Oncolytic Viral Therapy in Osteosarcoma
Abstract
:1. Introduction
Proposed Mechanism of Action of OVT in Osteosarcoma
2. Therapeutic Potential of OVT in OS
2.1. Monotherapies
2.2. Combination Therapies
3. Current Challenges and Barriers to Implementation
3.1. Preclinical Challenges
3.2. Safety: Off-Target Effects, Toxicities, Mutation, Viral Transmission
3.3. Host vs. Virus
3.4. Delivery Method
4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- British Sarcoma Group; Gerrand, C.; Athanasou, N.; Brennan, B.; Grimer, R.; Judson, I.; Morland, B.; Peake, D.; Seddon, B.; Whelan, J. UK Guidelines for the Management of Bone Sarcomas. Clin. Sarcoma Res. 2016, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.J.; Siegal, G.P. Osteosarcoma: Anatomic and Histologic Variants. Am. J. Clin. Pathol. 2006, 125, 555–581. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Cram, P.; Lynch, C.F.; Buckwalter, J.A. Risk Factors for Metastatic Disease at Presentation with Osteosarcoma: An Analysis of the SEER Database. J. Bone Jt. Surg. 2013, 95, e89. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.J.; Gorlick, R. Chemotherapy Resistance in Osteosarcoma: Current Challenges and Future Directions. Expert Rev. Anticancer Ther. 2006, 6, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Bolia, I.K.; Iglesias, B.; Sharf, T.; Roberts, S.I.; Kang, H.; Christ, A.B.; Menendez, L.R. Timing of Treatment in Osteosarcoma: Challenges and Perspectives—A Scoping Review. BMC Cancer 2022, 22, 970. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, X.; Liu, T.; Zhang, X. Strategies and Developments of Immunotherapies in Osteosarcoma. Oncol. Lett. 2016, 11, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational Biology of Osteosarcoma. Nat. Rev. Cancer 2014, 14, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Kadkhodazadeh, M.; Shapourabadi, M.B.; Goradel, N.H.; Shokrgozar, M.A.; Arashkia, A.; Abdoli, S.; Sharifzadeh, Z. Immunovirotherapy: The Role of Antibody Based Therapeutics Combination with Oncolytic Viruses. Front. Immunol. 2022, 13, 1012806. [Google Scholar] [CrossRef]
- Everts, A.; Bergeman, M.; McFadden, G.; Kemp, V. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines 2020, 8, 474. [Google Scholar] [CrossRef]
- Breitbach, C.J.; De Silva, N.S.; Falls, T.J.; Aladl, U.; Evgin, L.; Paterson, J.; Sun, Y.Y.; Roy, D.G.; Rintoul, J.L.; Daneshmand, M.; et al. Targeting Tumor Vasculature with an Oncolytic Virus. Mol. Ther. 2011, 19, 886–894. [Google Scholar] [CrossRef]
- Ma, R.; Li, Z.; Chiocca, E.A.; Caligiuri, M.A.; Yu, J. The Emerging Field of Oncolytic Virus-Based Cancer Immunotherapy. Trends Cancer 2023, 9, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Shalhout, S.Z.; Miller, D.M.; Emerick, K.S.; Kaufman, H.L. Therapy with Oncolytic Viruses: Progress and Challenges. Nat. Rev. Clin. Oncol. 2023, 20, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, M.F.; Cripe, T.P. Oncolytic Viruses and Their Potential as a Therapeutic Opportunity in Osteosarcoma. In Current Advances in the Science of Osteosarcoma; Kleinerman, E.S., Gorlick, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1258, pp. 77–89. ISBN 9783030430849. [Google Scholar]
- Santos Apolonio, J.; Lima De Souza Gonçalves, V.; Cordeiro Santos, M.L.; Silva Luz, M.; Silva Souza, J.V.; Rocha Pinheiro, S.L.; De Souza, W.R.; Sande Loureiro, M.; De Melo, F.F. Oncolytic Virus Therapy in Cancer: A Current Review. WJV 2021, 10, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Lawler, S.E.; Speranza, M.-C.; Cho, C.-F.; Chiocca, E.A. Oncolytic Viruses in Cancer Treatment: A Review. JAMA Oncol. 2017, 3, 841. [Google Scholar] [CrossRef]
- Martinez-Velez, N.; Laspidea, V.; Zalacain, M.; Labiano, S.; García-Moure, M.; Puigdelloses, M.; Marrodan, L.; Gonzalez-Huarriz, M.; Herrador, G.; De La Nava, D.; et al. Local Treatment of a Pediatric Osteosarcoma Model with a 4-1BBL Armed Oncolytic Adenovirus Results in an Antitumor Effect and Leads to Immune Memory. Mol. Cancer Ther. 2022, 21, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vélez, N.; Xipell, E.; Vera, B.; Acanda De La Rocha, A.; Zalacain, M.; Marrodán, L.; Gonzalez-Huarriz, M.; Toledo, G.; Cascallo, M.; Alemany, R.; et al. The Oncolytic Adenovirus VCN-01 as Therapeutic Approach against Pediatric Osteosarcoma. Clin. Cancer Res. 2016, 22, 2217–2225. [Google Scholar] [CrossRef] [PubMed]
- Morales-Molina, A.; Gambera, S.; Leo, A.; García-Castro, J. Combination Immunotherapy Using G-CSF and Oncolytic Virotherapy Reduces Tumor Growth in Osteosarcoma. J. Immunother. Cancer 2021, 9, e001703. [Google Scholar] [CrossRef]
- Sugiu, K.; Tazawa, H.; Hasei, J.; Yamakawa, Y.; Omori, T.; Komatsubara, T.; Mochizuki, Y.; Kondo, H.; Osaki, S.; Fujiwara, T.; et al. Oncolytic Virotherapy Reverses Chemoresistance in Osteosarcoma by Suppressing MDR1 Expression. Cancer Chemother. Pharmacol. 2021, 88, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, M.F.; Miller, K.E.; Chen, C.-Y.; Wang, P.-Y.; Hutzen, B.J.; Currier, M.A.; Nartker, B.; Roberts, R.D.; Boon, L.; Conner, J.; et al. Endogenous Retrovirus Envelope as a Tumor-Associated Immunotherapeutic Target in Murine Osteosarcoma. iScience 2021, 24, 102759. [Google Scholar] [CrossRef]
- Domingo-Musibay, E.; Allen, C.; Kurokawa, C.; Hardcastle, J.J.; Aderca, I.; Msaouel, P.; Bansal, A.; Jiang, H.; DeGrado, T.R.; Galanis, E. Measles Edmonston Vaccine Strain Derivatives Have Potent Oncolytic Activity against Osteosarcoma. Cancer Gene Ther. 2014, 21, 483–490. [Google Scholar] [CrossRef]
- Geiss, C.; Kis, Z.; Leuchs, B.; Frank-Stöhr, M.; Schlehofer, J.; Rommelaere, J.; Dinsart, C.; Lacroix, J. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro. Viruses 2017, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, P.; Zhang, W.; Lin, J.; Liu, L.; Guha, C.; Kolb, E.A. Systemic Administration of Reovirus (Reolysin) Inhibits Growth of Human Sarcoma Xenografts. Cancer 2011, 117, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Igase, M.; Hwang, C.C.; Coffey, M.; Okuda, M.; Noguchi, S.; Mizuno, T. The Oncolytic Effects of Reovirus in Canine Solid Tumor Cell Lines. J. Vet. Med. Sci. 2015, 77, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Kolb, E.A.; Sampson, V.; Stabley, D.; Walter, A.; Sol-Church, K.; Cripe, T.; Hingorani, P.; Ahern, C.H.; Weigel, B.J.; Zwiebel, J.; et al. A Phase I Trial and Viral Clearance Study of Reovirus (Reolysin) in Children with Relapsed or Refractory Extra-cranial Solid Tumors: A Children’s Oncology Group Phase I Consortium Report. Pediatr. Blood Cancer 2015, 62, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, T.; Kubo, T.; Johan, M.P.; Furuta, T.; Sakaguchi, T.; Adachi, N. Development of an Oncolytic Recombinant Vesicular Stomatitis Virus Encoding a Tumor-Suppressor MicroRNA. Anticancer Res. 2020, 40, 6319–6325. [Google Scholar] [CrossRef] [PubMed]
- Marchini, A.; Bonifati, S.; Scott, E.M.; Angelova, A.L.; Rommelaere, J. Oncolytic Parvoviruses: From Basic Virology to Clinical Applications. Virol. J. 2015, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, J.; Kis, Z.; Josupeit, R.; Schlund, F.; Stroh-Dege, A.; Frank-Stöhr, M.; Leuchs, B.; Schlehofer, J.R.; Rommelaere, J.; Dinsart, C. Preclinical Testing of an Oncolytic Parvovirus in Ewing Sarcoma: Protoparvovirus H-1 Induces Apoptosis and Lytic Infection In Vitro but Fails to Improve Survival In Vivo. Viruses 2018, 10, 302. [Google Scholar] [CrossRef]
- Kubo, T.; Shimose, S.; Matsuo, T.; Fujimori, J.; Sakaguchi, T.; Yamaki, M.; Shinozaki, K.; Woo, S.L.C.; Ochi, M. Oncolytic Vesicular Stomatitis Virus Administered by Isolated Limb Perfusion Suppresses Osteosarcoma Growth. J. Orthop. Res. 2011, 29, 795–800. [Google Scholar] [CrossRef]
- Johan, M.P.; Kubo, T.; Furuta, T.; Sakuda, T.; Sakaguchi, T.; Nakanishi, M.; Ochi, M.; Adachi, N. Metastatic Tumor Cells Detection and Anti-metastatic Potential with Vesicular Stomatitis Virus in Immunocompetent Murine Model of Osteosarcoma. J. Orthop. Res. 2018, 36, 2562–2569. [Google Scholar] [CrossRef]
- Osaki, M.; Takeshita, F.; Sugimoto, Y.; Kosaka, N.; Yamamoto, Y.; Yoshioka, Y.; Kobayashi, E.; Yamada, T.; Kawai, A.; Inoue, T.; et al. MicroRNA-143 Regulates Human Osteosarcoma Metastasis by Regulating Matrix Metalloprotease-13 Expression. Mol. Ther. 2011, 19, 1123–1130. [Google Scholar] [CrossRef]
- Edge, R.E.; Falls, T.J.; Brown, C.W.; Lichty, B.D.; Atkins, H.; Bell, J.C. A Let-7 MicroRNA-Sensitive Vesicular Stomatitis Virus Demonstrates Tumor-Specific Replication. Mol. Ther. 2008, 16, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Letchworth, G.J.; Rodriguez, L.L.; Del Cbarrera, J. Vesicular Stomatitis. Vet. J. 1999, 157, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Mahasa, K.J.; De Pillis, L.; Ouifki, R.; Eladdadi, A.; Maini, P.; Yoon, A.-R.; Yun, C.-O. Mesenchymal Stem Cells Used as Carrier Cells of Oncolytic Adenovirus Results in Enhanced Oncolytic Virotherapy. Sci. Rep. 2020, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Yau, L.; Nakov, R.; Krendyukov, A. Overall Survival and Risk of Second Malignancies with Cancer Chemotherapy and G-CSF Support. Ann. Oncol. 2018, 29, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Dale, D.C.; Culakova, E.; Poniewierski, M.S.; Wolff, D.A.; Kuderer, N.M.; Huang, M.; Crawford, J. The Impact of the Granulocyte Colony-Stimulating Factor on Chemotherapy Dose Intensity and Cancer Survival: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann. Oncol. 2013, 24, 2475–2484. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Goldstein, L.J.; Sparano, J.A.; Demaria, S.; Badve, S.S. Tumor Infiltrating Lymphocytes (TILs) Improve Prognosis in Patients with Triple Negative Breast Cancer (TNBC). OncoImmunology 2015, 4, e985930. [Google Scholar] [CrossRef] [PubMed]
- Mina, M.; Boldrini, R.; Citti, A.; Romania, P.; D’Alicandro, V.; De Ioris, M.; Castellano, A.; Furlanello, C.; Locatelli, F.; Fruci, D. Tumor-Infiltrating T Lymphocytes Improve Clinical Outcome of Therapy-Resistant Neuroblastoma. Oncol. Immunol. 2015, 4, e1019981. [Google Scholar] [CrossRef]
- Vassilakopoulou, M.; Avgeris, M.; Velcheti, V.; Kotoula, V.; Rampias, T.; Chatzopoulos, K.; Perisanidis, C.; Kontos, C.K.; Giotakis, A.I.; Scorilas, A.; et al. Evaluation of PD-L1 Expression and Associated Tumor-Infiltrating Lymphocytes in Laryngeal Squamous Cell Carcinoma. Clin. Cancer Res. 2016, 22, 704–713. [Google Scholar] [CrossRef]
- García-Castro, J.; Alemany, R.; Cascalló, M.; Martínez-Quintanilla, J.; Del Mar Arriero, M.; Lassaletta, Á.; Madero, L.; Ramírez, M. Treatment of Metastatic Neuroblastoma with Systemic Oncolytic Virotherapy Delivered by Autologous Mesenchymal Stem Cells: An Exploratory Study. Cancer Gene Ther. 2010, 17, 476–483. [Google Scholar] [CrossRef]
- Melen, G.J.; Franco-Luzón, L.; Ruano, D.; González-Murillo, Á.; Alfranca, A.; Casco, F.; Lassaletta, Á.; Alonso, M.; Madero, L.; Alemany, R.; et al. Influence of Carrier Cells on the Clinical Outcome of Children with Neuroblastoma Treated with High Dose of Oncolytic Adenovirus Delivered in Mesenchymal Stem Cells. Cancer Lett. 2016, 371, 161–170. [Google Scholar] [CrossRef]
- Ruano, D.; López-Martín, J.A.; Moreno, L.; Lassaletta, Á.; Bautista, F.; Andión, M.; Hernández, C.; González-Murillo, Á.; Melen, G.; Alemany, R.; et al. First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Mol. Ther. 2020, 28, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Tazawa, H.; Hashimoto, Y.; Kojima, T.; Kuroda, S.; Yano, S.; Yoshida, R.; Uno, F.; Mizuguchi, H.; Ohtsuru, A.; et al. A Novel Apoptotic Mechanism of Genetically Engineered Adenovirus-Mediated Tumour-Specific P53 Overexpression through E1A-Dependent P21 and MDM2 Suppression. Eur. J. Cancer 2012, 48, 2282–2291. [Google Scholar] [CrossRef] [PubMed]
- Hasei, J.; Sasaki, T.; Tazawa, H.; Osaki, S.; Yamakawa, Y.; Kunisada, T.; Yoshida, A.; Hashimoto, Y.; Onishi, T.; Uno, F.; et al. Dual Programmed Cell Death Pathways Induced by P53 Transactivation Overcome Resistance to Oncolytic Adenovirus in Human Osteosarcoma Cells. Mol. Cancer Ther. 2013, 12, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Osaki, S.; Tazawa, H.; Hasei, J.; Yamakawa, Y.; Omori, T.; Sugiu, K.; Komatsubara, T.; Fujiwara, T.; Sasaki, T.; Kunisada, T.; et al. Ablation of MCL1 Expression by Virally Induced microRNA-29 Reverses Chemoresistance in Human Osteosarcomas. Sci. Rep. 2016, 6, 28953. [Google Scholar] [CrossRef] [PubMed]
- Nemunaitis, J.; Tong, A.W.; Nemunaitis, M.; Senzer, N.; Phadke, A.P.; Bedell, C.; Adams, N.; Zhang, Y.-A.; Maples, P.B.; Chen, S.; et al. A Phase I Study of Telomerase-Specific Replication Competent Oncolytic Adenovirus (Telomelysin) for Various Solid Tumors. Mol. Ther. 2010, 18, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Tazawa, H.; Hasei, J.; Kunisada, T.; Yoshida, A.; Hashimoto, Y.; Yano, S.; Yoshida, R.; Uno, F.; Kagawa, S.; et al. Preclinical Evaluation of Telomerase-Specific Oncolytic Virotherapy for Human Bone and Soft Tissue Sarcomas. Clin. Cancer Res. 2011, 17, 1828–1838. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 Inhibits the Effector Phase of Tumor Rejection by T Cell Receptor (TCR) Transgenic CD8+ T Cells. Cancer Res. 2004, 64, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tan, X.; Jiang, Z.; Wang, H.; Yuan, H. Immune Checkpoint Inhibitors in Osteosarcoma: A Hopeful and Challenging Future. Front. Pharmacol. 2022, 13, 1031527. [Google Scholar] [CrossRef] [PubMed]
- Streby, K.A.; Geller, J.I.; Currier, M.A.; Warren, P.S.; Racadio, J.M.; Towbin, A.J.; Vaughan, M.R.; Triplet, M.; Ott-Napier, K.; Dishman, D.J.; et al. Intratumoral Injection of HSV1716, an Oncolytic Herpes Virus, Is Safe and Shows Evidence of Immune Response and Viral Replication in Young Cancer Patients. Clin. Cancer Res. 2017, 23, 3566–3574. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in Advanced Soft-Tissue Sarcoma and Bone Sarcoma (SARC028): A Multicentre, Two-Cohort, Single-Arm, Open-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- Streby, K.A.; Currier, M.A.; Triplet, M.; Ott, K.; Dishman, D.J.; Vaughan, M.R.; Ranalli, M.A.; Setty, B.; Skeens, M.A.; Whiteside, S.; et al. First-in-Human Intravenous Seprehvir in Young Cancer Patients: A Phase 1 Clinical Trial. Mol. Ther. 2019, 27, 1930–1938. [Google Scholar] [CrossRef]
- Zerboni, L.; Sen, N.; Oliver, S.L.; Arvin, A.M. Molecular Mechanisms of Varicella Zoster Virus Pathogenesis. Nat. Rev. Microbiol. 2014, 12, 197–210. [Google Scholar] [CrossRef]
- Subramanian, G.; LeBlanc, R.A.; Wardley, R.C.; Fuller, A.O. Defective Entry of Herpes Simplex Virus Types 1 and 2 into Porcine Cells and Lack of Infection in Infant Pigs Indicate Species Tropism. J. Gen. Virol. 1995, 76, 2375–2379. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.I.; Warner, M.S.; Lum, B.J.; Spear, P.G. Herpes Simplex Virus-1 Entry into Cells Mediated by a Novel Member of the TNF/NGF Receptor Family. Cell 1996, 87, 427–436. [Google Scholar] [CrossRef]
- Mata, M.; Zhang, M.; Hu, X.; Fink, D.J. HveC (Nectin-1) Is Expressed at High Levels in Sensory Neurons, but Not in Motor Neurons, of the Rat Peripheral Nervous System. J. Neurovirol. 2001, 7, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Lin, E.; Susmarski, N.; Yoon, M.; Zago, A.; Ware, C.F.; Pfeffer, K.; Miyoshi, J.; Takai, Y.; Spear, P.G. Alternative Entry Receptors for Herpes Simplex Virus and Their Roles in Disease. Cell Host Microbe 2007, 2, 19–28. [Google Scholar] [CrossRef]
- Lemos De Matos, A.; Franco, L.S.; McFadden, G. Oncolytic Viruses and the Immune System: The Dynamic Duo. Mol. Ther.—Methods Clin. Dev. 2020, 17, 349–358. [Google Scholar] [CrossRef]
- Ottaviani, G.; Jaffe, N. The Epidemiology of Osteosarcoma. In Pediatric and Adolescent Osteosarcoma; Jaffe, N., Bruland, O.S., Bielack, S., Eds.; Springer: Boston, MA, USA, 2009; Volume 152, pp. 3–13. ISBN 9781441902832. [Google Scholar]
- Li, Z.; Jiang, Z.; Zhang, Y.; Huang, X.; Liu, Q. Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 1416. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; Michielin, O.; Malvehy, J.; Pezzani Grüter, I.; Grove, L.; Frauchiger, A.L.; Dummer, R. A Practical Guide to the Handling and Administration of Talimogene Laherparepvec in Europe. Oncol. Targets Ther. 2017, 10, 3867–3880. [Google Scholar] [CrossRef]
- Hom, V.; Karonis, E.; Sigidi, T.; Cawley, K. Development of a Nursing Policy for the Administration of an Oncolytic Virus in the Outpatient Setting. Semin. Oncol. Nurs. 2019, 35, 150928. [Google Scholar] [CrossRef]
- Gutzmer, R.; Harrington, K.J.; Hoeller, C.; Lebbé, C.; Malvehy, J.; Öhrling, K.; Downey, G.; Dummer, R. Practical Clinical Guide on the Use of Talimogene Laherparepvec Monotherapy in Patients with Unresectable Melanoma in Europe. Eur. J. Dermatol. 2018, 28, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Breckenridge, C.A.; Yu, J.; Price, R.; Wojton, J.; Pradarelli, J.; Mao, H.; Wei, M.; Wang, Y.; He, S.; Hardcastle, J.; et al. NK Cells Impede Glioblastoma Virotherapy through NKp30 and NKp46 Natural Cytotoxicity Receptors. Nat. Med. 2012, 18, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Fulci, G.; Dmitrieva, N.; Gianni, D.; Fontana, E.J.; Pan, X.; Lu, Y.; Kaufman, C.S.; Kaur, B.; Lawler, S.E.; Lee, R.J.; et al. Depletion of Peripheral Macrophages and Brain Microglia Increases Brain Tumor Titers of Oncolytic Viruses. Cancer Res. 2007, 67, 9398–9406. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, J.; Wu, L.; Meseck, M.; Chen, L.; Ebert, O.; Garcia-Sastre, A.; Fallon, J.; Mandeli, J.; Woo, S.L.C. Enhanced Oncolytic Potency of Vesicular Stomatitis Virus through Vector-Mediated Inhibition of NK and NKT Cells. Cancer Gene Ther. 2009, 16, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sachdev, E.; Mita, A.C.; Mita, M.M. Clinical Development of Reovirus for Cancer Therapy: An Oncolytic Virus with Immune-Mediated Antitumor Activity. WJM 2016, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Federspiel, M.J.; Peng, K.-W.; Tong, C.; Dingli, D.; Morice, W.G.; Lowe, V.; O’Connor, M.K.; Kyle, R.A.; Leung, N.; et al. Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy. Mayo Clin. Proc. 2014, 89, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, N.; Poethko-Müller, C.; Kuhnert, R.; Matysiak-Klose, D.; Koch, J.; Wichmann, O.; Santibanez, S.; Mankertz, A. Seroprevalence of Measles-, Mumps-, and Rubella-Specific Antibodies in the German Adult Population—Cross-Sectional Analysis of the German Health Interview and Examination Survey for Adults (DEGS1). Lancet Reg. Health—Eur. 2021, 7, 100128. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.Q.; Ovsyannikova, I.G.; Grill, D.E.; Warner, N.D.; Poland, G.A.; Kennedy, R.B. Seroprevalence of Measles Antibodies in a Highly MMR-Vaccinated Population. Vaccines 2022, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- Perfetto, B.; Paduano, G.; Grimaldi, E.; Sansone, V.; Donnarumma, G.; Di Giuseppe, G. Seroprevalence for Measles, Varicella, Mumps and Rubella in the Trainee Obstetric Population: A Survey in Southern Italy. Vaccines 2024, 12, 335. [Google Scholar] [CrossRef]
- Xu, F.; Sternberg, M.R.; Kottiri, B.J.; McQuillan, G.M.; Lee, F.K.; Nahmias, A.J.; Berman, S.M.; Markowitz, L.E. Trends in Herpes Simplex Virus Type 1 and Type 2 Seroprevalence in the United States. JAMA 2006, 296, 964. [Google Scholar] [CrossRef]
- Fulci, G.; Breymann, L.; Gianni, D.; Kurozomi, K.; Rhee, S.S.; Yu, J.; Kaur, B.; Louis, D.N.; Weissleder, R.; Caligiuri, M.A.; et al. Cyclophosphamide Enhances Glioma Virotherapy by Inhibiting Innate Immune Responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12873–12878. [Google Scholar] [CrossRef] [PubMed]
- Monga, V.; Miller, B.J.; Tanas, M.; Boukhar, S.; Allen, B.; Anderson, C.; Stephens, L.; Hartwig, S.; Varga, S.; Houtman, J.; et al. Intratumoral Talimogene Laherparepvec Injection with Concurrent Preoperative Radiation in Patients with Locally Advanced Soft-Tissue Sarcoma of the Trunk and Extremities: Phase IB/II Trial. J. Immunother. Cancer 2021, 9, e003119. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.A.; Murthy, R.; Hong, D.S.; Patel, S.; Overman, M.J.; Diab, A.; Hwu, P.; Tam, A. Assessment of Image-Guided Intratumoral Delivery of Immunotherapeutics in Patients with Cancer. JAMA Netw. Open 2020, 3, e207911. [Google Scholar] [CrossRef] [PubMed]
- Vanderplasschen, A.; Hollinshead, M.; Smith, G.L. Antibodies against Vaccinia Virus Do Not Neutralize Extracellular Enveloped Virus but Prevent Virus Release from Infected Cells and Comet Formation. J. Gen. Virol. 1997, 78, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, C.J.; Burke, J.; Jonker, D.; Stephenson, J.; Haas, A.R.; Chow, L.Q.M.; Nieva, J.; Hwang, T.-H.; Moon, A.; Patt, R.; et al. Intravenous Delivery of a Multi-Mechanistic Cancer-Targeted Oncolytic Poxvirus in Humans. Nature 2011, 477, 99–102. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Wang, J.; Yao, F.; Tang, X.; Guo, W. Nanosized Drug Delivery Strategies in Osteosarcoma Chemotherapy. APL Bioeng. 2023, 7, 011501. [Google Scholar] [CrossRef]
Virus (+Additional Therapy) | Model | Key Findings |
---|---|---|
Adenovirus | ||
Delta-24-ACT [16] | Human cells | Potent anti-OS effect; triggered release of damage-associated molecular patterns |
Mice | Effective against primary cancer and metastases; increased survival time; safe, no toxicity | |
VCN-01 [17] | Human cells | Potent anti-OS effect |
Mice | Effective against primary cancer and metastases; safe, no toxicity | |
dlE102 + G-CSF [18] | Mice | Reduced tumor size; Increased survival with G-CSF |
OBP-702 + Doxorubicin [19] | Human cells | Potent anti-OS effect with doxorubicin in a dose-dependent manner |
Mice | Combination treatment mitigated tumor growth; monotherapies were ineffective | |
Herpes Simplex Virus | ||
HSV1716 (Seprehvir) + Anti-PD-1 [20] | Mice | Ineffective in less immunogenic OS; Combination therapy delayed growth and prolonged survival in highly immunogenic OS |
Measles Virus | ||
MV [21] | Human cells | Potent anti-OS effect |
Mice | Effective against primary cancer and metastases; increased survival | |
Protoparvovirus | ||
H-1PV [22] | Human cells | Potent anti-OS effect; no toxicity to normal cells |
Reovirus | ||
RV (Reolysin) + Cisplatin 1 [23,24,25] | Human | Safe with little toxicity; no tumor response |
Human cells | Potent anti-OS effect | |
Mice 1 | Potent anti-OS effect; prevented growth; reduced size with cisplatin | |
Canine cells | No anti-OS effect | |
Vesicular Stomatitis Virus | ||
VSV-miRNA143 [26] | Human cells | Potent anti-OS effect, greater than unmodified VSV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karadimas, T.; Huynh, T.H.; Chose, C.; Zervoudakis, G.; Clampitt, B.; Lapp, S.; Joyce, D.; Letson, G.D.; Metts, J.; Binitie, O.; et al. Oncolytic Viral Therapy in Osteosarcoma. Viruses 2024, 16, 1139. https://doi.org/10.3390/v16071139
Karadimas T, Huynh TH, Chose C, Zervoudakis G, Clampitt B, Lapp S, Joyce D, Letson GD, Metts J, Binitie O, et al. Oncolytic Viral Therapy in Osteosarcoma. Viruses. 2024; 16(7):1139. https://doi.org/10.3390/v16071139
Chicago/Turabian StyleKaradimas, Thomas, Thien Huong Huynh, Chloe Chose, Guston Zervoudakis, Bryan Clampitt, Sean Lapp, David Joyce, George Douglas Letson, Jonathan Metts, Odion Binitie, and et al. 2024. "Oncolytic Viral Therapy in Osteosarcoma" Viruses 16, no. 7: 1139. https://doi.org/10.3390/v16071139
APA StyleKaradimas, T., Huynh, T. H., Chose, C., Zervoudakis, G., Clampitt, B., Lapp, S., Joyce, D., Letson, G. D., Metts, J., Binitie, O., Mullinax, J. E., & Lazarides, A. (2024). Oncolytic Viral Therapy in Osteosarcoma. Viruses, 16(7), 1139. https://doi.org/10.3390/v16071139