Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Methods
2.2.1. RNA Extraction, Amplification, and Detection of the Pol HIV Gene
2.2.2. Library Preparation and NGS for the Detection and Quantification of Minority Resistant Variants
2.3. Data Collection, Processing, and Statistical Analysis
2.3.1. Data Collection and Processing
2.3.2. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Study Cohort Demographic, Sampling, and Clinical Characteristics
3.2. Performance of NGS in HIV-1 Genotyping of 45 Participants with Virologic Failure at 12 Months Post-ART Initiation (Cases)
3.2.1. Comparison of Major SDRM Profiles Generated by NGS to Those from SS at 12 Months
3.2.2. Comparison of SS and NGS Major SDRM Outputs for Pre-Treatment Samples of Cases
3.2.3. Proportions of Major SDRMs among Controls as Detected by NGS
3.2.4. Proportions of Minority Drug Resistance Variants among Participants Experiencing Virologic Failure 12 Months Post-ART Initiation (Cases)
3.3. Proportions of Minority Drug Resistance among Participants at Baseline (Cases and Controls)
3.3.1. Demonstrating the Clinical Relevance of NGS
3.3.2. Relevance of Pre-Treatment Minority Mutations on Treatment Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAIDS DATA 2022. Geneva: Joint United Nations Program on HIV/AIDS. 2022. Available online: https://www.unaids.org/sites/default/files/media_asset/data-book-2022_en.pdf (accessed on 1 June 2024).
- McMahon, R. UNAIDS Issues New Fast-Track Strategy to End AIDS by 2030-EGPAF; Elizabeth Glaser Pediatric AIDS Foundation: Washington, DC, USA, 2014; Available online: https://www.pedaids.org/2014/11/20/unaids-issues-new-fast-track-strategy-to-end-aids-by-2030 (accessed on 1 June 2024).
- WHO Surveillance of HIV Drug Resistance in Adults Receiving ART (Acquired HIV Drug Resistance). Available online: http://apps.who.int/iris/bitstream/10665/112801/1/9789241507073_eng.pdf?ua=1 (accessed on 5 September 2017).
- Chen, N.-Y.; Kao, S.-W.; Liu, Z.-H.; Wu, T.-S.; Tsai, C.-L.; Lin, H.-H.; Wong, W.-W.; Chang, Y.-Y.; Chen, S.-S.; Ku, S.W.-W. Shall I Trust the Report? Variable Performance of Sanger Sequencing Revealed by Deep Sequencing on HIV Drug Resistance Mutation Detection. Int. J. Infect. Dis. 2020, 93, 182–191. [Google Scholar] [CrossRef]
- Arias, A.; López, P.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Sanger and Next Generation Sequencing Approaches to Evaluate HIV-1 Virus in Blood Compartments. Int. J. Environ. Res. Public Health 2018, 15, 1697. [Google Scholar] [CrossRef]
- Tzou, P.L.; Ariyaratne, P.; Varghese, V.; Lee, C.; Rakhmanaliev, E.; Villy, C.; Yee, M.; Tan, K.; Michel, G.; Pinsky, B.A.; et al. Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J. Clin. Microbiol. 2018, 56, e00105-18. [Google Scholar] [CrossRef]
- Quiñones-Mateu, M.E.; Arts, E.J. Fitness of Drug Resistant HIV-1: Methodology and Clinical Implications. Drug Resist. Updates 2002, 5, 224–233. [Google Scholar] [CrossRef]
- Metzner, K.J.; Giulieri, S.G.; Knoepfel, S.A.; Rauch, P.; Burgisser, P.; Yerly, S.; Gunthard, H.F.; Cavassini, M. Minority Quasispecies of Drug-Resistant HIV-1 That Lead to Early Therapy Failure in Treatment-Naive and -Adherent Patients. Clin. Infect. Dis. 2009, 48, 239–247. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Ahn, S.J.; Kwon, M.-G.; Seo, J.S.; Hwang, S.D.; Jee, B.Y. Whole-Genome Next-Generation Sequencing and Phylogenetic Characterization of Viral Haemorrhagic Septicaemia Virus in Korea. J. Fish. Dis. 2020, 43, 599–607. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses 2019, 11, 656. [Google Scholar] [CrossRef]
- Chen, Q.; Perales, C.; Soria, M.E.; García-Cehic, D.; Gregori, J.; Rodríguez-Frías, F.; Buti, M.; Crespo, J.; Calleja, J.L.; Tabernero, D.; et al. Deep-Sequencing Reveals Broad Subtype-Specific HCV Resistance Mutations Associated with Treatment Failure. Antivir. Res. 2020, 174, 104694. [Google Scholar] [CrossRef]
- Greaney, A.J.; Starr, T.N.; Gilchuk, P.; Zost, S.J.; Binshtein, E.; Loes, A.N.; Hilton, S.K.; Huddleston, J.; Eguia, R.; Crawford, K.H.D.; et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain That Escape Antibody Recognition. Cell Host Microbe 2021, 29, 44–57.e9. [Google Scholar] [CrossRef]
- Hoffmann, C.; Minkah, N.; Leipzig, J.; Wang, G.; Arens, M.Q.; Tebas, P.; Bushman, F.D. DNA Bar Coding and Pyrosequencing to Identify Rare HIV Drug Resistance Mutations. Nucleic Acids Res. 2007, 35, e91. [Google Scholar] [CrossRef]
- Dudley, D.M.; Chin, E.N.; Bimber, B.N.; Sanabani, S.S.; Tarosso, L.F.; Costa, P.R.; Sauer, M.M.; Kallas, E.G.; O.’Connor, D.H. Low-Cost Ultra-Wide Genotyping Using Roche/454 Pyrosequencing for Surveillance of HIV Drug Resistance. PLoS ONE 2012, 7, e36494. [Google Scholar] [CrossRef]
- Zagordi, O.; Klein, R.; Däumer, M.; Beerenwinkel, N. Error Correction of Next-Generation Sequencing Data and Reliable Estimation of HIV Quasispecies. Nucleic Acids Res. 2010, 38, 7400–7409. [Google Scholar] [CrossRef]
- Johnson, J.A.; Li, J.-F.; Wei, X.; Lipscomb, J.; Irlbeck, D.; Craig, C.; Smith, A.; Bennett, D.E.; Monsour, M.; Sandstrom, P.; et al. Minority HIV-1 Drug Resistance Mutations Are Present in Antiretroviral Treatment–Naïve Populations and Associate with Reduced Treatment Efficacy. PLoS Med. 2008, 5, e158. [Google Scholar] [CrossRef]
- Lataillade, M.; Chiarella, J.; Yang, R.; Schnittman, S.; Wirtz, V.; Uy, J.; Seekins, D.; Krystal, M.; Mancini, M.; McGrath, D.; et al. Prevalence and Clinical Significance of HIV Drug Resistance Mutations by Ultra-Deep Sequencing in Antiretroviral-Naïve Subjects in the CASTLE Study. PLoS ONE 2010, 5, e10952. [Google Scholar] [CrossRef]
- Simen, B.B.; Simons, J.F.; Hullsiek, K.H.; Novak, R.M.; MacArthur, R.D.; Baxter, J.D.; Huang, C.; Lubeski, C.; Turenchalk, G.S.; Braverman, M.S.; et al. Low-Abundance Drug-Resistant Viral Variants in Chronically HIV-Infected, Antiretroviral Treatment–Naive Patients Significantly Impact Treatment Outcomes. J. Infect. Dis. 2009, 199, 693–701. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, K.; Zhang, G.; Wadonda-Kabondo, N.; Moyo, K.; Rowe, L.A.; DeVos, J.R.; Wagar, N.; Zheng, D.-P.; Guo, H.; et al. Detection of Minority Drug Resistant Mutations in Malawian HIV-1 Subtype C-Positive Patients Initiating and on First-Line Antiretroviral Therapy. Afr. J. Lab. Med. 2018, 7. [Google Scholar] [CrossRef]
- Varghese, V.; Shahriar, R.; Rhee, S.-Y.; Liu, T.; Simen, B.B.; Egholm, M.; Hanczaruk, B.; Blake, L.A.; Gharizadeh, B.; Babrzadeh, F.; et al. Minority Variants Associated with Transmitted and Acquired HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor Resistance: Implications for the Use of Second-Generation Nonnucleoside Reverse Transcriptase Inhibitors. JAIDS J. Acquir. Immune Defic. Syndr. 2009, 52, 309–315. [Google Scholar] [CrossRef]
- Cozzi-Lepri, A.; Noguera-Julian, M.; Di Giallonardo, F.; Schuurman, R.; Däumer, M.; Aitken, S.; Ceccherini-Silberstein, F.; D’Arminio Monforte, A.; Geretti, A.M.; Booth, C.L.; et al. Low-Frequency Drug-Resistant HIV-1 and Risk of Virological Failure to First-Line NNRTI-Based ART: A Multicohort European Case–Control Study Using Centralized Ultrasensitive 454 Pyrosequencing. J. Antimicrob. Chemother. 2015, 70, 930–940. [Google Scholar] [CrossRef]
- Omooja, J.; Nannyonjo, M.; Sanyu, G.; Nabirye, S.E.; Nassolo, F.; Lunkuse, S.; Kapaata, A.; Segujja, F.; Kateete, D.P.; Ssebaggala, E.; et al. Rates of HIV-1 Virological Suppression and Patterns of Acquired Drug Resistance among Fisherfolk on First-Line Antiretroviral Therapy in Uganda. J. Antimicrob. Chemother. 2019, 74, 3021–3029. [Google Scholar] [CrossRef]
- Segujja, F.; Omooja, J.; Lunkuse, S.; Nanyonjo, M.; Nabirye, S.E.; Nassolo, F.; Bugembe, D.L.; Bbosa, N.; Kateete, D.P.; Ssenyonga, W.; et al. High Levels of Acquired HIV Drug Resistance Following Virological Nonsuppression in HIV-Infected Women from a High-Risk Cohort in Uganda. AIDS Res. Human. Retroviruses 2020, 36, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Kaleebu, P.; Kirungi, W.; Watera, C.; Asio, J.; Lyagoba, F.; Lutalo, T.; Kapaata, A.A.; Nanyonga, F.; Parry, C.M.; Magambo, B.; et al. Virological Response and Antiretroviral Drug Resistance Emerging during Antiretroviral Therapy at Three Treatment Centers in Uganda. PLoS ONE 2015, 10, e0145536. [Google Scholar] [CrossRef]
- Kyeyune, F.; Gibson, R.M.; Nankya, I.; Venner, C.; Metha, S.; Akao, J.; Ndashimye, E.; Kityo, C.M.; Salata, R.A.; Mugyenyi, P.; et al. Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob. Agents Chemother. 2016, 60, 3380–3397. [Google Scholar] [CrossRef]
- Ayitewala, A.; Ssewanyana, I.; Kiyaga, C. Next Generation Sequencing Based In-House HIV Genotyping Method: Validation Report. AIDS Res. Ther. 2021, 18, 64. [Google Scholar] [CrossRef]
- MOH. Consolidated Guidelines for Prevention and Treatment of HIV in Uganda; MOH: Kampala, Uganda, 2016. [Google Scholar]
- Watera, C.; Ssemwanga, D.; Namayanja, G.; Asio, J.; Lutalo, T.; Namale, A.; Sanyu, G.; Ssewanyana, I.; Gonzalez-Salazar, J.F.; Nazziwa, J.; et al. HIV Drug Resistance among Adults Initiating Antiretroviral Therapy in Uganda. J. Antimicrob. Chemother. 2021, 76, 2407–2414. [Google Scholar] [CrossRef]
- Taylor, T.; Lee, E.R.; Nykoluk, M.; Enns, E.; Liang, B.; Capina, R.; Gauthier, M.-K.; Domselaar, G.V.; Sandstrom, P.; Brooks, J.; et al. A MiSeq-HyDRA Platform for Enhanced HIV Drug Resistance Genotyping and Surveillance. Sci. Rep. 2019, 9, 8970. [Google Scholar] [CrossRef]
- Home-HyDRA Web. Available online: https://hydra.canada.ca/pages/home?lang=en-CA (accessed on 10 April 2022).
- Ji, H.; Enns, E.; Brumme, C.J.; Parkin, N.; Howison, M.; Lee, E.R.; Capina, R.; Marinier, E.; Avila-Rios, S.; Sandstrom, P.; et al. Bioinformatic Data Processing Pipelines in Support of Next-Generation Sequencing-Based HIV Drug Resistance Testing: The Winnipeg Consensus. J. Int. AIDS Soc. 2018, 21, e25193. [Google Scholar] [CrossRef]
- Stella-Ascariz, N.; Arribas, J.R.; Paredes, R.; Li, J.Z. The Role of HIV-1 Drug-Resistant Minority Variants in Treatment Failure. J. Infect. Dis. 2017, 216, S847–S850. [Google Scholar] [CrossRef]
- Ávila-Ríos, S.; García-Morales, C.; Matías-Florentino, M.; Romero-Mora, K.A.; Tapia-Trejo, D.; Quiroz-Morales, V.S.; Reyes-Gopar, H.; Ji, H.; Sandstrom, P.; Casillas-Rodríguez, J.; et al. Pretreatment HIV-Drug Resistance in Mexico and Its Impact on the Effectiveness of First-Line Antiretroviral Therapy: A Nationally Representative 2015 WHO Survey. Lancet HIV 2016, 3, e579–e591. [Google Scholar] [CrossRef]
- Kityo, C.; Boerma, R.S.; Sigaloff, K.C.E.; Kaudha, E.; Calis, J.C.J.; Musiime, V.; Balinda, S.; Nakanjako, R.; Boender, T.S.; Mugyenyi, P.N.; et al. Pretreatment HIV Drug Resistance Results in Virological Failure and Accumulation of Additional Resistance Mutations in Ugandan Children. J. Antimicrob. Chemother. 2017, 72, 2587–2595. [Google Scholar] [CrossRef]
- Ministry of Health (Uganda) Consolidated Guidelines for the Prevention and Treatment of of HIV and AIDS in Uganda; MOH: Kampala, Uganda, 2022.
- EACS European AIDS Clinical Society (EACS) Guidelines Version 12.0; 2023. Available online: https://www.eacsociety.org/media/guidelines-12.0.pdf (accessed on 1 June 2024).
- Kantor, R.; Delong, A.; Schreier, L.; Reitsma, M.; Kemboi, E.; Orido, M.; Obonge, S.; Boinett, R.; Rono, M.; Emonyi, W.; et al. HIV Second-Line Failure and Drug Resistance at High- and Low-Level Viremia in Western Kenya. AIDS 2018, 32, 2485–2496. [Google Scholar] [CrossRef]
- Clutter, D.S.; Zhou, S.; Varghese, V.; Rhee, S.-Y.; Pinsky, B.A.; Jeffrey Fessel, W.; Klein, D.B.; Spielvogel, E.; Holmes, S.P.; Hurley, L.B.; et al. Prevalence of Drug-Resistant Minority Variants in Untreated HIV-1–Infected Individuals with and Those Without Transmitted Drug Resistance Detected by Sanger Sequencing. J. Infect. Dis. 2017, 216, 387–391. [Google Scholar] [CrossRef]
- Boltz, V.F.; Zheng, Y.; Lockman, S.; Hong, F.; Halvas, E.K.; McIntyre, J.; Currier, J.S.; Chibowa, M.C.; Kanyama, C.; Nair, A.; et al. Role of Low-Frequency HIV-1 Variants in Failure of Nevirapine-Containing Antiviral Therapy in Women Previously Exposed to Single-Dose Nevirapine. Proc. Natl. Acad. Sci. USA 2011, 108, 9202–9207. [Google Scholar] [CrossRef]
- Codoñer, F.M.; Pou, C.; Thielen, A.; García, F.; Delgado, R.; Dalmau, D.; Álvarez-Tejado, M.; Ruiz, L.; Clotet, B.; Paredes, R. Added Value of Deep Sequencing Relative to Population Sequencing in Heavily Pre-Treated HIV-1-Infected Subjects. PLoS ONE 2011, 6, e19461. [Google Scholar] [CrossRef]
- Silver, N.; Paynter, M.; McAllister, G.; Atchley, M.; Sayir, C.; Short, J.; Winner, D.; Alouani, D.J.; Sharkey, F.H.; Bergefall, K.; et al. Characterization of Minority HIV-1 Drug Resistant Variants in the United Kingdom Following the Verification of a Deep Sequencing-Based HIV-1 Genotyping and Tropism Assay. AIDS Res. Ther. 2018, 15, 18. [Google Scholar] [CrossRef]
- Manosuthi, W.; Thongyen, S.; Nilkamhang, S.; Manosuthi, S.; Sungkanuparph, S. HIV-1 Drug Resistance-Associated Mutations among Antiretroviral-Naive Thai Patients with Chronic HIV-1 Infection. J. Med. Virol. 2013, 85, 194–199. [Google Scholar] [CrossRef]
- Li, J.Z.; Paredes, R.; Ribaudo, H.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Minority HIV-1 Drug Resistance Mutations and the Risk of NNRTI-Based Antiretroviral Treatment Failure: A Systematic Review and Pooled Analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef]
- Metzner, K. The Significance of Minority Drug-Resistant Quasispecies. In Antiretroviral Resistance in Clinical Practice; Geretti, A.M., Ed.; Mediscript: London, UK, 2006; ISBN 978-0-9551669-0-7. [Google Scholar]
Sequence ID | PID | PI. SDRMs | NRTI. SDRMs | NNRTI. SDRMs | |||
---|---|---|---|---|---|---|---|
SS | NGS | SS | NGS | SS | NGS | ||
EP_MBL-2200184 | MBL/017 | none | none | K65R, M184V | K65R, M184V, | V106A, Y181C | V106A, Y181C |
EP_MBL-2200162 | MBL/030 | none | none | none | none | Y188HL | Y188HL |
EP_MBL-2200170 | MBL/031 | none | none | none | K65R | none | Y181C, K103N |
EP_MBL-2200237 | MBL/043 | none | none | K65R, M184V | K65R M184V | V106M | V106M |
EP_MBL-2200213 | MBL/025 | none | none | M184V | M184V | none | None |
EP_MBL-2200242 | MBL/053 | none | none | none | none | K103N, Y188H | K103N Y188H |
EP_MBL-2200204 | MBL/071 | none | M46I, L90M | none | none | none | none |
EP_MBL-2200243 | MBL/096 | none | none | none | none | G190S | K103N, G190S |
EP_MBL-2200194 | MBL/102 | none | none | M184V | M184V, T215Y | K101E, G190A | K101E, G190A, Y181C |
EP_MBL-2200257 | MBL/137 | none | none | M184V | M184V/I | K103N | K103N, Y181C, K103S |
EP_MBL-2200238 | MBL/143 | none | none | M184V | M184V | Y181C, G190A | Y181C, G190A, |
EP_MSK-2200233 | MSK/005 | none | none | K65R, M184IV | K65R, M184V/I | K103N, Y181C | K103N, Y181C, G190A |
EP_MSK-2200218 | MSK/017 | none | none | K70E, Y115F, M184IV | K70E, Y115F, M184IV | Y181C | Y181C |
EP_MSK-2200174 | MSK/017 | none | none | K65R, M184I | K65R, M184I | Y181C, M230L | Y181C, M230L |
EP_MSK-2200194 | MSK/024 | none | none | none | none | none | none |
EP_MSK-2200201 | MSK/034 | none | none | K70E, M184I | K70E, M184I | K103S, Y181C | K103S, Y181C |
EP_MSK-2200182 | MSK/038 | none | none | K70E, M184V | K70E, M184V/I | Y181C, G190A | Y181C, G190A, K101E |
EP_MSK-2200186 | MSK/053 | L90M | L90M | K65R, M184IV | K65R M184IV | K103N, Y181C | K103N Y181C |
EP_MSK-2200165 | MSK/055 | none | none | M41L, K65R, M184V | M41L, K65R M184V, D67N | Y181C, G190A | Y181C, G190A K219KE |
EP_MSK-2200210 | MSK/061 | none | none | K65R, Y115F, M184V | K65R, Y115F, M184V | Y181C | Y181C, M230L |
EP_MSK-2200219 | MSK/074 | none | none | K65R, D67N, M184V, K219E | K65R, D67N, M184V, K219E | K103N, Y181C | K103N, Y181C, M230L |
EP_MSK-2200161 | MSK/040 | none | none | K65R, M184I | K65R, M184V/I | K101E, Y181C, G190A, M230L | K101E, Y181C, G190A, M23OL |
EP_MSK-2200178 | MSK/089 | none | none | K70E, M184V/I | K70E, M184V/I | K101E, Y181C, G190A | K101E, Y181C, G190A |
EP_MSK-2200227 | MSK/095 | none | none | K65R, Y115F | K56R, Y115F | L100I, Y188C | L100I, Y188C |
EP_MSK-2200190 | MSK/097 | none | none | K70E, M184I | K70E M184I | Y181C | YI181C |
EP_MSK-2200244 | MSK/102 | none | none | none | none | none | none |
EP_MSK-2200214 | MSK/122 | none | none | K70E, M184V | K70E M184V | Y181C | Y181C |
EP_MSK-2200221 | MSK/123 | none | none | M184I | M184I, K170E | Y181C | Y181C |
EP_MSK-2200261 | MSK/125 | none | none | T215S | T215S | none | none |
EP_MSK-2200211 | MSK/126 | none | none | none | none | none | none |
EP_MSK-2200217 | MSK/135 | none | none | K65R | K56R | Y181C, G190A | Y181C, G190A |
EP_NSA-2200157 | NSA/002 | none | none | K65R, Y115F, M184V | K65R Y115F M184V | Y181C, G190A | Y181C G190A |
EP_NSA-2200190 | NSA/003 | none | none | K65R, M184V | K65R M184V | K103N, Y181C | K103N Y181C |
EP_NSA-2200218 | NSA/015 | none | none | M184V, T215Y | M184V, T215Y | K101E, Y181C, G190A | K101E, Y181C G190A |
EP_NSA-2200248 | NSA/016 | none | none | none | none | V106A | V106A |
EP_NSA-2200165 | NSA/029 | none | none | D67N, K70E, M184IV, K219E | D67N. K70E. M184V, K219E | G190E | G190E |
EP_NSA-2200183 | NSA/042 | none | none | none | K65R, Y115F, M184V | none | Y181C |
EP_NSA-2200223 | NSA/076 | none | none | K65R, M184V | K65R M184V | Y181C | Y181C |
EP_NSA-2200262 | NSA/077 | none | none | none | none | none | none |
EP_NSA-2200228 | NSA/079 | none | none | M41L, K65R, M184V | M41L, K65R, M184V | K101E, Y181C, G190A | K101E, YI81C, G190A |
EP_NSA-2200204 | NSA/085 | none | none | K65R, M184I | K65R M184I | Y181C, M230L | Y181C M230L |
EP_NSA-2200209 | NSA/111 | none | none | K65R, M184V, K219E | K65R, M184V, K219E | none | none |
EP_NSA-2200222 | NSA/112 | none | none | K65R, L74V, Y115F, M184I | K65R, Y115F, M184I, L74V | Y181C, G190A | Y181C G190A |
EP_NSA-2200215 | NSA/120 | none | none | none | none | none | K103N |
EP_NSA-2200261 | NSA/130 | none | none | none | none | none | none |
Sequence ID | PID | PI. SDRMs | NRTI.SDRMs | NNRTI.SDRMs | |||
---|---|---|---|---|---|---|---|
SS | NGS | SS | NGS | SS | NGS | ||
BS_MBL-2200017 | MBL/017 | none | none | none | K70E, M184I | none | none |
BS_MBL-2200030 | MBL/030 | none | none | none | none | none | none |
BS_MBL-2200031 | MBL/031 | none | none | none | none | none | none |
BS_MBL-2200043 | MBL/043 | none | L90M | none | K65R, M184V | none | K103N, Y181C |
BS_MBL-2200052 | MBL/025 | none | none | none | none | none | none |
BS_MBL-2200053 | MBL/053 | none | none | none | none | none | none |
BS_MBL-2200071 | MBL/071 | none | none | none | none | none | none |
BS_MBL-2200096 | MBL/096 | none | none | none | none | none | none |
BS_MBL-2200102 | MBL/102 | none | none | none | none | none | none |
BS_MBL-2200137 | MBL/137 | none | none | none | none | none | none |
BS_MBL-2200143 | MBL/143 | none | none | none | M184I, K65R | none | Y181C, M230L |
BS_MSK-3300005 | MSK/005 | none | none | none | none | none | none |
BS_MSK-3300015 | MSK/017 | none | none | none | none | none | none |
BS_MSK-3300016 | MSK/017 | none | none | none | none | none | none |
BS_MSK-3300024 | MSK/024 | none | none | none | none | none | none |
BS_MSK-3300034 * | MSK/034 | none | none | none | none | K103N | K103N |
BS_MSK-3300038 | MSK/038 | none | none | none | none | none | none |
BS_MSK-3300052 * | MSK/053 | L90M | L90M | none | K65R, D67N, K219E, M184V | none | K103N, Y181C |
BS_MSK-3300054 * | MSK/055 | none | none | E44D; M184V | E44D; M184V | Y181C | Y181C |
BS_MSK-3300060 | MSK/061 | none | none | none | none | none | none |
BS_MSK-3300073 | MSK/074 | none | none | none | none | none | G190A |
BS_MSK-3300074 | MSK/075 | none | none | none | M184V | none | K101E, M230L |
BS_MSK-3300088 | MSK/089 | none | none | none | none | none | none |
BS_MSK-3300094 | MSK/095 | none | none | none | none | none | none |
BS_MSK-3300095 | MSK/096 | none | none | none | none | none | none |
BS_MSK-3300097 | MSK/098 | none | none | none | none | none | none |
BS_MSK-3300121 | MSK/122 | none | none | none | none | none | none |
BS_MSK-3300122 | MSK/123 | none | none | none | none | none | none |
BS_MSK-3300124 * | MSK/125 | none | none | T215S | T215S | none | none |
BS_MSK-3300125 | MSK/126 | none | none | none | none | none | none |
BS_MSK-3300134 | MSK/135 | none | none | none | none | none | none |
BS_NSA-1100002 | NSA/002 | none | none | none | none | none | none |
BS_NSA-1100003 | NSA/003 | none | none | none | K65R, M184V | none | K103N, Y181C |
BS_NSA-1100015 * | NSA/015 | none | none | T215D | T215D, | K101E, Y181C | K101E, Y181C |
BS_NSA-1100016 | NSA/016 | F53L | none | none | none | none | none |
BS_NSA-1100029 | NSA/029 | none | none | none | K70R, K219E | none | Y181C |
BS_NSA-1100042 * | NSA/042 | none | none | none | K65R, M184V | K103N | K103N |
BS_NSA-1100076 | NSA/076 | none | none | none | L74I, Y115F, M184V | none | K103N |
BS_NSA-1100077 | NSA/077 | none | none | none | none | none | none |
BS_NSA-1100079 | NSA/079 | none | none | none | none | none | none |
BS_NSA-1100085 | NSA/085 | none | none | none | none | none | none |
BS_NSA-1100111 | NSA/111 | none | none | none | K70E, M184V, | none | K101E, Y181C, G190A |
BS_NSA-1100112 | NSA/112 | none | none | none | none | none | none |
BS_NSA-1100120 | NSA/120 | none | none | none | none | none | none |
BS_NSA-1100130 | NSA/130 | none | none | none | none | none | none |
Id | Mutations by SS | GSS of Drugs | Mutations by NGS | Gss of Drugs |
---|---|---|---|---|
BS_MSK- 3300054 | E44D; M184V | ABC (15); AZT (1); D4T (−10); FTC (60); 3TC (60); TDF (−10) | E44D; M184V | ABC (15); AZT (1); D4T (−10); FTC (60); 3TC (60); TDF (−10) |
BS_MSK- 3300124 | T215S | ABC (15); AZT (20); D4T (20); FTC (0); 3TC (0); TDF (5) | T215S | ABC (15); AZT (20); D4T (20); FTC (0); 3TC (0); TDF (5) |
BS_NSA- 1100042 | None | ABC (0); AZT (0); D4T (0); FTC (0); 3TC (0); TDF (0) | M184V; K65R | ABC (60); AZT (−25); D4T (50); FTC (90); 3TC (90); TDF (50) |
Id | Mutations by SS | GSS of Drugs | Mutations by NGS | GSS of Drugs |
---|---|---|---|---|
BS_MSK-3300054 | Y181C | DOR (10); EFV (30); ETR (30); NVP (60); RPV (45) | Y181C; K103N; G190A | DOR (40); EFV (135); ETR (50); NVP (180); RPV (70) |
BS_MSK-3300124 | None | DOR (0); EFV (0); ETR (0); NVP (0); RPV (0) | None | DOR (0); EFV (0); ETR (0); NVP (0); RPV (0) |
BS_NSA-1100042 | K103N | DOR (0); EFV (60); ETR (0); NVP (60); RPV (0); | K103N | DOR (0); EFV (60); ETR (0); NVP (60); RPV (0); |
Pre-Treatment Minority SDRMS Present | Pre-Treatment Minority SDRMs Absent | Total | |
---|---|---|---|
Virologic suppressed group (controls) | 32 (26.2%) | 90 (73.8%) | 122 |
Virologic failure group (cases) | 11 (24.4%) | 34 (75.6%) | 45 |
Total | 43 (25.7%) | 124 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nannyonjo, M.; Omooja, J.; Bugembe, D.L.; Bbosa, N.; Lunkuse, S.; Nabirye, S.E.; Nassolo, F.; Namagembe, H.; Abaasa, A.; Kazibwe, A.; et al. Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART. Viruses 2024, 16, 1454. https://doi.org/10.3390/v16091454
Nannyonjo M, Omooja J, Bugembe DL, Bbosa N, Lunkuse S, Nabirye SE, Nassolo F, Namagembe H, Abaasa A, Kazibwe A, et al. Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART. Viruses. 2024; 16(9):1454. https://doi.org/10.3390/v16091454
Chicago/Turabian StyleNannyonjo, Maria, Jonah Omooja, Daniel Lule Bugembe, Nicholas Bbosa, Sandra Lunkuse, Stella Esther Nabirye, Faridah Nassolo, Hamidah Namagembe, Andrew Abaasa, Anne Kazibwe, and et al. 2024. "Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART" Viruses 16, no. 9: 1454. https://doi.org/10.3390/v16091454
APA StyleNannyonjo, M., Omooja, J., Bugembe, D. L., Bbosa, N., Lunkuse, S., Nabirye, S. E., Nassolo, F., Namagembe, H., Abaasa, A., Kazibwe, A., Kaleebu, P., & Ssemwanga, D. (2024). Next-Generation Sequencing Reveals a High Frequency of HIV-1 Minority Variants and an Expanded Drug Resistance Profile among Individuals on First-Line ART. Viruses, 16(9), 1454. https://doi.org/10.3390/v16091454