Treatment Management Challenges in Naïve and Experienced HIV-1-Infected Individuals Carrying the M184V Mutation
Abstract
:1. Introduction
2. Evolution of Antiretroviral Therapy
3. History of 3TC/FTC and Identification of M184V
4. Resistance and Impact of M184V on Viral Fitness
5. Global Epidemiology of M184V Mutation
6. Clinical Impact of M184V Mutation
7. Challenges in Naïve Patients
8. Challenges in Experienced Patients
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. HIV/AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 10 February 2022).
- Johnson, M.M.; Jones, C.E.; Clark, D.N. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022, 15, 107. [Google Scholar] [CrossRef] [PubMed]
- Vannappagari, V.; Ragone, L.; Henegar, C.; van Wyk, J.; Brown, D.; Demarest, J.; Quercia, R.; Clair, M.S.; Underwood, M.; Gatell, J.M.; et al. Prevalence of Pretreatment and Acquired HIV-1 Mutations Associated with Resistance to Lamivudine or Rilpivirine: A Systematic Review. Antivir. Ther. 2018, 24, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Assoumou, L.; Charpentier, C.; Recordon-Pinson, P.; Grudé, M.; Pallier, C.; Morand-Joubert, L.; Fafi-Kremer, S.; Krivine, A.; Montes, B.; Ferré, V.; et al. Prevalence of HIV-1 drug resistance in treated patients with viral load >50 copies/mL: A 2014 French nationwide study. J. Antimicrob. Chemother. 2017, 72, 1769–1773. [Google Scholar] [CrossRef] [PubMed]
- Meriki, H.D.; Tufon, K.A.; Anong, D.N.; Atanga, P.N.; Anyangwe, I.A.; Cho-Ngwa, F.; Nkuo-Akenji, T. Genetic diversity and antiretroviral resistance-associated mutation profile of treated and naive HIV-1 infected patients from the Northwest and Southwest regions of Cameroon. PLoS ONE 2019, 14, e0225575. [Google Scholar] [CrossRef]
- Zuo, L.; Liu, K.; Liu, H.; Hu, Y.; Zhang, Z.; Qin, J.; Xu, Q.; Peng, K.; Jin, X.; Wang, J.-H.; et al. Trend of HIV-1 drug resistance in China: A systematic review and meta-analysis of data accumulated over 17 years (2001–2017). eClinicalMedicine 2020, 18, 100238. [Google Scholar] [CrossRef]
- Etta, E.M.; Mavhandu, L.; Manhaeve, C.; McGonigle, K.; Jackson, P.; Rekosh, D.; Hammarskjold, M.-L.; Bessong, P.O.; Tebit, D.M. High level of HIV-1 drug resistance mutations in patients with unsuppressed viral loads in rural northern South Africa. AIDS Res. Ther. 2017, 14, 36. [Google Scholar] [CrossRef]
- Saini, S.; Bhalla, P.; Gautam, H.; Baveja, U.K.; Pasha, S.T.; Dewan, R. Resistance-Associated Mutations in HIV-1 among Patients Failing First-Line Antiretroviral Therapy. J. Int. Assoc. Physicians AIDS Care 2011, 11, 203–209. [Google Scholar] [CrossRef]
- Gallant, J.E. The M184V Mutation: What It Does, How to Prevent It, and What to Do with It When It’s There. AIDS Reader 2006, 16, 556–559. [Google Scholar]
- European AIDS Clinical Society. EACS Guidelines 12.0. Available online: https://www.eacsociety.org/guidelines/eacs-guidelines (accessed on 12 February 2024).
- Andre-Garnier, E.; Bocket, L.; Bourlet, T.; Hocqueloux, L.; Lepiller, Q.; Maillard, A.; Reigadas, S.; Barriere, G.; Durand, F.; Montes, B.; et al. Use of genotypic HIV DNA testing: A DELPHI-type consensus. J. Antimicrob. Chemother. 2024, 79, 578–588. [Google Scholar] [CrossRef]
- Peng, Y.; Zong, Y.; Wang, D.; Chen, J.; Chen, Z.-S.; Peng, F.; Liu, Z. Current drugs for HIV-1: From challenges to potential in HIV/AIDS. Front. Pharmacol. 2023, 14, 1294966. [Google Scholar] [CrossRef]
- Cutrell, J.; Jodlowski, T.; Bedimo, R. The management of treatment-experienced HIV patients (including virologic failure and switches). Ther. Adv. Infect. Dis. 2020, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.; Goldstein, F.; Reichmuth, M.L.; Kouyos, R.D.; Wandeler, G.; Egger, M.; Riou, J. Acquired HIV drug resistance mutations on first-line antiretroviral therapy in Southern Africa: Systematic review and Bayesian evidence synthesis. J. Clin. Epidemiol. 2022, 148, 135–145. [Google Scholar] [CrossRef]
- EPIVIR-HBV [Package Insert; GlaxoSmithKline: Research Triangle Park, NC, USA, 2017.
- World Health Organization. Serum and Red Blood Cell Folate Concentrations for Assessing Folate Status in Populations; Vitamin and Mineral Nutrition Information System: Geneva, Switzerland, 2015; Available online: http://apps.who.int/iris/bitstream/10665/162114/1/WHO_NMH_NHD_EPG_15.01.pdf?ua=1 (accessed on 14 March 2024).
- Günthard, H.F.; Saag, M.S.; Benson, C.A.; del Rio, C.; Eron, J.J.; Gallant, J.E.; Hoy, J.F.; Mugavero, M.J.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 Recommendations of the International Antiviral Society–USA Panel. JAMA 2016, 316, 191–210. [Google Scholar] [CrossRef]
- European AIDS Clinical Society. Guidelines, Version 9.0. Available online: http://www.eacsociety.org/files/guidelines_9.0-english.pdf (accessed on 31 January 2018).
- Panel for Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV; Department of Health and Human Services: Washington, DC, USA, 2021. Available online: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/archive/AdultandAdolescentGL_2021_08_16.pdf (accessed on 26 April 2023).
- Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection; Department of Health and Human Services: Washington, DC, USA, 2024. Available online: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/pediatric-arv/guidelines-pediatric-arv.pdf (accessed on 18 February 2024).
- Panel on Treatment of HIV during Pregnancy and Prevention of Perinatal Transmission. Recommendations for the Use of Antiretroviral Drugs during Pregnancy and Interventions to Reduce Perinatal HIV Transmission in the United States; Department of Health and Human Services: Washington, DC, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK586310/bin/pregnancyguide.pdf (accessed on 12 May 2024).
- Soudeyns, H.; Yao, X.I.; Gao, Q.; Belleau, B.; Kraus, J.L.; Nguyen-Ba, N.; Spira, B.; Wainberg, M.A. Anti-human immunodeficiency virus type 1 activity and in vitro toxicity of 2′-deoxy-3′-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob. Agents Chemother. 1991, 35, 1386–1390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doong, S.L.; Tsai, C.H.; Schinazi, R.F.; Liotta, D.C.; Cheng, Y.C. Inhibition of the replication of hepatitis B virus in vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues. Proc. Natl. Acad. Sci. USA 1991, 88, 8495–8499. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.A.; Cammack, N.; Jenkinson, H.J.; Jowett, A.J.; Jowett, M.I.; Pearson, B.A.; Penn, C.R.; Rouse, P.L.; Viner, K.C.; Cameron, J.M. (-)-2′-deoxy-3′-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob. Agents Chemother. 1992, 36, 733–739. [Google Scholar] [CrossRef]
- Coates, J.A.; Cammack, N.; Jenkinson, H.J.; Mutton, I.M.; Pearson, B.A.; Storer, R.; Cameron, J.M.; Penn, C.R. The separated enantiomers of 2′-deoxy-3′-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob. Agents Chemother. 1992, 36, 202–205. [Google Scholar] [CrossRef]
- Schinazi, R.F.; Chu, C.K.; Peck, A.; McMillan, A.; Mathis, R.; Cannon, D.; Jeong, L.S.; Beach, J.W.; Choi, W.B.; Yeola, S. Activities of the four optical isomers of 2′,3′-dideoxy-3′-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob. Agents Chemother. 1992, 36, 672–676. [Google Scholar] [CrossRef]
- Boucher, C.A.; Cammack, N.; Schipper, P.; Schuurman, R.; Rouse, P.; Wainberg, M.A.; Cameron, J.M. High-level resistance to (-) enantiomeric 2′-deoxy-3′-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother. 1993, 37, 2231–2234. [Google Scholar] [CrossRef]
- Stanford University. Major Nucleoside RT Inhibitor (NRTI) Resistance Mutations. In HIV Drug Resistance [Database Online]; Version 8.4; Stanford University: Palo Alto, CA, USA, 2022; Available online: https://hivdb.stanford.edu/dr-summary/resistance-notes/NRTI (accessed on 16 June 2017).
- Larder, B.A.; Kemp, S.D.; Purifoy, D.J. Infectious potential of human immunodeficiency virus type 1 reverse transcriptase mutants with altered inhibitor sensitivity. Proc. Natl. Acad. Sci. USA 1989, 86, 4803–4807. [Google Scholar] [CrossRef]
- Larder, B.A.; Kemp, S.D.; Harrigan, P.R. Potential Mechanism for Sustained Antiretroviral Efficacy of AZT-3TC Combination Therapy. Science 1995, 269, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.K.; Margot, N.A.; MacArthur, H.L.; Hung, M.; Miller, M.D.; White, K.L. The Balance between NRTI Discrimination and Excision Drives the Susceptibility of HIV-1 RT Mutants K65R, M184V and K65R+M184V. Antivir. Chem. Chemother. 2007, 18, 307–316. [Google Scholar] [CrossRef]
- Wolf, K.; Walter, H.; Beerenwinkel, N.; Keulen, W.; Kaiser, R.; Hoffmann, D.; Lengauer, T.; Selbig, J.; Vandamme, A.-M.; Korn, K.; et al. Tenofovir Resistance and Resensitization. Antimicrob. Agents Chemother. 2003, 47, 3478–3484. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.F.; Drosopoulos, W.C.; Prasad, V.R. The influence of 3TC resistance mutation M184I on the fidelity and error specificity of human immunodeficiency virus type 1 reverse transcriptase. Nucleic Acids Res. 1998, 26, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Drosopoulos, W.C.; Prasad, V.R. Increased polymerase fidelity of E89G, a nucleoside analog-resistant variant of human im-munodeficiency virus type 1 reverse transcriptase. J. Virol. 1996, 70, 4834–4838. [Google Scholar] [CrossRef] [PubMed]
- Castagna, A.; Danise, A.; Menzo, S.; Galli, L.; Gianotti, N.; Carini, E.; Boeri, E.; Galli, A.; Cernuschi, M.; Hasson, H.; et al. Lamivudine monotherapy in HIV-1-infected patients harbouring a lamivudine-resistant virus: A randomized pilot study (E-184V study). AIDS 2006, 20, 795–803. [Google Scholar] [CrossRef]
- CAESAR Coordinating Committee. Randomised trial of addition of lamivudine or lamivudine plus loviride to zidovudine-containing regimens for patients with HIV-1 infection: The CAESAR trial. Lancet 1997, 349, 1413–1421. [Google Scholar] [CrossRef]
- Pillay, D.; Albert, J.; Bertagnolio, S.; Boucher, C.; Brun-Vezinet, F.; Clotet, B.; Giaquinto, C.; Perno, C.F. Implications of HIV drug resistance on first- and second-line therapies in resource-limited settings: Report from a workshop organized by the Collaborative HIV and Anti-HIV Drug Resistance Network. Antivir. Ther. 2013, 18, 831–836. [Google Scholar] [CrossRef]
- Rokx, C.; Gras, L.; van de Vijver, D.; Verbon, A.; Rijnders, B.; the ATHENA National Observational Cohort Study. Virological responses to lamivudine or emtricitabine when combined with tenofovir and a protease inhibitor in treatment-naïve HIV-1-infected patients in the Dutch AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort. HIV Med. 2016, 17, 571–580. [Google Scholar] [CrossRef]
- Benson, C.A.; van der Horst, C.; LaMarca, A.; Haas, D.W.; McDonald, C.K.; Steinhart, C.R.; Rublein, J.; Quinn, J.B.; Mondou, E.; Rousseau, F. A randomized study of emtricitabine and lamivudine in stably suppressed patients with HIV. AIDS 2004, 18, 2269–2276. [Google Scholar] [CrossRef]
- Smith, K.Y.; Patel, P.; Fine, D.; Bellos, N.; Sloan, L.; Lackey, P.; Kumar, P.N.; Sutherland-Phillips, D.H.; Vavro, C.; Yau, L.; et al. Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS 2009, 23, 1547–1556. [Google Scholar] [CrossRef]
- Masho, S.W.; Wang, C.-L.; Nixon, D.E. Review of tenofovir-emtricitabine. Ther. Clin. Risk Manag. 2007, 3, 1097–1104. [Google Scholar] [PubMed]
- Bushman, L.R.; Kiser, J.J.; Rower, J.E.; Klein, B.; Zheng, J.-H.; Ray, M.L.; Anderson, P.L. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection. J. Pharm. Biomed. Anal. 2011, 56, 390–401. [Google Scholar] [CrossRef]
- Margot, N.A.; Waters, J.M.; Miller, M.D. In Vitro Human Immunodeficiency Virus Type 1 Resistance Selections with Combinations of Tenofovir and Emtricitabine or Abacavir and Lamivudine. Antimicrob. Agents Chemother. 2006, 50, 4087–4095. [Google Scholar] [CrossRef]
- McColl, D.J.; Margot, N.; Chen, S.-S.; Harris, J.; Borroto-Esoda, K.; Miller, M.D. Reduced Emergence of the M184V/I Resistance Mutation When Antiretroviral-Naïve Subjects Use Emtricitabine Versus Lamivudine in Regimens Composed of Two NRTIs Plus the NNRTI Efavirenz. HIV Clin. Trials 2011, 12, 61–70. [Google Scholar] [CrossRef]
- Rousseau, F.S.; Wakeford, C.; Mommeja-Marin, H.; Sanne, I.; Moxham, C.; Harris, J.; Hulett, L.; Wang, L.H.; Quinn, J.B.; the FTC-102 Clinical Trial Group; et al. Prospective Randomized Trial of Emtricitabine versus Lamivudine Short-Term Monotherapy in Human Immunodeficiency Virus–Infected Patients. J. Infect. Dis. 2003, 188, 1652–1658. [Google Scholar] [CrossRef]
- Ford, N.; Shubber, Z.; Hill, A.; Vitoria, M.; Doherty, M.; Mills, E.J.; Gray, A. Comparative Efficacy of Lamivudine and Emtricitabine: A Systematic Review and Meta-Analysis of Randomized Trials. PLoS ONE 2013, 8, e79981. [Google Scholar] [CrossRef]
- Rokx, C.; Fibriani, A.; van de Vijver, D.A.M.C.; Verbon, A.; Schutten, M.; Gras, L.; Rijnders, B.J.A. Increased Virological Failure in Naive HIV-1-Infected Patients Taking Lamivudine Compared with Emtricitabine in Combination with Tenofovir and Efavirenz or Nevirapine in the Dutch Nationwide ATHENA Cohort. Clin. Infect. Dis. 2014, 60, 143–153. [Google Scholar] [CrossRef]
- Kumar, P.N.; Patel, P. Lamivudine for the treatment of HIV. Expert Opin. Drug Metab. Toxicol. 2009, 6, 105–114. [Google Scholar] [CrossRef]
- Schuurman, R.; Nijhuis, M.; van Leeuwen, R.; Schipper, P.; de Jong, D.; Collis, P.; Danner, S.A.; Mulder, J.; Loveday, C.; Christopherson, C.; et al. Rapid Changes in Human Immunodeficiency Virus Type 1 RNA Load and Appearance of Drug-Resistant Virus Populations in Persons Treated with Lamivudine (3TC). J. Infect. Dis. 1995, 171, 1411–1419. [Google Scholar] [CrossRef]
- Underwood, M.R.; Ross, L.L.; Irlbeck, D.M.; Gerondelis, P.; Rouse, E.; Clair, M.H.S.; Trinh, L.; Parkin, N.; Lanier, E.R. Sensitivity of Phenotypic Susceptibility Analyses for Nonthymidine Nucleoside Analogues Conferred by K65R or M184V in Mixtures with Wild-Type HIV. J. Infect. Dis. 2009, 199, 84–88. [Google Scholar] [CrossRef]
- Quan, Y.; Brenner, B.G.; Oliveira, M.; Wainberg, M.A. Lamivudine Can Exert a Modest Antiviral Effect against Human Immunodeficiency Virus Type 1 Containing the M184V Mutation. Antimicrob. Agents Chemother. 2003, 47, 747–754. [Google Scholar] [CrossRef]
- Götte, M.; Arion, D.; Parniak, M.A.; Wainberg, M.A. The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis. J. Virol. 2000, 74, 3579–3585. [Google Scholar] [CrossRef]
- Meyer, P.R.; Matsuura, S.E.; Mian, A.M.; So, A.G.; Scott, W.A. A mechanism of AZT resistance: An increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol. Cell 1999, 4, 35–43. [Google Scholar] [CrossRef]
- Wainberg, M.A. The impact of the M184V substitution on drug resistance and viral fitness. Expert Rev. Anti-Infect. Ther. 2004, 2, 147–151. [Google Scholar] [CrossRef]
- Quiñones-Mateu, M.E.; Weber, J.; Rangel, H.R.; Chakraborty, B. HIV-1 Fitness and Antiretroviral Drug Resistance. AIDS Rev. 2001, 3, 223–242. [Google Scholar]
- Back, N.K.; Nijhuis, M.; Keulen, W.; Boucher, C.A.; Essink, B.O.O.; van Kuilenburg, A.B.; van Gennip, A.H.; Berkhout, B. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J. 1996, 15, 4040–4049. [Google Scholar] [CrossRef]
- Descamps, D.; Flandre, P.; Calvez, V.; Peytavin, G.; Meiffredy, V.; Collin, G.; Delaugerre, C.; Robert-Delmas, S.; Bazin, B.; Aboulker, J.P.; et al. Mechanisms of Virologic Failure in Previously Untreated HIV-Infected Patients from a Trial of Induction-Maintenance Therapy. JAMA 2000, 283, 205–211. [Google Scholar] [CrossRef]
- Eron, J.J. The treatment of antiretroviral-naive subjects with the 3TC/zidovudine combination: A review of North American (NUCA 3001) and European (NUCB 3001) trials. AIDS 1996, 10, S11–S19. [Google Scholar] [CrossRef]
- Maguire, M.; Gartland, M.; Moore, S.; Hill, A.; Tisdale, M.; Harrigan, R.; Kleim, J.-P. Absence of zidovudine resistance in antiretroviral-naive patients following zidovudine/lamivudine/protease inhibitor combination therapy: Virological evaluation of the AVANTI 2 and AVANTI 3 studies. AIDS 2000, 14, 1195–1201. [Google Scholar] [CrossRef]
- Naeger, L.K.; Margot, N.A.; Miller, M.D. Increased Drug Susceptibility of HIV-1 Reverse Transcriptase Mutants Containing M184V and Zidovudine-Associated Mutations: Analysis of Enzyme Processivity, Chain-Terminator Removal and Viral Replication. Antivir. Ther. 2000, 6, 115–126. [Google Scholar] [CrossRef]
- Sharma, P.L.; Crumpacker, C.S. Decreased Processivity of Human Immunodeficiency Virus Type 1 Reverse Transcriptase (RT) Containing Didanosine-Selected Mutation Leu74Val: A Comparative Analysis of RT Variants Leu74Val and Lamivudine-Selected Met184Val. J. Virol. 1999, 73, 8448–8456. [Google Scholar] [CrossRef] [PubMed]
- Singhroy, D.N.; Wainberg, M.A.; Mesplède, T. Combination of the R263K and M184I/V resistance substitutions against dolutegravir and lamivudine decreases HIV replicative capacity. Antimicrob. Agents Chemother. 2015, 59, 2882–2885. [Google Scholar] [CrossRef]
- Xu, H.-T.; Martinez-Cajas, J.L.; Ntemgwa, M.L.; Coutsinos, D.; Frankel, F.A.; Brenner, B.G.; Wainberg, M.A. Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance. Retrovirology 2009, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Bebenek, K.; Abbotts, J.; Roberts, J.D.; Wilson, S.H.; A Kunkel, T. Specificity and Mechanism of Error-Prone Replication by Human Immunodeficiency Virus-1 Reverse Transcriptase. J. Biol. Chem. 1989, 264, 16948–16956. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.A.; Moisi, D.; Oliveira, M.; Toni, T.D.; Brenner, B.G. Transmission dynamics of the M184V drug resistance mutation in primary HIV infection. J. Antimicrob. Chemother. 2011, 66, 2346–2349. [Google Scholar] [CrossRef]
- Kuritzkes, D.R.; Quinn, J.B.; Benoit, S.L.; Shugarts, D.L.; Griffin, A.; Bakhtiari, M.; Poticha, D.; Eron, J.J.; Fallon, M.A.; Rubin, M. Drug resistance and virologic response in NUCA 3001, a randomized trial of lamivudine (3TC) versus zidovudine (ZDV) versus ZDV plus 3TC in previously untreated patients. AIDS 1996, 10, 975–981. [Google Scholar] [CrossRef]
- Miller, V.; Stark, T.; Loeliger, A.; Lange, J. The impact of the M184V substitution in HIV-1 reverse transcriptase on treatment response. HIV Med. 2002, 3, 135–145. [Google Scholar] [CrossRef]
- Campbell, T.B.; Shulman, N.S.; Johnson, S.C.; Zolopa, A.R.; Young, R.K.; Bushman, L.; Fletcher, C.V.; Lanier, E.R.; Merigan, T.C.; Kuritzkes, D.R. Antiviral Activity of Lamivudine in Salvage Therapy for Multidrug-Resistant HIV-1 Infection. Clin. Infect. Dis. 2005, 41, 236–242. [Google Scholar] [CrossRef]
- Petrella, M.; Wainberg, M.A. Might the M184V substitution in HIV-1 RT confer clinical benefit? AIDS Rev. 2002, 4, 224–232. [Google Scholar]
- Margot, N.A.; Wong, P.; Kulkarni, R.; White, K.; Porter, D.; Abram, M.E.; Callebaut, C.; Miller, M.D. Commonly transmitted HIV-1 drug resistance mutations in re-verse-transcriptase and protease in antiretroviral treatment–naive patients and response to regimens containing tenofovir disoproxil fumarate or tenofovir alafenamide. J. Infect. Dis. 2017, 215, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Brenner, B.G.; Roger, M.; Moisi, D.D.; Oliveira, M.; Hardy, I.; Turgel, R.; Charest, H.; Routy, J.P.; Wainberg, M.A.; Montreal PHI Cohort and HIV Prevention Study Groups. Transmission networks of drug resistance acquired in primary/early stage HIV infection. AIDS 2008, 22, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Hamers, R.L.; Wallis, C.L.; Kityo, C.; Siwale, M.; Mandaliya, K.; Conradie, F.; Botes, M.E.; Wellington, M.; Osibogun, A.; Sigaloff, K.C.E.; et al. HIV-1 drug resistance in antiretroviral-naive individuals in sub-Saharan Africa after rollout of antiretroviral therapy: A multicentre observational study. Lancet Infect. Dis. 2011, 11, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Jordan, M.R.; Raizes, E.; Chua, A.; Parkin, N.; Kantor, R.; Van Zyl, G.U.; Mukui, I.; Hosseinipour, M.C.; Frenkel, L.M.; et al. HIV-1 drug resistance mutations: Potential applications for point-of-care genotypic resistance testing. PLoS ONE 2015, 10, e0145772. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gregson, J.; Parkin, N.; Haile-Selassie, H.; Tanuri, A.; Andrade Forero, L.; Kaleebu, P.; Watera, C.; Aghokeng, A.; Mutenda, N.; et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2018, 18, 346–355. [Google Scholar] [CrossRef]
- Hamers, R.L.; Sigaloff, K.C.E.; Wensing, A.M.; Wallis, C.L.; Kityo, C.; Siwale, M.; Mandaliya, K.; Ive, P.; Botes, M.E.; Wellington, M.; et al. Patterns of HIV-1 Drug Resistance after First-Line Antiretroviral Therapy (ART) Failure in 6 Sub-Saharan African Countries: Implications for Second-Line ART Strategies. Clin. Infect. Dis. 2012, 54, 1660–1669. [Google Scholar] [CrossRef]
- Ndashimye, E.; Avino, M.; Kyeyune, F.; Nankya, I.; Gibson, R.M.; Nabulime, E.; Poon, A.F.Y.; Kityo, C.; Mugyenyi, P.; Quinones-Mateu, M.E.; et al. Absence of HIV-1 drug resistance mutations supports the use of dolutegravir in Uganda. AIDS Res. Hum. Retroviruses 2018, 34, 404–414. [Google Scholar] [CrossRef]
- TenoRes Study Group. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: A multicentre retrospective cohort study. Lancet Infect. Dis. 2016, 16, 565–575. [Google Scholar]
- HIV/AIDS JUNPo. Ending AIDS: Progress towards the 90-90-90 Targets. Global AIDS Update. Available online: https://unaids.org/sites/default/files/media_asset/UNAIDS_2017_ENDINGAIDS_Slides_en.pdf (accessed on 25 October 2018).
- Abela, I.A.; Scherrer, A.U.; Böni, J.; Yerly, S.; Klimkait, T.; Perreau, M.; Hirsch, H.H.; Furrer, H.; Calmy, A.; Schmid, P.; et al. Emergence of drug resistance in the Swiss HIV Cohort Study under potent antiretroviral therapy is observed in socially disadvantaged patients. Clin. Infect. Dis. 2019, 70, 297–303. [Google Scholar] [CrossRef]
- Weiser, S.; Wolfe, W.; Bangsberg, D.; Thior, I.; Gilbert, P.; Makhema, J.; Kebaabetswe, P.; Dickenson, D.; Mompati, K.; Essex, M.; et al. Barriers to Antiretroviral Adherence for Patients Living with HIV Infection and AIDS in Botswana. Am. J. Ther. 2003, 34, 281–288. [Google Scholar] [CrossRef]
- Harrigan, P.R.; Hogg, R.S.; Dong, W.W.; Yip, B.; Wynhoven, B.; Woodward, J.; Brumme, C.J.; Brumme, Z.L.; Mo, T.; Al-exander, C.S.; et al. Predictors of HIV drug-resistance mutations in a large antiretroviral-naive cohort initiating triple antiretroviral therapy. J. Infect. Dis. 2005, 191, 339–347. [Google Scholar] [CrossRef]
- Coetzee, J.; Hunt, G.; Jaffer, M.; Otwombe, K.; Scott, L.; Bongwe, A.; Ledwaba, J.; Molema, S.; Jewkes, R.; Gray, G.E. HIV-1 viraemia and drug resistance amongst female sex workers in Soweto, South Africa: A cross sectional study. PLoS ONE 2017, 12, e0188606. [Google Scholar] [CrossRef]
- Hawkins, C.; Ulenga, N.; Liu, E.; Aboud, S.; Mugusi, F.; Chalamilla, G.; Sando, D.; Aris, E.; Carpenter, D.; Fawzi, W. HIV virological failure and drug resistance in a cohort of Tanzanian HIV-infected adults. J. Antimicrob. Chemother. 2016, 71, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Silverman, R.A.; Beck, I.A.; Kiptinness, C.; Levine, M.; Milne, R.; McGrath, C.J.; Bii, S.; Richardson, B.A.; John-Stewart, G.; Chohan, B.; et al. Prevalence of Pre-Antiretroviral-Treatment Drug Resistance by Gender, Age, and Other Factors in HIV-Infected Individuals Initiating Therapy in Kenya, 2013–2014. J. Infect. Dis. 2017, 216, 1569–1578. [Google Scholar] [CrossRef]
- Teto, G.; Tagny, C.T.; Mbanya, D.; Fonsah, J.Y.; Fokam, J.; Nchindap, E.; Kenmogne, L.; Njamnshi, A.K.; Kanmogne, D. Gag P2/NC and pol genetic diversity, polymorphism, and drug resistance mutations in HIV-1 CRF02_AG- and non-CRF02_AG-infected patients in Yaoundé, Cameroon. Sci. Rep. 2017, 7, 14136. [Google Scholar] [CrossRef]
- Chung, M.H.; Silverman, R.; Beck, I.A.; Yatich, N.; Dross, S.; McKernan-Mullin, J.; Bii, S.; Tapia, K.; Stern, J.; Chohan, B.; et al. Increasing HIV-1 pretreatment drug resistance among antiretroviral-naïve adults initiating treatment between 2006 and 2014 in Nairobi, Kenya. AIDS 2016, 30, 1680–1682. [Google Scholar] [CrossRef]
- Hassan, A.S.; Mwaringa, S.M.; Obonyo, C.A.; Nabwera, H.M.; Sanders, E.J.; de Wit, T.F.R.; Cane, P.A.; Berkley, J.A. Low Prevalence of Transmitted HIV Type 1 Drug Resistance among Antiretroviral-Naive Adults in a Rural HIV Clinic in Kenya. AIDS Res. Hum. Retroviruses 2013, 29, 129–135. [Google Scholar] [CrossRef]
- Nanfack, A.J.; Redd, A.D.; Bimela, J.S.; Ncham, G.; Achem, E.; Banin, A.N.; Kirkpatrick, A.R.; Porcella, S.F.; Agyingi, L.A.; Meli, J.; et al. Multimethod longitudinal HIV drug resistance analysis in antiretroviral-therapy-naive patients. J. Clin. Microbiol. 2017, 55, 2785–2800. [Google Scholar] [CrossRef]
- Lunar, M.M.; Židovec Lepej, S.; Abecasis, A.B.; Tomažič, J.; Vidmar, L.; Karner, P.; Vovko, T.D.; Pečavar, B.; Maver, P.J.; Seme, K.; et al. Short communication: Prevalence of HIV type 1 transmitted drug resistance in Slovenia: 2005. AIDS Res. Hum. Retroviruses 2013, 29, 343–349. [Google Scholar] [CrossRef]
- Paraskevis, D.; Kostaki, E.; Magiorkinis, G.; Gargalianos, P.; Xylomenos, G.; Magiorkinis, E.; Lazanas, M.; Chini, M.; Nikolopoulos, G.; Skoutelis, A.; et al. Prevalence of drug resistance among HIV-1 treatment-naive patients in Greece during 2003–2015: Transmitted drug resistance is due to onward transmissions. Infect. Genet. Evol. 2017, 54, 183–191. [Google Scholar] [CrossRef]
- Parczewski, M.; Leszczyszyn-Pynka, M.; Urbanska, A. Differences in the integrase and reverse transcriptase transmitted resistance patterns in northern Poland. Infect. Genet. Evol. 2017, 49, 122–129. [Google Scholar] [CrossRef]
- Pineda-Peña, A.-C.; Schrooten, Y.; Vinken, L.; Ferreira, F.; Li, G.; Trovão, N.S.; Khouri, R.; Derdelinckx, I.; De Munter, P.; Kücherer, C.; et al. Trends and Predictors of Transmitted Drug Resistance (TDR) and Clusters with TDR in a Local Belgian HIV-1 Epidemic. PLoS ONE 2014, 9, e101738. [Google Scholar] [CrossRef]
- Sallam, M.; Şahin, G.; Indriðason, H.; Esbjörnsson, J.; Löve, A.; Widell, A.; Gottfreðsson, M.; Medstrand, P. Decreasing prevalence of transmitted drug resistance among ART-naive HIV-1-infected patients in Iceland, 1996. Infect. Ecol. Epidemiol. 2017, 7, 1328964. [Google Scholar] [CrossRef]
- Stanojevic, M.; Siljic, M.; Salemovic, D.; Pesic-Pavlovic, I.; Zerjav, S.; Nikolic, V.; Jevtovic, D.; Ranin, J. Ten years survey of primary HIV-1 resistance in Serbia: The occurrence of multiclass resistance. AIDS Res. Hum. Retroviruses 2014, 30, 634–641. [Google Scholar] [CrossRef]
- Tostevin, A.; White, E.; Dunn, D.; Croxford, S.; Delpech, V.; Williams, I.; Asboe, D.; Pozniak, A.; Churchill, D.; Geretti, A.; et al. Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom. HIV Med. 2016, 18, 204–213. [Google Scholar] [CrossRef]
- Vega, Y.; Delgado, E.; Fernández-García, A.; Cuevas, M.T.; Thomson, M.M.; Montero, V.; Sánchez, M.; Sánchez, A.M.; Pérez-Álvarez, L.; Spanish Group for the Study of New HIV-1 Diagnoses in Galicia and Basque Country. Epidemiological Surveillance of HIV-1 Transmitted Drug Resistance in Spain in 2004–2012: Relevance of Transmission Clusters in the Propagation of Resistance Mutations. PLoS ONE 2015, 10, e0125699. [Google Scholar] [CrossRef]
- Winand, R.; Theys, K.; Eusébio, M.; Aerts, J.; Camacho, R.J.; Gomes, P.; Suchard, M.A.; Vandamme, A.-M.; Abecasis, A.B.; on behalf of the Portuguese HIV-1 Resistance Study Group. Assessing transmissibility of HIV-1 drug resistance mutations from treated and from drug-naive individuals. AIDS 2015, 29, 2045–2052. [Google Scholar] [CrossRef]
- Delatorre, E.; Silva-De-Jesus, C.; Couto-Fernandez, J.C.; Pilotto, J.H.; Morgado, M.G. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil. AIDS Res. Hum. Retroviruses 2017, 33, 68–73. [Google Scholar] [CrossRef]
- Ferreira, A.C.G.; Coelho, L.E.; Grinsztejn, E.; de Jesus, C.S.; Guimarães, M.L.; Veloso, V.G.; Grinsztejn, B.; Cardoso, S.W. Transmitted drug resistance in patients with acute/recent HIV infection in Brazil. Braz. J. Infect. Dis. 2017, 21, 396–401. [Google Scholar] [CrossRef]
- Tilghman, M.; Pérez-Santiago, J.; Osorio, G.; Little, S.; Richman, D.; Mathews, W.; Haubrich, R.; Smith, D. Community HIV-1 drug resistance is associated with transmitted drug resistance. HIV Med. 2014, 15, 339–346. [Google Scholar] [CrossRef]
- Readhead, A.C.; Gordon, D.E.; Wang, Z.; Anderson, B.J.; Brousseau, K.S.; Kouznetsova, M.A.; Forgione, L.A.; Smith, L.C.; Torian, L.V. Transmitted Antiretroviral Drug Resistance in New York State, 2006–2008: Results from a New Surveillance System. PLoS ONE 2012, 7, e40533. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Li, S.; Li, Z.; Zhang, Z.; Zhao, J.; Li, L.; Wang, L.; Yin, Q.; Wang, Y.; Zeng, Z.; et al. HIV-1 transmitted drug resistance-associated mutations and mutation co-variation in HIV-1 treatment-naïve MSM from 2011 to 2013 in Beijing, China. BMC Infect. Dis. 2014, 14, 689. [Google Scholar] [CrossRef] [PubMed]
- Adawaye, C.; Fokam, J.; Kamangu, E.; Alio, H.M.; Chahad, A.M.; Susin, F.; Moussa, A.M.; Bertin, T.H.; Tidjani, A.; Vaira, D.; et al. Virological response, HIV-1 drug resistance mutations and genetic diversity among patients on first-line antiretroviral therapy in N’Djamena, Chad: Findings from a cross-sectional study. BMC Res. Notes 2017, 10, 589. [Google Scholar] [CrossRef]
- Boender, T.S.; Kityo, C.M.; Boerma, R.S.; Hamers, R.L.; Ondoa, P.; Wellington, M.; Siwale, M.; Nankya, I.; Kaudha, E.; Akanmu, A.S.; et al. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa. J. Antimicrob. Chemother. 2016, 71, 2918–2927. [Google Scholar] [CrossRef]
- Brooks, K.; Diero, L.; DeLong, A.; Balamane, M.; Reitsma, M.; Kemboi, E.; Orido, M.; Emonyi, W.; Coetzer, M.; Hogan, J.; et al. Treatment failure and drug resistance in HIV-positive patients on tenofovir-based first-line antiretroviral therapy in western Kenya. J. Int. AIDS Soc. 2016, 19, 20798. [Google Scholar] [CrossRef]
- Van Zyl, G.U.; Liu, T.F.; Claassen, M.; Engelbrecht, S.; de Oliveira, T.; Preiser, W.; Wood, N.T.; Travers, S.; Shafer, R.W. Trends in Genotypic HIV-1 Antiretroviral Resistance between 2006 and 2012 in South African Patients Receiving First- and Second-Line Antiretro-Viral Treatment Regimens. PLoS ONE 2013, 8, e67188. [Google Scholar] [CrossRef]
- Etiebet, M.A.; Shepherd, J.; Nowak, R.G.; Charurat, M.; Chang, H.; Ajayi, S.; Elegba, O.; Ndembi, N.; Abimiku, A.; Carr, J.K.; et al. Tenofovir-based regimens associated with less drug resistance in HIV-1-infected Nigerians failing first-line antiretroviral therapy. AIDS 2013, 27, 553–561. [Google Scholar] [CrossRef]
- Kebe, K.; Thiam, M.; Gueye, N.R.D.; Diop, H.; Dia, A.; Sy, H.S.; Charpentier, C.; Belec, L.; Mboup, S.; Kane, C.T. High Rate Of Antiretroviral Drug Resistance Mutations in HIV Type 1-Infected Senegalese Children in Virological Failure on First-Line Treatment According to the World Health Organization Guidelines. AIDS Res. Hum. Retroviruses 2013, 29, 242–249. [Google Scholar] [CrossRef]
- Namakoola, I.; Kasamba, I.; Mayanja, B.N.; Kazooba, P.; Lutaakome, J.; Lyagoba, F.; Kapaata, A.A.; Kaleebu, P.; Munderi, P.; On behalf of the CoLTART Study Team. From antiretroviral therapy access to provision of third line regimens: Evidence of HIV Drug resistance mutations to first and second line regimens among Ugandan adults. BMC Res. Notes 2016, 9, 515. [Google Scholar] [CrossRef]
- Ndahimana, J.D.; Riedel, D.J.; Mwumvaneza, M.; Sebuhoro, D.; Uwimbabazi, J.C.; Kubwimana, M.; Mugabo, J.; Mulindabigwi, A.; Kirk, C.; Kanters, S.; et al. Drug resistance mutations after the first 12 months on antiretroviral therapy and determinants of virological failure in Rwanda. Trop. Med. Int. Health 2016, 21, 928–935. [Google Scholar] [CrossRef]
- Nii-Trebi, N.I.; Brandful, J.A.M.; Ibe, S.; Sugiura, W.; Barnor, J.S.; Bampoh, P.O.; Yamaoka, S.; Matano, T.; Yoshimura, K.; Ishikawa, K.; et al. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana. J. Med. Microbiol. 2017, 66, 1663–1672. [Google Scholar] [CrossRef]
- Pillay, S.; Bland, R.M.; Lessells, R.J.; Manasa, J.; de Oliveira, T.; Danaviah, S. Drug resistance in children at virological failure in a rural KwaZulu-Natal, South Africa, cohort. AIDS Res. Ther. 2014, 11, 3. [Google Scholar] [CrossRef]
- Sebunya, R.; Musiime, V.; Kitaka, S.B.; Ndeezi, G. Incidence and risk factors for first line anti retroviral treatment failure among Ugandan children attending an urban HIV clinic. AIDS Res. Ther. 2013, 10, 25. [Google Scholar] [CrossRef]
- Loubet, P.; Charpentier, C.; Visseaux, B.; Nuta, C.; Adu, E.; Chapplain, J.-M.; Baysah, M.; Walters-Doe, S.; Tattevin, P.; Peytavin, G.; et al. Short Communication: Prevalence of HIV-1 Transmitted Drug Resistance in Liberia. AIDS Res. Hum. Retroviruses 2014, 30, 863–866. [Google Scholar] [CrossRef]
- Skhosana, L.; Steegen, K.; Bronze, M.; Lukhwareni, A.; Letsoalo, E.; Papathanasopoulos, M.A.; Carmona, S.C.; Stevens, W.S. High Prevalence of the K65R Mutation in HIV-1 Subtype C Infected Patients Failing Tenofovir-Based First-Line Regimens in South Africa. PLoS ONE 2015, 10, e0118145. [Google Scholar] [CrossRef]
- Steegen, K.; Bronze, M.; Papathanasopoulos, M.A.; van Zyl, G.; Goedhals, D.; Variava, E.; MacLeod, W.; Sanne, I.; Stevens, W.S.; Carmona, S. HIV-1 antiretroviral drug resistance patterns in patients failing NNRTI-based treatment: Results from a national survey in South Africa. J. Antimicrob. Chemother. 2017, 72, 210–219. [Google Scholar] [CrossRef]
- Jones, L.R.; Moretti, F.; Calvo, A.Y.; Dilernia, D.A.; Manrique, J.M.; Gómez-Carrillo, M.; Salomón, H. Drug resistance mutations in HIV pol sequences from Argentinean patients under antiretroviral treatment: Subtype, gender, and age issues. AIDS Res. Hum. Retroviruses 2012, 28, 949–955. [Google Scholar] [CrossRef]
- Lopes, C.A.F.; Soares, M.A.; Falci, D.R.; Sprinz, E. The Evolving Genotypic Profile of HIV-1 Mutations Related to Antiretroviral Treatment in the North Region of Brazil. BioMed Res. Int. 2015, 2015, 738528. [Google Scholar] [CrossRef]
- Al Hajjar, S.H.; Frayha, H.; Althawadib, S. Antiretroviral resistance in HIV-infected Saudi children failing first-line highly active antiretroviral therapy. Ann. Saudi Med. 2012, 32, 565–569. [Google Scholar] [CrossRef]
- Farrokhi, M.; Moallemi, S.; Shirkoohi, R.; Golmohammadi, R.; Ahsani-Nasab, S.; Sardashti, S.; Abbasian, L.; Baesi, K.; Mohraz, M. Antiretroviral Drug Resistance Mutations among HIV Treatment Failure Patients in Tehran, Iran. Iran. J. Public Health 2017, 46, 1256–1264. [Google Scholar]
- Hamkar, R.; Mohraz, M.; Lorestani, S.; Aghakhani, A.; Truong, H.M.; McFarland, W.; Banifazl, M.; Eslamifar, A.; Foroughi, M.; Pakfetrat, A.; et al. Assessing subtype and drug-resistance-associated mutations among antiretroviral-treated HIV-infected patients. AIDS 2010, 24 (Suppl. S2), S85–S91. [Google Scholar] [CrossRef]
- Charest, H.; Doualla-Bell, F.; Cantin, R.; Murphy, D.G.; Lemieux, L.; Brenner, B.; Hardy, I.; Moisi, D.; Lo, E.; Baril, J.G.; et al. A significant reduction in the frequency of HIV-1 drug resistance in Québec from 2001 to 2011 is asso ciated with a decrease in the monitored viral load. PLoS ONE 2014, 9, e109420. [Google Scholar] [CrossRef]
- Mukerji, S.S.; Misra, V.; Lorenz, D.; Cervantes-Arslanian, A.M.; Lyons, J.; Chalkias, S.; Wurcel, A.; Burke, D.; Venna, N.; Morgello, S.; et al. Temporal Patterns and Drug Resistance in CSF Viral Escape among ART-Experienced HIV-1 Infected Adults. Am. J. Ther. 2017, 75, 246–255. [Google Scholar] [CrossRef]
- Picchio, G.R.; Rimsky, L.T.; Van Eygen, V.; Haddad, M.; Napolitano, L.A.; Vingerhoets, J. Prevalence in the Usa of Rilpivirine Resistance-Associated Mutations in Clinical Samples and Effects on Phenotypic Susceptibility to Rilpivirine and Etravirine. Antivir. Ther. 2013, 19, 819–823. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Tsai, M.S.; Yang, C.J.; Cheng, S.H.; Sun, H.Y.; Chang, S.F.; Su, L.H.; Su, Y.C.; Hung, C.C.; Chang, S.Y. Patterns of emergent resistance-associated mutations after initiation of non-nucleoside reverse-transcriptase inhibitor-containing antiretroviral regimens in Taiwan: A multicenter cohort study. Infect. Drug Resist. 2018, 11, 849–859. [Google Scholar] [CrossRef]
- Gare, J.; Ryan, C.E.; David, M.; Timbi, D.; Kaima, P.; Kombati, Z.; Imara, U.; Kelly-Hanku, A.; Siba, P.M.; Crowe, S.M.; et al. Presence of HIV drug resistance in antiretroviral therapy-naive and -experienced patients from Papua New Guinea. J. Antimicrob. Chemother. 2014, 69, 2183–2186. [Google Scholar] [CrossRef]
- Liu, P.; Feng, Y.; Wu, J.; Tian, S.; Su, B.; Wang, Z.; Liao, L.; Xing, H.; You, Y.; Shao, Y.; et al. Polymorphisms and Mutational Covariation Associated with Death in a Prospective Cohort of HIV/AIDS Patients Receiving Long-Term ART in China. PLoS ONE 2017, 12, e0170139. [Google Scholar] [CrossRef]
- Ambrosioni, J.; Sued, O.; Nicolas, D.; Parera, M.; López-Diéguez, M.; Romero, A.; Agüero, F.; Marcos, M.Á.; Manzardo, C.; Zamora, L.; et al. Trends in transmission of drug resistance and prevalence of bon-B subtypes in patients with acute or recent HIV-1 infection in Barcelona in the last 16 years (1997–2012). PLoS ONE 2015, 10, e0125837. [Google Scholar] [CrossRef]
- Avi, R.; Pauskar, M.; Karki, T.; Kallas, E.; Jõgeda, E.-L.; Margus, T.; Huik, K.; Lutsar, I. Prevalence of drug resistance mutations in HAART patients infected with HIV-1 CRF06_cpx in Estonia. J. Med. Virol. 2015, 88, 448–454. [Google Scholar] [CrossRef]
- Charpentier, C.; Montes, B.; Perrier, M.; Meftah, N.; Reynes, J. HIV-1 DNA ultra-deep sequencing analysis at initiation of the dual therapy dolutegravir plus lamivudine in the maintenance DOLULAM pilot study. J. Antimicrob. Chemother. 2017, 72, 2831–2836. [Google Scholar] [CrossRef]
- Descamps, D.; Assoumou, L.; Chaix, M.L.; Chaillon, A.; Pakianather, S.; de Rougemont, A.; Storto, A.; Dos Santos, G.; Krivine, A.; Delaugerre, C.; et al. National sentinel surveillance of transmitted drug resistance in antiretroviral-naive chronically HIV-infected patients in France over a decade: 2001. J. Antimicrob. Chemother. 2013, 68, 2626–2631. [Google Scholar] [CrossRef]
- Dvali, N.; Parker, M.M.; Chkhartishvili, N.; Sharvadze, L.; Gochitashvili, N.; Abutidze, A.; Karchava, M.; DeHovitz, J.A.; Tsertsvadze, T. Characterization of HIV-1 subtypes and drug resistance mutations among individuals infected with HIV in Georgia. J. Med. Virol. 2012, 84, 1002–1008. [Google Scholar] [CrossRef]
- Frentz, D.; Van de Vijver, D.A.; Abecasis, A.B.; Albert, J.; Hamouda, O.; Jørgensen, L.B.; Kücherer, C.; Struck, D.; Schmit, J.C.; Vercauteren, J.; et al. Increase in transmitted resistance to non-nucleoside reverse transcriptase inhibitors among newly diagnosed HIV-1 infections in Europe. BMC Infect. Dis. 2014, 14, 407. [Google Scholar] [CrossRef]
- Hofstra, L.M.; Sauvageot, N.; Albert, J.; Alexiev, I.; Garcia, F.; Struck, D.; Van de Vijver, D.A.M.C.; Åsjö, B.; Beshkov, D.; Coughlan, S.; et al. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-Line Regimens in Europe. Clin. Infect. Dis. 2015, 62, 655–663. [Google Scholar] [CrossRef]
- Karkashadze, E.; Dvali, N.; Bolokadze, N.; Sharvadze, L.; Gabunia, P.; Karchava, M.; Tchelidze, T.; Tsertsvadze, T.; DeHovitz, J.; Del Rio, C.; et al. Epidemiology of HIV drug resistance in HIV patients with virologic failure of first-line therapy in the country of Georgia. J. Med. Virol. 2019, 91, 235–240. [Google Scholar] [CrossRef]
- Ruelle, J.; Ingels, M.-G.; Jnaoui, K.; Ausselet, N.; Vincent, A.; Sasse, A.; Verhofstede, C.; Goubau, P. Transmission Network of an HIV Type 1 Strain with K103N in Young Belgian Patients from Different Risk Groups. AIDS Res. Hum. Retroviruses 2013, 29, 1306–1309. [Google Scholar] [CrossRef]
- Indridason, H.; Gudmundsson, S.; Karlsdottir, B.; Love, A.; Briem, H.; Gottfredsson, M. Long term nationwide analysis of HIV and AIDS in Iceland, 1983–2012. J. AIDS Clin. Res. 2014, 5, 12. [Google Scholar] [CrossRef]
- Siljic, M.; Salemovic, D.; Jevtovic, D.; Pesic-Pavlovic, I.; Zerjav, S.; Nikolic, V.; Ranin, J.; Stanojevic, M. Molecular typing of the local HIV-1 epidemic in Serbia. Infect. Genet. Evol. 2013, 19, 378–385. [Google Scholar] [CrossRef]
- Dolling, D.; Sabin, C.; Delpech, V.; Smit, E.; Pozniak, A.; Asboe, D.; Brown, A.L.; Churchill, D.; Williams, I.; Geretti, A.M.; et al. Time trends in drug resistant HIV-1 infections in the United Kingdom up to 2009: Multicentre observational study. BMJ 2012, 345, e5253. [Google Scholar] [CrossRef]
- Pérez-Alvarez, L.; Carmona, R.; Muñoz, M.; Delgado, E.; Thomson, M.M.; Contreras, G.; Pedreira, J.D.; Rodríguez Real, R.; Vázquez de Parga, E.; Medrano, L.; et al. High incidence of non-B and recombinant HIV-1 strains in newly diagnosed patients in Galicia, Spain: Study of genotypic resistance. Antivir. Ther. 2003, 8, 355–360. [Google Scholar] [CrossRef]
- Palma, A.; Araújo, F.; Duque, V.; Borges, F.; Paixão, M.; Camacho, R. Molecular epidemiology and prevalence of drug resistance-associated mutations in newly diagnosed HIV-1 patients in Portugal. Infect. Genet. Evol. 2007, 7, 391–398. [Google Scholar] [CrossRef]
- Menezes, P.; Rosen, D.; Wohl, D.A.; Kiziah, N.; Sebastian, J.; Eron, J.J., Jr.; White, B. Low prevalence of antiretroviral resistance among HIV type 1-positive prisoners in the Southeast United States. AIDS Res. Hum. Retroviruses 2013, 29, 136–141. [Google Scholar] [CrossRef]
- Larder, B.A.; Purifoy, D.J.M.; Powell, K.L.; Darby, G. Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature 1987, 327, 716–717. [Google Scholar] [CrossRef]
- Stanford University HIV Drug Resistance Database. DRM Penalty Scores and Resistance Interpretation. Available online: https://hivdb.stanford.edu/page/release-notes/#drm.penalty.scores.and.resistance.interpretation (accessed on 24 July 2024).
- Gregson, J.; Rhee, S.Y.; Datir, R.; Pillay, D.; Perno, C.F.; Derache, A.; Shafer, R.S.; Gupta, R.K. Human Immunodeficiency Virus-1 Viral Load Is Elevated in Individuals with Reverse-Transcriptase Mutation M184V/I During Virological Failure of First-Line Antiretroviral Therapy and Is Associated with Compensatory Mutation L74I. J. Infect. Dis. 2019, 222, 1108–1116. [Google Scholar] [CrossRef]
- Joly, V.; Burdet, C.; Landman, R.; Vigan, M.; Charpentier, C.; Katlama, C.; Cabié, A.; Benalycherif, A.; Peytavin, G.; Yeni, P.; et al. Dolutegravir and lamivudine maintenance therapy in HIV-1 virologically suppressed patients: Results of the ANRS 167 trial (LAMIDOL). J. Antimicrob. Chemother. 2019, 74, 739–745. [Google Scholar] [CrossRef]
- Taiwo, B.O.; Marconi, V.C.; Berzins, B.; Moser, C.B.; Nyaku, A.N.; Fichtenbaum, C.J.; Benson, C.A.; Wilkin, T.; Koletar, S.L.; Colasanti, J.; et al. Dolutegravir Plus Lamivudine Maintains Human Immunodeficiency Virus-1 Suppression through Week 48 in a Pilot Randomized Trial. Clin. Infect. Dis. 2018, 66, 1794–1797. [Google Scholar] [CrossRef]
- Cahn, P.; Rolón, M.J.; Figueroa, M.I.; Gun, A.; Patterson, P.; Sued, O. Dolutegravir-lamivudine as initial therapy in HIV-1 infected, ARV-naive patients, 48-week results of the PADDLE (Pilot Antiretroviral Design with Dolutegravir LamivudinE) study. J. Int. AIDS Soc. 2017, 20, 21678. [Google Scholar] [CrossRef]
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.C.; Rockstroh, J.K.; Girard, P.M.; Perea, R.T.; et al. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naive adults with HIV-1 infection (GEMINI-1 and GEMINI-2): Week 48 results from two multicentre, double-blind, randomised, non-inferior. Lancet 2019, 393, 143–155. [Google Scholar] [CrossRef]
- Taiwo, B.O.; Zheng, L.; Stefanescu, A.; Nyaku, A.; Bezins, B.; Wallis, C.L.; Godfrey, C.; Sax, P.E.; Acosta, E.; Haas, D.; et al. ACTG A5353: A pilot study of dolutegravir plus lamivudine for initial treatment of human immunodeficiency virus-1 (HIV-1)-infected participants with HIV-1 RNA < 500,000 copies/mL. Clin. Infect. Dis. 2018, 66, 1689–1697. [Google Scholar] [PubMed]
- Maggiolo, F.; Gulminetti, R.; Pagnucco, L.; Digaetano, M.; Benatti, S.; Valenti, D.; Callegaro, A.; Ripamonti, D.; Mussini, C. Lamivudine/dolutegravir dual therapy in HIV-infected, virologically suppressed patients. BMC Infect. Dis. 2017, 17, 215. [Google Scholar] [CrossRef]
- Blanco, J.L.; Rojas, J.; Paredes, R.; Negredo, E.; Mallolas, J.; Casadella, M.; Clotet, B.; Gatell, J.M.; de Lazzari, E.; Martinez, E.; et al. Dolutegravir-based maintenance monotherapy versus dual therapy with lamivudine: A planned 24 week analysis of the DOLAM randomized clinical trial. J. Antimicrob. Chemother. 2018, 73, 1965–1971. [Google Scholar] [CrossRef]
- van Wyk, J.; Ajana, F.; Bisshop, F.; De Wit, S.; Osiyemi, O.; Portilla Sogorb, J.; Routy, J.P.; Wyen, C.; Ait-Khaled, M.; Nascimento, M.C.; et al. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Fixed-Dose 2-Drug Regimen vs Continuing a Tenofovir Alafenamide-Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living with Human Immunodeficiency Virus Type 1: Phase 3, Randomized, Noninferiority TANGO Study. Clin. Infect. Dis. 2020, 71, 1920–1929. [Google Scholar] [PubMed]
- Andreatta, K.; Willkom, M.; Martin, R.; Chang, S.; Wei, L.; Liu, H.; Liu, Y.P.; Graham, H.; Quirk, E.; Martin, H.; et al. Switching to bictegravir/emtricitabine/tenofovir alafenamide maintained HIV-1 RNA suppression in participants with archived antiretroviral resistance including M184V/I. J. Antimicrob. Chemother. 2019, 74, 3555–3564. [Google Scholar] [CrossRef]
- Palich, R.; Teyssou, E.; Sayon, S.; Abdi, B.; Soulie, C.; Cuzin, L.; Tubiana, R.; Valantin, M.-A.; Schneider, L.; Seang, S.; et al. Kinetics of Archived M184V Mutation in Treatment-Experienced Virally Suppressed HIV-Infected Patients. J. Infect. Dis. 2021, 225, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Hagins, D.; Kumar, P.; Saag, M.; Wurapa, A.K.; Brar, I.; Berger, D.; Osiyemi, O.; Hileman, C.O.; Ramgopal, M.N.; McDonald, C.; et al. Switching to Bictegravir/Emtricitabine/Tenofovir Alafenamide in Black Americans with HIV-1: A Randomized Phase 3b, Multicenter, Open-Label Study. JAIDS J. Acquir. Immune Defic. Syndr. 2021, 88, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Januszka, J.E.; Drwiega, E.N.; Badowski, M.E. Bictegravir/Emtricitabine/Tenofovir Alafenamide for HIV-1: What is the Hidden Potential of This Emerging Treatment? HIV AIDS 2023, 15, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Olearo, F.; Nguyen, H.; Bonnet, F.; Yerly, S.; Wandeler, G.; Stoeckle, M.; Cavassini, M.; Scherrer, A.; Costagiola, D.; Schmid, P.; et al. Impact of the M184V/I Mutation on the Efficacy of Abacavir/Lamivudine/Dolutegravir Therapy in HIV Treatment-Experienced Patients. Open Forum Infect. Dis. 2019, 6, ofz330. [Google Scholar] [CrossRef]
- De Miguel, R.; Rial-Crestelo, D.; Dominguez-Dominguez, L.; Montejano, R.; Esteban-Cantos, A.; Aranguren-Rivas, P.; Stella-Ascariz, N.; Bisbal, O.; Bermejo-Plaza, L.; Garcia-Alvarez, M.; et al. Dolutegravir plus lamivudine for maintenance of HIV viral suppression in adults with and without historical resistance to lamivudine: 48-Week results of a non-randomized, pilot clinical trial (ART-PRO). EBioMedicine 2020, 55, 102779. [Google Scholar] [CrossRef]
- Kabra, M.; Barber, T.J.; Allavena, C.; Marcelin, A.-G.; Di Giambenedetto, S.; Pasquau, J.; Gianotti, N.; Llibre, J.M.; Rial-Crestelo, D.; De Miguel-Buckley, R.; et al. Virologic Response to Dolutegravir Plus Lamivudine in People with Suppressed Human Immunodeficiency Virus Type 1 and Historical M184V/I: A Systematic Literature Review and Meta-Analysis. Open Forum Infect. Dis. 2023, 10, ofad526. [Google Scholar] [CrossRef]
- Sörstedt, E.; Carlander, C.; Flamholc, L.; Hejdeman, B.; Svedhem, V.; Sönnerborg, A.; Gisslén, M.; Yilmaz, A. Effect of dolutegravir in combination with Nucleoside Reverse Transcriptase Inhibitors (NRTIs) on people living with HIV who have pre-existing NRTI mutations. Int. J. Antimicrob. Agents 2018, 51, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Tenorio, C.; Cortés, L.L.; Gutiérrez, A.; Santos, J.; Omar, M.; Gálvez, C.; Sequera, S.; Jesús, S.E.; Téllez, F.; Fernández, E.; et al. DOLAMA study: Effectiveness, safety and pharmacoeconomic analysis of dual therapy with dolutegravir and lamivudine in virologically suppressed HIV-1 patients. Medicine 2019, 98, e16813. [Google Scholar] [CrossRef] [PubMed]
- Reynes, J.; Meftah, N.; Tuailon, E.; Charpentier, C.; Montes, B. Dual regimen with Dolutegravir and Lamivudine maintains virologic suppression even in heavily treatment experienced HIV-infected patients: 96 Weeks results from maintenance DO-LULAM study. In Proceedings of the 9th IAS Conference on HIV Science, Paris, France, 23–26 July 2017. [Google Scholar]
- Pronier, C.; Maillard, A.; Comacle, P.; Cameli, C.; Rohan, J.; Jovelin, T. Successful switch to once-daily single-tablet regimen (STR) containing elvitegravir (EVG) or dolutegravir (DTG) in virologically suppressed HIV-1-infected patients despite archived resistant quasispecies. In Proceedings of the 9th IAS Conference on HIV Science (IAS 2017), Paris, France, 23–26 July 2017. [Google Scholar]
- Jary, A.; Marcelin, A.-G.; Charpentier, C.; Wirden, M.; Lê, M.P.; Peytavin, G.; Descamps, D.; Calvez, V. M184V/I does not impact the efficacy of abacavir/lamivudine/dolutegravir use as switch therapy in virologically suppressed patients. J. Antimicrob. Chemother. 2020, 75, 1290–1293. [Google Scholar] [CrossRef]
- Aboud, M.; Kaplan, R.; Lombaard, J.; Zhang, F.; Hidalgo, J.A.; Mamedova, E.; Losso, M.H.; Chetchotisakd, P.; Brites, C.; Sievers, J.; et al. Dolutegravir versus ritonavir-boosted lopinavir both with dual nucleoside reverse transcriptase inhibitor therapy in adults with HIV-1 infection in whom first-line therapy has failed (DAWNING): An open-label, non-inferiority, phase 3b trial. Lancet Infect. Dis. 2019, 19, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Kandeel, M. The impact of the M184V resistance mutation on treatment outcomes in patients with HIV infection: A systematic review and meta-analysis. Aids Rev. 2023, 25, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, A.; Baldin, G.; Ciccullo, A.; Gagliardini, R.; D’Avino, A.; Mondi, A.; Ciccarelli, N.; Lamonica, S.; Fanti, I.; Trecarichi, E.; et al. Virological control and metabolic improvement in HIV-infected, virologically suppressed patients switching to lamivudine/dolutegravir dual therapy. J. Antimicrob. Chemother. 2016, 71, 2359–2361. [Google Scholar] [CrossRef]
- Capetti, A.F.; Cossu, M.V.; Orofino, G.; Sterrantino, G.; Cenderello, G.; De Socio, G.V.; Cattelan, A.M.; Soria, A.; Rusconi, S.; Riccardi, N.; et al. A dual regimen of ritonavir/darunavir plus dolutegravir for rescue or simplification of rescue therapy: 48 Weeks’ observational data. BMC Infect. Dis. 2017, 17, 658. [Google Scholar] [CrossRef]
- Gagliardini, R.; Ciccullo, A.; Borghetti, A.; Maggiolo, F.; Bartolozzi, D.; Borghi, V.; Pecorari, M.; Di Biagio, A.; Callegaro, A.P.; Bruzzone, B.; et al. Impact of the M184V Resistance Mutation on Virological Efficacy and Durability of Lamivudine-Based Dual Antiretroviral Regimens as Maintenance Therapy in Individuals with Suppressed HIV-1 RNA: A Cohort Study. Open Forum Infect. Dis. 2018, 5, ofy113. [Google Scholar] [CrossRef]
- Borghetti, A.; Lombardi, F.; Gagliardini, R.; Baldin, G.; Ciccullo, A.; Moschese, D.; Emiliozzi, A.; Belmonti, S.; Lamonica, S.; Montagnani, F.; et al. Efficacy and tolerability of lamivudine plus dolutegravir compared with lamivudine plus boosted PIs in HIV-1 positive individuals with virologic suppression: A retrospective study from the clinical practice. BMC Infect. Dis. 2019, 19, 59. [Google Scholar] [CrossRef]
- Baldin, G.; Ciccullo, A.; Rusconi, S.; Capetti, A.; Sterrantino, G.; Colafigli, M.; d’Ettorre, G.; Giacometti, A.; Cossu, M.V.; Borghetti, A.; et al. Long-term data on the efficacy and tolerability of lamivudine plus dolutegravir as a switch strategy in a multi-centre cohort of HIV-1-infected, virologically suppressed patients. Int. J. Antimicrob. Agents. 2019, 54, 728–734. [Google Scholar] [CrossRef]
- Galizzi, N.; Poli, A.; Galli, L.; Muccini, C.; Mastrangelo, A.; Dell’Acqua, R.; Maillard, M.; Bossolasco, S.; Cinque, P.; Lazzarin, A.; et al. Retrospective study on the outcome of two-drug regimens based on dolutegravir plus one reverse transcriptase inhibitor in virologically-suppressed HIV-infected patients. Int. J. Antimicrob. Agents 2020, 55, 105893. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Type | N of Study Participants | ART Regimen | Resistance Prior to Switch | VL Status during Switch | VL < 50 copies/m, 48 Week | VF/Emergence of Resistance |
---|---|---|---|---|---|---|---|
Cahn et al. (2017) [148] | PADDLE-pilot study | 20 | DTG + 3TC | No | Naive | 18/20 (90%) | −/No |
Maggiolo et al. (2017) [151] | Prospective cohort | 94 | DTG + 3TC | No | Suppressed | 97% | −/No |
Taiwo et al. (2018a) [147] | ASPIRE-open-label randomised multicenter | 89 | DTG + 3TC, DRVr + 3TC + ABC | No | Suppressed | 90.9%-DTG + 3TC, 88.9%-DRVr + 3TC + ABC | One pt in DTG + 3TC/No |
Taiwo et al. (2018b) [150] | ACTG A5353-phase 2, single arm, open-label | 120 | DTG + 3TC | No | Naive | 3/120 (2.5%) | Three pts/Yes |
Blanco et al. (2018) [152] | DOLAM-open label, non-inferiority, randomised controlled trial | 91 | DTG + 3TC, DTG mono, or control (triple ART) | No | Suppressed | 100%-control, 96.6%-DTG + 3TC, 93.5%-DTG mono | 2 in DTG monotherapy, 1 in DTG + 3TC/Yes |
Joly et al. (2019) [146] | LAMIDOL-Open label single arm multicenter | 104 | DTG + 3TC | No | Suppressed | 97% (95% CI: 94–100%) meeting design expectation | 1/No |
Cahn et al. (2019) [149] | GEMINI 1 and 2-double-blind, randomised, non-inferiority, phase 3 | 1433 | DTG + 3TC, DTG + TDF + FTC | No | Naive | GEMINI 1 (90% vs. 93%) and GEMINI 2 (93% vs. 94%). | −/No |
Van Wyk et al. (2020) [153] | TANGO-phase III, randomised, open-label active controlled, multicentre | 741 | DTG + 3TC, TAF based | No | Suppressed | 93.2%-3TC + DTG, 93.0%-TAF based | −/No |
Reference | Study Type | N of Study Participants | ART Regimen | VL Status at Switch | Presence of M184V/I at Switch | Resistance Prior to Switch | Viral Load < 50 copies/mL | Emerging Resistance at 48 Weeks | Virological Outcome Affected by M184V |
---|---|---|---|---|---|---|---|---|---|
Borghetti et al. (2016) [168] | Retrospective observational | 36 | DTG + 3TC | Suppressed | 3 (8.3%) | Yes | 100% a | N/A | N/A |
Reynes et al. (2017) [163] | DODULAM-Pilot, monocenter, prospective | 27 | DTG + 3TC | Suppressed | 10 (37%) | Yes | 100% at week 96 | N/A | N/A |
Capetti et al. (2017) [169] | Observational multicenter | 130 | DTG + DRV/r | Suppressed/virological failure | 81 (62.3%) | Yes | Rise to 90.8% from 60% at baseline | No | N/A |
Gagliardini et al. (2018) [170] | Retrospective observational | 436 | 3TC + PI/r, 3TC + INSTI | Suppressed | 87 (20%) | Yes | 91.9%-no M184 group, 87.8%-M184 group b | N/A | N/A |
Sörstedt et al. (2018) [161] | Retrospective | 244 | DTG + NRTIs, PI/r + NRTIs | Suppressed | 95 (36.5%)-DTG group, 95 (27.7%)-PI/r group | Yes | 96.7%-DTG group at week 78, and 97.5%-PI/r at week 75 | No | N/A |
Olearo et al. (2019) [158] | Observational longitudinal analysis | 1626 | DTG + 3TC + ABC | Suppressed | 137 (8.4%) | Yes | N/A | No | No |
Aboud et al. (2019) [166] | DAWNING-Phase 3b open-label, non-inferiority trial | 627 | DTG + NRTIs, LPV/r + NRTIs | Not suppressed | 513 (82%) | Yes | 261 (84%)-DTG group, 219 (70%)-LPV/r group at week 48 | Yes d | No |
Borghetti et al. (2019) [171] | Observational single center | 494 | DTG + 3TC, ATV/DRV/r + 3TC | Suppressed | 16 (8.7%)-DTG group, 39 (12.5%)-PI/r group | Yes | 48.3%, 70.9%, 82.6% in DRV/r, ATV/r, and DTG respectively at week 96 | N/A | No |
Hidalgo-Tenorio et al. (2019) [162] | Observational, retrospective, multicenter (DOLAMA) | 177 | DTG + 3TC | Suppressed | 4/90 (4.4%) | Yes | 96.7% at week 48 | Yes | No |
Baldin et al. (2019) [172] | Retrospective | 221 | DTG + 3TC | Suppressed | 20/187 (10.7%) | Yes | 95.3% | No | N/A |
Jary et al. (2020) [165] | Retrospective | 154 | ABC/3TC/DTG | Suppressed | 154 (100%) | Yes | 100% at 12 months | No | No |
Galizzi et al. (2020) [173] | Single center, observational, retrospective | 374 | DTG + 3TC, DTG + RPV | Suppressed | 60 (27%) | Yes | 97.8%-DTG + 3TC, 95.1%-DTG + RPV c | No | No |
De Miguel et al. (2020) [159] | Open-label, single arm, 48-week pilot trial (ART-PRO) | 41 with 21 having history of 3TC resistance | DTG + 3TC | Suppressed | 15/21 at 5% NGS threshold, 20/21 at 1% NGS threshold | Yes | 94.7%-history of 3TC resistance group, and 100%-no historical 3TC resistance | No | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mimtsoudis, I.; Tsachouridou, O.; Akinosoglou, K.; Metallidis, S. Treatment Management Challenges in Naïve and Experienced HIV-1-Infected Individuals Carrying the M184V Mutation. Viruses 2024, 16, 1392. https://doi.org/10.3390/v16091392
Mimtsoudis I, Tsachouridou O, Akinosoglou K, Metallidis S. Treatment Management Challenges in Naïve and Experienced HIV-1-Infected Individuals Carrying the M184V Mutation. Viruses. 2024; 16(9):1392. https://doi.org/10.3390/v16091392
Chicago/Turabian StyleMimtsoudis, Iordanis, Olga Tsachouridou, Karolina Akinosoglou, and Symeon Metallidis. 2024. "Treatment Management Challenges in Naïve and Experienced HIV-1-Infected Individuals Carrying the M184V Mutation" Viruses 16, no. 9: 1392. https://doi.org/10.3390/v16091392
APA StyleMimtsoudis, I., Tsachouridou, O., Akinosoglou, K., & Metallidis, S. (2024). Treatment Management Challenges in Naïve and Experienced HIV-1-Infected Individuals Carrying the M184V Mutation. Viruses, 16(9), 1392. https://doi.org/10.3390/v16091392