in Wild Mosquitoes (Diptera: Culicidae): Implications for Transmission Modes and Host-Endosymbiont Associations in Singapore. Parasites Vectors 2020, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.F.; Fassolari, M.; Battaglia, M.E.; Berón, C.M. Culex quinquefasciatus Larvae Development Arrested When Fed on Neochloris Aquatica. PLoS Negl. Trop. Dis. 2021, 15, e0009988. [Google Scholar] [CrossRef] [PubMed]
- Alomar, A.A.; Pérez-Ramos, D.W.; Kim, D.; Kendziorski, N.L.; Eastmond, B.H.; Alto, B.W.; Caragata, E.P. Native Wolbachia Infection and Larval Competition Stress Shape Fitness and West Nile Virus Infection in Culex quinquefasciatus Mosquitoes. Front. Microbiol. 2023, 14, 1138476. [Google Scholar] [CrossRef]
- Horard, B.; Terretaz, K.; Gosselin-Grenet, A.S.; Sobry, H.; Sicard, M.; Landmann, F.; Loppin, B. Paternal Transmission of the Wolbachia CidB Toxin Underlies Cytoplasmic Incompatibility. Curr. Biol. 2022, 32, 1319–1331. [Google Scholar] [CrossRef]
- Ghousein, A.; Tutagata, J.; Schrieke, H.; Etienne, M.; Chaumeau, V.; Boyer, S.; Pages, N.; Roiz, D.; Eren, A.M.; Cambray, G.; et al. PWCP Is a Widely Distributed and Highly Conserved Wolbachia Plasmid in Culex pipiens and Culex quinquefasciatus Mosquitoes Worldwide. ISME Commun. 2023, 3, 1–15. [Google Scholar] [CrossRef]
- Ramos-Nino, M.E.; Fitzpatrick, D.M.; Eckstrom, K.M.; Tighe, S.; Hattaway, L.M.; Hsueh, A.N.; Stone, D.M.; Dragon, J.A.; Cheetham, S. Metagenomic Analysis of Aedes aegypti and Culex quinquefasciatus Mosquitoes from Grenada, West Indies. PLoS ONE 2020, 15, e231047. [Google Scholar] [CrossRef] [PubMed]
- Goindin, D.; Cannet, A.; Delannay, C.; Ramdini, C.; Gustave, J.; Atyame, C.; Vega-Rúa, A. Screening of Natural Wolbachia Infection in Aedes aegypti, Aedes Taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies). Acta Trop. 2018, 185, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, T.; Capistrano, J.D.; Hashimoto, K.; Go, K.J.; Cruz, M.A.I.; Martinez, M.J.L.; Tiopianco, V.S.; Amalin, D.; Watanabe, K. Detection and Distribution of Wolbachia Endobacteria in Culex quinquefasciatus Populations (Diptera : Culicidae) from Metropolitan Manila, Philippines. J. Vector Borne Dis. 2018, 55, 265. [Google Scholar] [CrossRef] [PubMed]
- Reveillaud, J.; Bordenstein, S.R.; Cruaud, C.; Shaiber, A.; Esen, Ö.C.; Weill, M.; Makoundou, P.; Lolans, K.; Watson, A.R.; Rakotoarivony, I.; et al. The Wolbachia Mobilome in Culex pipiens Includes a Putative Plasmid. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Morçiçek, B.; Taskin, B.G.; Doğaç, E.; Doğaroğlu, T.; Taskin, V. Evidence of Natural Wolbachia Infections and Molecular Identification of Field Populations of Culex pipiens Complex (Diptera: Culicidae) Mosquitoes in Western Turkey. J. Vector Ecol. 2018, 43, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Suesdek, L. Effects of Wolbachia on Ovarian Apoptosis in Culex quinquefasciatus (Say, 1823) during the Previtellogenic and Vitellogenic Periods. Parasit Vectors 2017, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, M.S.; Shahbaz, F.; Jahan, N. Molecular Detection and Characterization of Wolbachia Pipientis from Culex quinquefasciatus Collected from Lahore, Pakistan. Am. J. Trop. Med. Hyg. 2018, 98, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Nugapola, N.W.N.P.; De Silva, W.A.P.P.; Karunaratne, S.H.P.P. Distribution and Phylogeny of Wolbachia Strains in Wild Mosquito Populations in Sri Lanka. Parasites Vectors 2017, 10, 230. [Google Scholar] [CrossRef]
- Hegde, S.; Khanipov, K.; Albayrak, L.; Golovko, G.; Pimenova, M.; Saldaña, M.A.; Rojas, M.M.; Hornett, E.A.; Motl, G.C.; Fredregill, C.L.; et al. Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes Albopictus, and Culex quinquefasciatus Mosquito Vectors. Front. Microbiol. 2018, 9, 2160. [Google Scholar] [CrossRef]
- Shaikevich, E.V.; Vinogradova, E.B.; Bouattour, A.; Gouveia de Almeida, A.P. Genetic Diversity of Culex pipiens Mosquitoes in Distinct Populations from Europe: Contribution of Cx. Quinquefasciatus in Mediterranean Populations. Parasites Vectors 2016, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, H.; Ramachandraswamy, N.; Sampathkumar, S.; Prakash, B.M.; Huchesh, H.C.; Uday, J.; Puttaraju, H.P. A Preliminary Survey for Wolbachia and Bacteriophage WO Infections in Indian Mosquitoes (Diptera: Culicidae). Trop. Biomed. 2010, 27, 384–393. [Google Scholar] [PubMed]
- Kittayapong, P.; Baisley, K.J.; Baimai, V.; O’Neill, S.L. Distribution and Diversity of Wolbachia Infections in Southeast Asian Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2000, 37, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sinkins, S.P.; Walker, T.; Lynd, A.R.; Steven, A.R.; Makepeace, B.L.; Godfray, H.C.J.; Parkhill, J. Wolbachia Variability and Host Effects on Crossing Type in Culex Mosquitoes. Nature 2005, 436, 257–260. [Google Scholar] [CrossRef]
- Duron, O.; Fort, P.; Weill, M. Hypervariable Prophage WO Sequences Describe an Unexpected High Number of Wolbachia Variants in the Mosquito Culex pipiens. Proc. R. Soc. B Biol. Sci. 2006, 273, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.-H.; Lien, J.-C.; Huang, C.-G.; Wu, W.-J.; Chen, W.-J. Molecular (Sub)Grouping of Endosymbiont Wolbachia Infection among Mosquitoes of Taiwan. J. Med. Entomol. 2004, 41, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Rousset, F.; O’Neill, S. Phylogeny and PCR–Based Classification of Wolbachia Strains Using Wsp Gene Sequences. Proc. R. Soc. Lond. B Biol. Sci. 1998, 265, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Shaikevich, E.V.; Zakharov, I.A. Polymorphism of Mitochondrial COI and Nuclear Ribosomal ITS2 in the Culex pipiens Complex and in Culex Torrentium (Diptera: Culicidae). Comp. Cytogenet. 2010, 4, 161–174. [Google Scholar] [CrossRef]
- Walker, T.; Song, S.; Sinkins, S.P. Wolbachia in the Culex pipiens Group Mosquitoes: Introgression and Superinfection. J. Hered. 2009, 100, 192–196. [Google Scholar] [CrossRef]
- Behbahani, A. Wolbachia Infection and Mitochondrial DNA Comparisons among Culex Mosquitoes in South West Iran. Pak. J. Biol. Sci. 2011, 15, 54–57. [Google Scholar] [CrossRef]
- Sunish, I.P.; Rajendran, R.; Paramasivan, R.; Dhananjeyan, K.J.; Tyagi, B.K. Wolbachia Endobacteria in a Natural Population of Culex quinquefasciatus from Filariasis Endemic Villages of South India and Its Phylogenetic Implication. Trop. Biomed. 2011, 28, 569–576. [Google Scholar]
- de Almeida, F.; Moura, A.S.; Cardoso, A.F.; Winter, C.E.; Bijovsky, A.T.; Suesdek, L. Effects of Wolbachia on Fitness of Culex quinquefasciatus (Diptera; Culicidae). Infect. Genet. Evol. 2011, 11, 2138–2143. [Google Scholar] [CrossRef]
- Morais, S.A.; de Almeida, F.; Suesdek, L.; Marrelli, M.T. Low Genetic Diversity in Wolbachia Infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil and Argentina. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 325–329. [Google Scholar] [CrossRef]
- Atyame, C.M.; Cattel, J.; Lebon, C.; Flores, O.; Dehecq, J.-S.; Weill, M.; Gouagna, L.C.; Tortosa, P. Wolbachia-Based Population Control Strategy Targeting Culex quinquefasciatus Mosquitoes Proves Efficient under Semi-Field Conditions. PLoS ONE 2015, 10, e0119288. [Google Scholar] [CrossRef]
- Micieli, M.V.; Glaser, R.L. Somatic Wolbachia(Rickettsiales: Rickettsiaceae) Levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and Resistance to West Nile Virus Infection. J. Med. Entomol. 2014, 51, 189–199. [Google Scholar] [CrossRef]
- Wiwatanaratanabutr, I.; Zhang, C. Wolbachia Infections in Mosquitoes and Their Predators Inhabiting Rice Field Communities in Thailand and China. Acta Trop. 2016, 159, 153–160. [Google Scholar] [CrossRef]
- Wiwatanaratanabutr, I. Geographic Distribution of Wolbachial Infections in Mosquitoes from Thailand. J. Invertebr. Pathol. 2013, 114, 337–340. [Google Scholar] [CrossRef]
- Soto, A.; De Coninck, L.; Devlies, A.-S.; Van De Wiele, C.; Rosales Rosas, A.L.; Wang, L.; Matthijnssens, J.; Delang, L. Belgian Culex pipiens Pipiens Are Competent Vectors for West Nile Virus While Culex Modestus Are Competent Vectors for Usutu Virus. PLoS Negl. Trop. Dis. 2023, 17, e0011649. [Google Scholar] [CrossRef]
- Vinogradova, E.B.; Shaikevich, E.V.; Ivanitsky, A.V. A Study of the Distribution of the Culex pipiens Complex(Insecta: Diptera: Culicidae) Mosquitoes in the European of Russia by Molecular Methods of Identification. Comp. Cytogenet. 2007, 1, 129–138. [Google Scholar]
- Talavera, S.; Birnberg, L.; Nuñez, A.I.; Muñoz-Muñoz, F.; Vázquez, A.; Busquets, N. Culex Flavivirus Infection in a Culex pipiens Mosquito Colony and Its Effects on Vector Competence for Rift Valley Fever Phlebovirus. Parasites Vectors 2018, 11, 310. [Google Scholar] [CrossRef]
- Rasgon, J.L.; Scott, T.W. An Initial Survey for Wolbachia (Rickettsiales: Rickettsiaceae) Infections in Selected California Mosquitoes (Diptera: Culicidae): Table 1. J. Med. Entomol. 2004, 41, 255–257. [Google Scholar] [CrossRef]
- Schrieke, H.; Duron, O.; Trouche, B.; Eren, A.M.; Reveillaud, J. Multiple Wolbachia Subpopulations Co-Occur in Single Culex pipiens Mosquito Organs. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Altinli, M.; Lequime, S.; Atyame, C.; Justy, F.; Weill, M.; Sicard, M. Wolbachia Modulates Prevalence and Viral Load of Culex pipiens Densoviruses in Natural Populations. Mol. Ecol. 2020, 29, 4000–4013. [Google Scholar] [CrossRef]
- Bozorg-Omid, F.; Oshaghi, M.A.; Vahedi, M.; Karimian, F.; Seyyed-Zadeh, S.J.; Chavshin, A.R. Wolbachia Infection in West Nile Virus Vectors of Northwest Iran. Appl. Entomol. Zool. 2020, 55, 105–113. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Schumacher, M.K.; Ower, G.; Palmquist, D.E.; Juliano, S.A. Impacts of Fungal Entomopathogens on Survival and Immune Responses of Aedes Albopictus and Culex pipiens Mosquitoes in the Context of Native Wolbachia Infections. PLoS Negl. Trop. Dis. 2021, 15, e0009984. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Beliavskaia, A.; Hartley, C.S.; Jones, L.; Luu, L.; Haines, L.R.; Hamilton, J.G.C.; Darby, A.C.; Makepeace, B.L. Isolation in Natural Host Cell Lines of Wolbachia Strains Wpip from the Mosquito Culex pipiens and Wpap from the Sand Fly Phlebotomus Papatasi. Insects 2021, 12, 871. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Zhu, G.; Zhang, J.; Gong, Z.; Huang, S.; Lu, G.; Peng, Y.; Meng, Y.; Hao, X.; et al. Prevalence and Molecular Characterization of Wolbachia in Field-Collected Aedes Albopictus, Anopheles Sinensis, Armigeres Subalbatus, Culex pipiens and Cx. Tritaeniorhynchus in China. PLoS Negl. Trop. Dis. 2021, 15, e0009911. [Google Scholar] [CrossRef]
- Torres, R.; Hernandez, E.; Flores, V.; Ramirez, J.L.; Joyce, A.L. Wolbachia in Mosquitoes from the Central Valley of California, USA. Parasites Vectors 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Leggewie, M.; Krumkamp, R.; Badusche, M.; Heitmann, A.; Jansen, S.; Schmidt-Chanasit, J.; Tannich, E.; Becker, S.C. Culex Torrentium Mosquitoes from Germany Are Negative for Wolbachia. Med. Vet. Entomol. 2018, 32, 115–120. [Google Scholar] [CrossRef]
- Bonneau, M.; Atyame, C.; Beji, M.; Justy, F.; Cohen-Gonsaud, M.; Sicard, M.; Weill, M. Culex pipiens Crossing Type Diversity Is Governed by an Amplified and Polymorphic Operon of Wolbachia. Nat. Commun. 2018, 9, 319. [Google Scholar] [CrossRef]
- Tmimi, F.Z.; Bkhache, M.; Mounaji, K.; Failloux, A.B. Sarih First Report of the Endobacteria Wolbachia in Natural Populations of Culex pipiens in Morocco. Source J. Vector Ecol. 2017, 42, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Rasgon, J.L.; Scott, T.W. Wolbachia and Cytoplasmic Incompatibility in the California Culex pipiens Mosquito Species Complex: Parameter Estimates and Infection Dynamics in Natural Populations. Genetics 2003, 165, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Atyame, C.M.; Duron, O.; Tortosa, P.; Pasteur, N.; Fort, P.; Weill, M. Multiple Wolbachia Determinants Control the Evolution of Cytoplasmic Incompatibilities in Culex pipiens Mosquito Populations. Mol. Ecol. 2011, 20, 286–298. [Google Scholar] [CrossRef]
- Duron, O.; Raymond, M.; Weill, M. Many Compatible Wolbachia Strains Coexist within Natural Populations of Culex pipiens Mosquito. Heredity 2011, 106, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Duron, O.; Weill, M. Wolbachia Infection Influences the Development of Culex pipiens Embryo in Incompatible Crosses. Heredity 2006, 96, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Kim, C.-H.; Bara, J.; Bach, E.M.; Siddappaji, M.H. Culex pipiens and Culex restuans Mosquitoes Harbor Distinct Microbiota Dominated by Few Bacterial Taxa. Parasites Vectors 2016, 9, 18. [Google Scholar] [CrossRef]
- De Pinho Mixao, V.; Mendes, A.M.; Mauricio, I.L.; Calado, M.M.; Novo, M.T.; Belo, S.; Almeida, A.P.G. Molecular Detection of Wolbachia Pipientis in Natural Populations of Mosquito Vectors of Dirofilaria Immitis from Continental Portugal: First Detection in Culex Theileri. Med. Vet. Entomol. 2016, 30, 301–309. [Google Scholar] [CrossRef]
- Karami, M.; Moosa-Kazemi, S.H.; Oshaghi, M.A.; Vatandoost, H.; Sedaghat, M.M.; Rajabnia, R.; Hosseini, M.; Maleki-Ravasan, N.; Yahyapour, Y.; Ferdosi-Shahandashti, E. Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and Its Phylogenetic Congruence. J. Arthropod Borne Dis. 2016, 10, 347–363. [Google Scholar] [PubMed]
- Novakova, E.; Woodhams, D.C.; Rodríguez-Ruano, S.M.; Brucker, R.M.; Leff, J.W.; Maharaj, A.; Amir, A.; Knight, R.; Scott, J. Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Front. Microbiol. 2017, 8, 526. [Google Scholar] [CrossRef]
- Zink, S.; Van Slyke, G.; Palumbo, M.; Kramer, L.; Ciota, A. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens. Viruses 2015, 7, 5619–5631. [Google Scholar] [CrossRef]
- Atyame, C.M.; Labbé, P.; Dumas, E.; Milesi, P.; Charlat, S.; Fort, P.; Weill, M. Wolbachia Divergence and the Evolution of Cytoplasmic Incompatibility in Culex pipiens. PLoS ONE 2014, 9, e87336. [Google Scholar] [CrossRef] [PubMed]
- Zélé, F.; Vézilier, J.; L’Ambert, G.; Nicot, A.; Gandon, S.; Rivero, A.; Duron, O. Dynamics of Prevalence and Diversity of Avian Malaria Infections in Wild Culex pipiens Mosquitoes: The Effects of Wolbachia, Filarial Nematodes and Insecticide Resistance. Parasites Vectors 2014, 7, 437. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.F.; Fallon, A.M. Decapitation Improves Detection of Wolbachia Pipientis(Rickettsiales: Anaplasmataceae) in Culex pipiens; (Diptera: Culicidae) Mosquitoes by the Polymerase Chain Reaction. J. Med. Entomol. 2012, 49, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Surasiang, T.; Chumkiew, S.; Martviset, P.; Chantree, P.; Jamklang, M. Mosquito Larva Distribution and Natural Wolbachia Infection in Campus Areas of Nakhon Ratchasima, Thailand. Asian Pac. J. Trop. Med. 2022, 15, 314–321. [Google Scholar] [CrossRef]
- Dyab, A.K.; Galal, L.A.; Mahmoud, A.E.; Mokhtar, Y. Finding Wolbachia in Filarial Larvae and Culicidae Mosquitoes in Upper Egypt Governorate. Korean J. Parasitol. 2016, 54, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Soni, M.; Bhattacharya, C.; Sharma, J.; Khan, S.A.; Dutta, P. Molecular Typing and Phylogeny of Wolbachia: A Study from Assam, North-Eastern Part of India. Acta Trop. 2017, 176, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, C.L.; Tantely, L.M.; Raharimalala, F.N.; Hurn, E.; Boyer, S.; Walker, T. Diverse Novel Resident Wolbachia Strains in Culicine Mosquitoes from Madagascar. Sci. Rep. 2018, 8, 17456. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B.L.; Andrews, E.S.; Turell, M.J.; Rasgon, J.L. Wolbachia Effects on Rift Valley Fever Virus Infection in Culex Tarsalis Mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0006050. [Google Scholar] [CrossRef] [PubMed]
- Dodson, B.L.; Hughes, G.L.; Paul, O.; Matacchiero, A.C.; Kramer, L.D.; Rasgon, J.L. Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex Tarsalis. PLoS Negl. Trop. Dis. 2014, 8, e2965. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, C.; Zhang, D. Naturally Occurring Incompatibilities between Different Culex pipiens Pallens Populations as the Basis of Potential Mosquito Control Measures. PLoS Negl. Trop. Dis. 2013, 7, e2030. [Google Scholar] [CrossRef]
- Duguma, D.; Hall, M.W.; Smartt, C.T.; Neufeld, J.D. Effects of Organic Amendments on Microbiota Associated with the Culex Nigripalpus Mosquito Vector of the Saint Louis Encephalitis and West Nile Viruses. mSphere 2017, 2, e00387-16. [Google Scholar] [CrossRef] [PubMed]
- Calvitti, M.; Moretti, R.; Lampazzi, E.; Bellini, R.; Dobson, S.L. Characterization of a New Aedes Albopictus (Diptera: Culicidae)- Wolbachia Pipientis (Rickettsiales: Rickettsiaceae) Symbiotic Association Generated by Artificial Transfer of the w Pip Strain From Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 2010, 47, 179–187. [Google Scholar] [CrossRef]
- Laven, H. Eradication of Culex pipiens Fatigans through Cytoplasmic Incompatibility. Nature 1967, 216, 383–384. [Google Scholar] [CrossRef]
- Curtis, C.F.; Brooks, G.D.; Ansari, M.A.; Grover, K.K.; Krishnamurthy, B.S.; Rajagopalan, P.K.; Sharma, L.S.; Sharma, V.P.; Singh, D.; Singh, K.R.P.; et al. A Field Trial on Control of Culex quinquefasciatus by Release of Males of a Strain Integrating Cytoplasmic Incompatibility and Translocation. Entomol. Exp. Appl. 1982, 31, 181–190. [Google Scholar] [CrossRef]
- Atyame, C.M.; Pasteur, N.; Dumas, E.; Tortosa, P.; Tantely, M.L.; Pocquet, N.; Licciardi, S.; Bheecarry, A.; Zumbo, B.; Weill, M.; et al. Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens Quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean. PLoS Negl. Trop. Dis. 2011, 5, e1440. [Google Scholar] [CrossRef]
- Ant, T.H.; Herd, C.; Louis, F.; Failloux, A.B.; Sinkins, S.P. Wolbachia Transinfections in Culex quinquefasciatus Generate Cytoplasmic Incompatibility. Insect Mol. Biol. 2020, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kilpatric, A.; Seidl, C.; Ipsaro, I.; Garrison, C.; Fabbri, G.; Howell, P.; McGowan, A.; White, B.; Mitchell, S. Transinfection of Wolbachia WAlbB into Culex quinquefasciatus Mosquitoes Does Not Alter Vector Competence for Hawaiian Avian Malaria (Plasmodium Relictum GRW4). bioRxiv 2024. [Google Scholar] [CrossRef]
- Kriesner, P.; Hoffmann, A.A.; Lee, S.F.; Turelli, M.; Weeks, A.R. Rapid Sequential Spread of Two Wolbachia Variants in Drosophila Simulans. PLoS Pathog. 2013, 9, e1003607. [Google Scholar] [CrossRef]
- Zeng, Q.; She, L.; Yuan, H.; Luo, Y.; Wang, R.; Mao, W.; Wang, W.; She, Y.; Wang, C.; Shi, M.; et al. A Standalone Incompatible Insect Technique Enables Mosquito Suppression in the Urban Subtropics. Commun. Biol. 2022, 5, 1419. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Klasson, L.; Welch, J.J.; Jiggins, F.M. Life and Death of Selfish Genes: Comparative Genomics Reveals the Dynamic Evolution of Cytoplasmic Incompatibility. Mol. Biol. Evol. 2021, 38, 2–15. [Google Scholar] [CrossRef]
- LePage, D.P.; Metcalf, J.A.; Bordenstein, S.R.; On, J.; Perlmutter, J.I.; Shropshire, J.D.; Layton, E.M.; Funkhouser-Jones, L.J.; Beckmann, J.F.; Bordenstein, S.R. Prophage WO Genes Recapitulate and Enhance Wolbachia-Induced Cytoplasmic Incompatibility. Nature 2017, 543, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.F.; Ronau, J.A.; Hochstrasser, M. A Wolbachia Deubiquitylating Enzyme Induces Cytoplasmic Incompatibility. Nat. Microbiol. 2017, 2, 17007. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.R.I.; Rice, D.W.; Bordenstein, S.R.; Brooks, A.W.; Bordenstein, S.R.; Newton, I.L.G. Evolutionary Genetics of Cytoplasmic Incompatibility Genes CifA and CifB in Prophage WO of Wolbachia. Genome Biol. Evol. 2018, 10, 434–451. [Google Scholar] [CrossRef] [PubMed]
- Sicard, M.; Namias, A.; Perriat-Sanguinet, M.; Carron, E.; Unal, S.; Altinli, M.; Landmann, F.; Weill, M. Cytoplasmic Incompatibility Variations in Relation with Wolbachia Cif Genes Divergence in Culex pipiens. ASM J. 2021, 12, 10–1128. [Google Scholar]
- Bonneau, M.; Caputo, B.; Ligier, A.; Caparros, R.; Unal, S.; Perriat-Sanguinet, M.; Arnoldi, D.; Sicard, M.; Weill, M. Variation in Wolbachia CidB Gene, but Not CidA, Is Associated with Cytoplasmic Incompatibility Mod Phenotype Diversity in Culex pipiens. Mol. Ecol. 2019, 28, 4725–4736. [Google Scholar] [CrossRef]
- Shropshire, J.D.; Rosenberg, R.; Bordenstein, S.R. The Impacts of Cytoplasmic Incompatibility Factor (CifA and CifB) Genetic Variation on Phenotypes. Genetics 2021, 217, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shropshire, J.D.; Bordenstein, S.R. Two-by-One Model of Cytoplasmic Incompatibility: Synthetic Recapitulation by Transgenic Expression of CifA and CifB in Drosophila. PLoS Genet. 2019, 15, e1008221. [Google Scholar] [CrossRef]
- Adams, K.L.; Abernathy, D.G.; Willett, B.C.; Selland, E.K.; Itoe, M.A.; Catteruccia, F. Wolbachia CifB Induces Cytoplasmic Incompatibility in the Malaria Mosquito Vector. Nat. Microbiol. 2021, 6, 1575–1582. [Google Scholar] [CrossRef]
- McNamara, C.J.; Ant, T.H.; Harvey-Samuel, T.; White-Cooper, H.; Martinez, J.; Alphey, L.; Sinkins, S.P. Transgenic Expression of Cif Genes from Wolbachia Strain WAlbB Recapitulates Cytoplasmic Incompatibility in Aedes aegypti. Nat. Commun. 2024, 15, 869. [Google Scholar] [CrossRef]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef]
- Kambris, Z.; Blagborough, A.M.; Pinto, S.B.; Blagrove, M.S.C.; Godfray, H.C.J.; Sinden, R.E.; Sinkins, S.P. Wolbachia Stimulates Immune Gene Expression and Inhibits Plasmodium Development in Anopheles Gambiae. PLoS Pathog. 2010, 6, e1001143. [Google Scholar] [CrossRef] [PubMed]
- Kambris, Z.; Cook, P.E.; Phuc, H.K.; Sinkins, S.P. Immune Activation by Life-Shortening Wolbachia and Reduced Filarial Competence in Mosquitoes. Science 2009, 326, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Dorigatti, I.; McCormack, C.; Nedjati-Gilani, G.; Ferguson, N.M. Using Wolbachia for Dengue Control: Insights from Modelling. Trends Parasitol. 2018, 34, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.M.; Hue Kien, D.T.; Clapham, H.; Aguas, R.; Trung, V.T.; Bich Chau, T.N.; Popovici, J.; Ryan, P.A.; O’Neill, S.L.; McGraw, E.A.; et al. Modeling the Impact on Virus Transmission of Wolbachia -Mediated Blocking of Dengue Virus Infection of Aedes aegypti. Sci. Transl. Med. 2015, 7, 279ra37. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.L.; Meola, M.A. The Native Wolbachia Endosymbionts of Drosophila Melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection. PLoS ONE 2010, 5, e0011977. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.; Harrup, L.E. Reproducibility and Relevance in Insect-Arbovirus Infection Studies. Curr. Opin. Insect Sci. 2018, 28, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Longdon, B.; Bauer, S.; Chan, Y.-S.; Miller, W.J.; Bourtzis, K.; Teixeira, L.; Jiggins, F.M. Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Wolbachia Strains. PLoS Pathog. 2014, 10, e1004369. [Google Scholar] [CrossRef] [PubMed]
- Terradas, G.; McGraw, E.A. Wolbachia-Mediated Virus Blocking in the Mosquito Vector Aedes aegypti. Curr. Opin. Insect Sci. 2017, 22, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.; Bhattacharya, T.; Newton, I.; Hardy, R. Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-Blocking. Viruses 2018, 10, 141. [Google Scholar] [CrossRef]
- Ross, P.A.; Turelli, M.; Hoffmann, A.A. Evolutionary Ecology of Wolbachia Releases for Disease Control. Annu. Rev. Genet. 2019, 53, 93–116. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Michael, T. Cytoplasmic Incompatibility in Insects. In Influential Passengers; Oxford University Press: Oxford, UK, 1997; pp. 42–80. [Google Scholar]
- Ross, P.A.; Wiwatanaratanabutr, I.; Axford, J.K.; White, V.L.; Endersby-Harshman, N.M.; Hoffmann, A.A. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress. PLoS Pathog. 2017, 13, e1006006. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.A.; Robinson, K.L.; Yang, Q.; Callahan, A.G.; Schmidt, T.L.; Axford, J.K.; Coquilleau, M.P.; Staunton, K.M.; Townsend, M.; Ritchie, S.A.; et al. A Decade of Stability for WMel Wolbachia in Natural Aedes aegypti Populations. PLoS Pathog. 2022, 18, e1010256. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Ant, T.H.; Murdochy, S.M.; Tong, L.; Da Silva Filipe, A.; Sinkins, S.P. Genome Sequencing and Comparative Analysis of Wolbachia Strain WAlbA Reveals Wolbachia-Associated Plasmids Are Common. PLoS Genet. 2022, 18, e1010406. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.O.; Hines, A.; Tucker, A.M.; Woodard, A.; Driskell, L.O.; Burkhardt, N.Y.; Kurtti, T.J.; Baldridge, G.D.; Munderloh, U.G. Establishment of a Replicating Plasmid in Rickettsia Prowazekii. PLoS ONE 2012, 7, e34715. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhav, M.; Blasdell, K.R.; Trewin, B.; Paradkar, P.N.; López-Denman, A.J. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024, 16, 1134. https://doi.org/10.3390/v16071134
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses. 2024; 16(7):1134. https://doi.org/10.3390/v16071134
Chicago/Turabian StyleMadhav, Mukund, Kim R. Blasdell, Brendan Trewin, Prasad N. Paradkar, and Adam J. López-Denman. 2024. "Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia" Viruses 16, no. 7: 1134. https://doi.org/10.3390/v16071134
APA StyleMadhav, M., Blasdell, K. R., Trewin, B., Paradkar, P. N., & López-Denman, A. J. (2024). Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses, 16(7), 1134. https://doi.org/10.3390/v16071134