Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant
Abstract
:1. Background
2. Materials and Methods
2.1. Structure Collection
2.2. Free Energy Calculations
2.3. Sequence-Based Analysis
2.4. Mutation Collection
3. Results
3.1. Effects of Omicron Mutations on Protein Stability
3.2. Key Residues Predicted to Affect the RBD Stability of Omicron
3.3. Effects of Omicron-S and Wuhan-Hu-1-S Mutations on Binding Affinity
3.4. Key Sites Predicted to Alter the Omicron S RBD–ACE2 Binding Affinity
3.5. Predicted Changes in Binding Affinity of Omicron-S and Wuhan-Hu-1-S
4. Discussion
4.1. Differences between Omicron Variants vs. Alpha, Beta, Gamma, and Delta
4.2. The RBM Is More Divergent Than the RBD in Omicron
4.3. Residue Changes G431W and P507W May Cause the Highest Destabilizations in Wuhan-Hu-1-S/Omicron-S RBM and RBD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid Epidemic Expansion of the Sars-CoV-2 Omicron Variant in Southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Al Rifai, M.; Jain, V.; Khan, S.U.; Nasir, K.; Zhu, D.; Vasudeva, R.; Lavie, C.J.; Dodani, S.; Petersen, L.A.; Virani, S.S. Social Vulnerability and COVID-19: An Analysis of Cdc Data. Prog. Cardiovasc. Dis. 2022, 73, 91–93. [Google Scholar] [CrossRef]
- Nikolaidis, M.; Papakyriakou, A.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G.; Amoutzias, G.D. Comparative Analysis of Sars-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike Orf. Viruses 2022, 14, 707. [Google Scholar] [CrossRef]
- Sobitan, A.; Mahase, V.; Rhoades, R.; Williams, D.; Liu, D.; Xie, Y.; Li, L.; Tang, Q.; Teng, S. Computational Saturation Mutagenesis of Sars-Cov-1 Spike Glycoprotein: Stability, Binding Affinity, and Comparison with Sars-CoV-2. Front. Mol. Biosci. 2021, 8, 784303. [Google Scholar] [CrossRef]
- Teng, S.; Sobitan, A.; Rhoades, R.; Liu, D.; Tang, Q. Systemic Effects of Missense Mutations on Sars-CoV-2 Spike Glycoprotein Stability and Receptor-Binding Affinity. Brief. Bioinform. 2021, 22, 1239–1253. [Google Scholar] [CrossRef]
- Rhoades, R.; Sobitan, A.; Mahase, V.; Gebremedhin, B.; Tang, Q.; Rawat, D.; Cao, H.; Teng, S. In-Silico Investigation of Systematic Missense Mutations of Middle East Respiratory Coronavirus Spike Protein. Front. Mol. Biosci. 2022, 9, 933553. [Google Scholar] [CrossRef]
- Mittal, A.; Manjunath, K.; Ranjan, R.K.; Kaushik, S.; Kumar, S.; Verma, V. Covid-19 Pandemic: Insights into Structure, Function, and Hace2 Receptor Recognition by Sars-CoV-2. PLoS Pathog. 2020, 16, e1008762. [Google Scholar] [CrossRef]
- Kumar, R.; Murugan, N.A.; Srivastava, V. Improved Binding Affinity of Omicron’s Spike Protein for the Human Angiotensin-Converting Enzyme 2 Receptor Is the Key Behind Its Increased Virulence. Int. J. Mol. Sci. 2022, 23, 3409. [Google Scholar] [CrossRef]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Makatini, Z.; Moyo, S.; Amoako, D.G.; et al. Emergence of Sars-CoV-2 Omicron Lineages Ba.4 and Ba.5 in South Africa. Nat. Med. 2022, 28, 1785–1790. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Addetia, A.; Hannon, W.W.; Choudhary, M.C.; Dingens, A.S.; Li, J.Z.; Bloom, J.D. Prospective Mapping of Viral Mutations That Escape Antibodies Used to Treat COVID-19. Science 2021, 371, 850–854. [Google Scholar] [CrossRef]
- Hachmann, N.P.; Miller, J.; Collier, A.Y.; Ventura, J.D.; Yu, J.; Rowe, M.; Bondzie, E.A.; Powers, O.; Surve, N.; Hall, K.; et al. Neutralization Escape by Sars-CoV-2 Omicron Subvariants Ba.2.12.1, Ba.4, and Ba.5. N. Engl. J. Med. 2022, 387, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, Y.; Yin, Q.; Wang, Z.; Shan, S.; Zhang, L.; Yu, J.; Qu, Y.; Sun, L.; Gui, F.; et al. Structural Basis of a Two-Antibody Cocktail Exhibiting Highly Potent and Broadly Neutralizing Activities against Sars-CoV-2 Variants Including Diverse Omicron Sublineages. Cell Discov. 2022, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Berman, H.M.; Duarte, J.M.; Feng, Z.; Flatt, J.W.; Hudson, B.P.; Lowe, R.; Peisach, E.; Piehl, D.W.; Rose, Y.; et al. Protein Data Bank: A Comprehensive Review of 3d Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules 2022, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Rigsby, R.E.; Parker, A.B. Using the Pymol Application to Reinforce Visual Understanding of Protein Structure. Biochem. Mol. Biol. Educ. 2016, 44, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Radusky, L.G.; Cianferoni, D.; Serrano, L. Foldx 5.0: Working with Rna, Small Molecules and a New Graphical Interface. Bioinformatics 2019, 35, 4168–4169. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Hubschmann, D. Make Interactive Complex Heatmaps in R. Bioinformatics 2022, 38, 1460–1462. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Apweiler, R.; Bairoch, A.; Natale, D.A.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; et al. The Universal Protein Resource (Uniprot): An Expanding Universe of Protein Information. Nucleic Acids Res. 2006, 34, D187–D191. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from Embl-Ebi in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Tzou, P.L.; Tao, K.; Pond, S.L.K.; Shafer, R.W. Coronavirus Resistance Database (Cov-Rdb): Sars-CoV-2 Susceptibility to Monoclonal Antibodies, Convalescent Plasma, and Plasma from Vaccinated Persons. PLoS ONE 2022, 17, e0261045. [Google Scholar] [CrossRef]
- Yang, X.; Tang, B.; Pan, Y.H.; Yang, J.; Duan, G.; Zhu, J.; Hao, Z.Q.; Mu, H.; Dai, L.; Hu, W.; et al. Coronavirus Genbrowser for Monitoring the Transmission and Evolution of Sars-CoV-2. Brief. Bioinform. 2022, 23, bbab583. [Google Scholar]
- Salacinska, K.; Michalus, I.; Pinkier, I.; Rutkowska, L.; Chlebna-Sokol, D.; Jakubowska-Pietkiewicz, E.; Kepczynski, L.; Salachna, D.; Gach, A. The First Glycine-to-Tryptophan Substitution in the Col1a1 Gene Identified in a Patient with Progressively-Deforming Osteogenesis Imperfecta. Mol. Genet. Genom. Med. 2022, 10, e1996. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, Y.; Guo, C.; Gan, Y.; Huang, H. The Role of Proline Substitutions within Flexible Regions on Thermostability of Luciferase. Biochim. Biophys. Acta 2015, 1854, 65–72. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, A.J.; Allen, T.W. The Role of Tryptophan Side Chains in Membrane Protein Anchoring and Hydrophobic Mismatch. Biochim. Biophys. Acta 2013, 1828, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Lupala, C.S.; Ye, Y.; Chen, H.; Su, X.D.; Liu, H. Mutations on Rbd of Sars-CoV-2 Omicron Variant Result in Stronger Binding to Human Ace2 Receptor. Biochem. Biophys. Res. Commun. 2022, 590, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Greaney, A.J.; Loes, A.N.; Crawford, K.H.D.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive Mapping of Mutations in the Sars-CoV-2 Receptor-Binding Domain That Affect Recognition by Polyclonal Human Plasma Antibodies. Cell Host Microbe 2021, 29, 463–476. [Google Scholar] [CrossRef]
- Sun, K.; Tempia, S.; Kleynhans, J.; von Gottberg, A.; McMorrow, M.L.; Wolter, N.; Bhiman, J.N.; Moyes, J.; Carrim, M.; Martinson, N.A.; et al. Rapidly Shifting Immunologic Landscape and Severity of Sars-CoV-2 in the Omicron Era in South Africa. Nat. Commun. 2023, 14, 246. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lin, W.; Dong, W.; Xu, J. Origin and Evolutionary Analysis of the Sars-CoV-2 Omicron Variant. J. Biosaf. Biosecur. 2022, 4, 33–37. [Google Scholar] [CrossRef]
- Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron Variant of Sars-CoV-2: Genomics, Transmissibility, and Responses to Current COVID-19 Vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Radovanovic, A.; Incitti, R.; Kamau, A.A.; Alarawi, M.; Azhar, E.I.; Gojobori, T. Covmt: An Interactive Sars-CoV-2 Mutation Tracker, with a Focus on Critical Variants. Lancet Infect. Dis. 2021, 21, 602. [Google Scholar] [CrossRef]
- Tuekprakhon, A.; Nutalai, R.; Dijokaite-Guraliuc, A.; Zhou, D.; Ginn, H.M.; Selvaraj, M.; Liu, C.; Mentzer, A.J.; Supasa, P.; Duyvesteyn, H.M.E.; et al. Antibody Escape of Sars-CoV-2 Omicron Ba.4 and Ba.5 from Vaccine and Ba.1 Serum. Cell 2022, 185, 2422–2433.e13. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, Q.; Yang, G.; He, L.; Fan, H.; Deng, Y.Q.; Wang, Y.; Teng, Y.; Zhao, Z.; Cui, Y.; et al. Adaptation of Sars-CoV-2 in Balb/C Mice for Testing Vaccine Efficacy. Science 2020, 369, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef] [PubMed]
- Nuytinck, L.; Tukel, T.; Kayserili, H.; Apak, M.Y.; De Paepe, A. Glycine to Tryptophan Substitution in Type I Collagen in a Patient with Oi Type Iii: A Unique Collagen Mutation. J. Med. Genet. 2000, 37, 371–375. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron Escapes the Majority of Existing Sars-CoV-2 Neutralizing Antibodies. Nature 2020, 602, 657–663. [Google Scholar] [CrossRef]
Synonyms | Lineages | Origin | RBM Mutations |
---|---|---|---|
Alpha | B.1.1.7 | United Kingdom, October 2020 | E484A, N501Y |
Beta | B.1.351 | E. Cape, South Africa, October 2020 | K417N, E484K, N501Y |
Gamma | P.1 | Manaus, Brazil, March 2020 | K417N/T, E484K, N501Y |
Delta | B.1.617.2 | Maharashtra, India, April 2020 | L452R, K478T |
Omicron | BA.4, BA.5 | South Africa, January 2022 | L452R, F486V |
Omicron | BQ.1.1 | United Kingdom, November 2022 | D405N, R408S, K417N, N440K, K444T, G446S, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H |
Omicron | XBB.1.5 | United States, October 2022 | D405N, R408S, K417N, N440K, K444T, V445P, G446S, N460K, S477N, T478K, E484A, F486V, F490S, Q498R, N501Y, Y505H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahase, V.; Sobitan, A.; Yao, Q.; Shi, X.; Qin, H.; Kidane, D.; Tang, Q.; Teng, S. Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant. Viruses 2024, 16, 1150. https://doi.org/10.3390/v16071150
Mahase V, Sobitan A, Yao Q, Shi X, Qin H, Kidane D, Tang Q, Teng S. Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant. Viruses. 2024; 16(7):1150. https://doi.org/10.3390/v16071150
Chicago/Turabian StyleMahase, Vidhyanand, Adebiyi Sobitan, Qiaobin Yao, Xinghua Shi, Hong Qin, Dawit Kidane, Qiyi Tang, and Shaolei Teng. 2024. "Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant" Viruses 16, no. 7: 1150. https://doi.org/10.3390/v16071150
APA StyleMahase, V., Sobitan, A., Yao, Q., Shi, X., Qin, H., Kidane, D., Tang, Q., & Teng, S. (2024). Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant. Viruses, 16(7), 1150. https://doi.org/10.3390/v16071150