Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Sequence Data
2.2. RNAseq Data Analysis
2.3. Principal Component Analyses (PCA) and Hierarchical Clustering Analyses (HCA)
2.4. Volcano Plot Analysis and Venn Diagrams
2.5. GO Term Analysis and KEGG Pathway Analysis
2.6. RNAseq Data Validation by RT-qPCR
3. Results
3.1. Experimental Setup
3.2. Principal Component Analysis and Hierarchy Cluster Analysis
3.3. Identification of DEGs
3.4. Numbers of DEGs (Both Upregulated and Downregulated) That Were Unique Versus Shared between Samples
3.5. DEGs Predicted to Have Antiviral and Proviral Activity
3.6. Gene Ontology (GO) Term Analysis Indicating the Predicted Molecular Functions and Biological Processes of DEGs
3.7. KEGG Pathway Analysis of Enriched Pathways in Low Titer and High Titer Mosquitoes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beerntsen, B.T.; James, A.A.; Christensen, B.M. Genetics of Mosquito Vector Competence. Microbiol. Mol. Biol. Rev. 2000, 64, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Gallichotte, E.N.; Randall, J.; Glass, A.; Foy, B.D.; Ebel, G.D.; Kading, R.C. Intrinsic factors driving mosquito vector competence and viral evolution: A review. Front. Cell. Infect. Microbiol. 2023, 13, 1330600. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Liu, Y.; Wang, P.; Xiao, X. Mosquito Defense Strategies against Viral Infection. Trends Parasitol. 2016, 32, 177–186. [Google Scholar] [CrossRef]
- Alonso-Palomares, L.A.; Moreno-García, M.; Lanz-Mendoza, H.; Salazar, M.I. Molecular Basis for Arbovirus Transmission by Aedes aegypti Mosquitoes. Intervirology 2019, 61, 255–264. [Google Scholar] [CrossRef]
- Franz, A.W.E.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Ramirez, J.L.; Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008, 4, e1000098. [Google Scholar] [CrossRef]
- Tchankouo-Nguetcheu, S.; Khun, H.; Pincet, L.; Roux, P.; Bahut, M.; Huerre, M.; Guette, C.; Choumet, V. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses. PLoS ONE 2010, 5, e13149. [Google Scholar] [CrossRef]
- Colpitts, T.M.; Cox, J.; Vanlandingham, D.L.; Feitosa, F.M.; Cheng, G.; Kurscheid, S.; Wang, P.; Krishnan, M.N.; Higgs, S.; Fikrig, E. Alterations in the Aedes aegypti transcriptome during infection with west nile, dengue and yellow fever viruses. PLoS Pathog. 2011, 7, e1002189. [Google Scholar] [CrossRef]
- Sánchez-Vargas, I.; Scott, J.C.; Poole-Smith, B.K.; Franz, A.W.E.; Barbosa-Solomieu, V.; Wilusz, J.; Olson, K.E.; Blair, C.D. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 2009, 5, e1000299. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Dunn, W.A.; Campbell, C.L.; Olson, K.E.; Marinotti, O.; James, A.A. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection. PLoS ONE 2012, 7, e50512. [Google Scholar] [CrossRef]
- Dissanayake, S.N.; Ribeiro, J.M.C.; Wang, M.H.; Dunn, W.A.; Yan, G.; James, A.A.; Marinotti, O. AeGEPUCI: A database of gene expression in the dengue vector mosquito, Aedes aegypti. BMC Res. Notes 2010, 3, 248. [Google Scholar] [CrossRef] [PubMed]
- Tchankouo-Nguetcheu, S.; Bourguet, E.; Lenormand, P.; Rousselle, J.C.; Namane, A.; Choumet, V. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands. Parasites Vectors 2012, 5, 264. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, C.; Behura, S.K.; deBruyn, B.; Lovin, D.D.; Harker, B.W.; Gomez-Machorro, C.; Mori, A.; Romero-Severson, J.; Severson, D.W. Comparative Expression Profiles of Midgut Genes in Dengue Virus Refractory and Susceptible Aedes aegypti across Critical Period for Virus Infection. PLoS ONE 2012, 7, e47350. [Google Scholar] [CrossRef]
- Blair, C.D.; Olson, K.E. Mosquito immune responses to arbovirus infections. Curr. Opin. Insect Sci. 2014, 3, 22–29. [Google Scholar] [CrossRef]
- Sim, S.; Jupatanakul, N.; Dimopoulos, G. Mosquito immunity against arboviruses. Viruses 2014, 6, 4479–4504. [Google Scholar] [CrossRef]
- Severson, D.W.; Behura, S.K. Genome investigations of vector competence in Aedes aegypti to inform novel arbovirus disease control approaches. Insects 2016, 7, 58. [Google Scholar] [CrossRef]
- Sim, S.; Jupatanakul, N.; Ramirez, J.L.; Kang, S.; Romero-Vivas, C.M.; Mohammed, H.; Dimopoulos, G. Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. PLoS Negl. Trop. Dis. 2013, 7, e2295. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Raquin, V.; Merkling, S.H.; Gausson, V.; Moltini-Conclois, I.; Frangeul, L.; Varet, H.; Dillies, M.-A.; Saleh, M.-C.; Lambrechts, L. Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut. PLoS Negl. Trop. Dis. 2017, 11, e0006152. [Google Scholar] [CrossRef]
- Matthews, B.J.; Dudchenko, O.; Kingan, S.B.; Koren, S.; Antoshechkin, I.; Crawford, J.E.; Glassford, W.J.; Herre, M.; Redmond, S.N.; Rose, N.H.; et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 2018, 563, 501–507. [Google Scholar] [CrossRef]
- Hodoameda, P.; Addae, L.; Clem, R.J. Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses 2022, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Hodoameda, P.; Ebel, G.D.; Mukhopadhyay, S.; Clem, R.J. Extreme infectious titer variability in individual Aedes aegypti mosquitoes infected with Sindbis virus is associated with both differences in virus population structure and dramatic disparities in specific infectivity. PLoS Pathog. 2024, 20, e1012047. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Havird, J.C.; Santos, S.R. Developmental transcriptomics of the hawaiian anchialine shrimp halocaridina rubra holthuis, 1963 (Crustacea: Atyidae). Integr. Comp. Biol. 2016, 56, 1170–1182. [Google Scholar] [CrossRef]
- Marini, F.; Binder, H. PcaExplorer: An R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinform. 2019, 20, 331. [Google Scholar] [CrossRef]
- Ludt, A.; Ustjanzew, A.; Binder, H.; Strauch, K.; Marini, F. Interactive and Reproducible Workflows for Exploring and Modeling RNA-seq Data with pcaExplorer, Ideal, and GeneTonic. Curr. Protoc. 2022, 2, e411. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Behura, S.K.; Franz, A.W.E. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape. BMC Genom. 2017, 18, 382. [Google Scholar] [CrossRef] [PubMed]
- Etebari, K.; Hegde, S.; Saldaña, M.A.; Widen, S.G.; Wood, T.G.; Asgari, S.; Hughes, G.L. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection. mSphere 2017, 188, 1648–1659. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Gokhale, N.S.; McIntyre, A.B.R.; McFadden, M.J.; Roder, A.E.; Kennedy, E.M.; Gandara, J.A.; Hopcraft, S.E.; Quicke, K.M.; Vazquez, C.; Willer, J.; et al. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe. 2016, 20, 654–665. [Google Scholar] [CrossRef]
- Dang, Y.; Li, J.; Li, Y.; Wang, Y.; Zhao, Y.; Zhao, N.; Li, W.; Zhang, H.; Ye, C.; Ma, H.; et al. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J. Virol. 2024, 98, e0135023. [Google Scholar] [CrossRef]
- Coatsworth, H.; Caicedo, P.A.; Winsor, G.; Brinkman, F.; Ocampo, C.B.; Lowenberger, C. Transcriptome comparison of dengue-susceptible and-resistant field derived strains of colombian Aedes aegypti using rna-sequencing. Mem. Inst. Oswaldo Cruz 2021, 116, e200547. [Google Scholar] [CrossRef]
- Saldaña, M.A.; Etebari, K.; Hart, C.E.; Widen, S.G.; Wood, T.G.; Thangamani, S.; Asgari, S.; Hughes, G.L. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0005760. [Google Scholar] [CrossRef]
- Ramirez, J.L.; Souza-Neto, J.; Cosme, R.T.; Rovira, J.; Ortiz, A.; Pascale, J.M.; Dimopoulos, G. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 2012, 6, e1561. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.A.; Buri, M.V.; Rodriguez, B.L.; Costa-da-Silva, A.L.; Araújo, H.R.C.; Capurro, M.L.; Lu, S.; Tanaka, A.S. The first characterization of a cystatin and a cathepsin L-like peptidase from Aedes aegypti and their possible role in DENV infection by the modulation of apoptosis. Int. J. Biol. Macromol. 2020, 146, 141–149. [Google Scholar] [CrossRef]
- Gorman, M.J.; Paskewitz, S.M. Serine proteases as mediators of mosquito immune responses. Insect Biochem. Mol. Biol. 2001, 31, 257–262. [Google Scholar] [CrossRef]
- Molina-Cruz, A.; Gupta, L.; Richardson, J.; Bennett, K.; Black, I.V.W.; Barillas-Mury, C. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am. J. Trop. Med. Hyg. 2005, 72, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Paskewitz, S.M.; Andreev, O.; Shi, L. Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae. Insect Biochem. Mol. Biol. 2006, 36, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Brackney, D.E.; Foy, B.D.; Olson, K.E. The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti. Am. J. Trop. Med. Hyg. 2008, 79, 267–274. [Google Scholar] [CrossRef]
- Sanders, H.R.; Foy, B.D.; Evans, A.M.; Ross, L.S.; Beaty, B.J.; Olson, K.E.; Gill, S.S. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem. Mol. Biol. 2005, 35, 1293–1307. [Google Scholar] [CrossRef]
- Chotiwan, N.; Andre, B.G.; Sanchez-Vargas, I.; Islam, M.N.; Grabowski, J.M.; Hopf-Jannasch, A.; Gough, E.; Nakayasu, E.; Blair, C.D.; Belisle, J.T.; et al. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS Pathog. 2018, 14, e1006853. [Google Scholar] [CrossRef]
- Koh, C.; Islam, M.N.; Ye, Y.H.; Chotiwan, N.; Graham, B.; Belisle, J.T.; Kouremenos, K.A.; Dayalan, S.; Tull, D.L.; Klatt, S.; et al. Dengue virus dominates lipid metabolism modulations in Wolbachia-coinfected Aedes aegypti. Commun. Biol. 2020, 3, 518. [Google Scholar] [CrossRef]
- Melendez-Villanueva, M.A.; Trejo-Ávila, L.M.; Galán-Huerta, K.A.; Rivas-Estilla, A.M. Lipids fluctuations in mosquitoes upon arboviral infections. J. Vector Borne Dis. 2021, 58, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.S.; Ulaeto, D. Semliki forest virus and sindbis virus, but not vaccinia virus, require glycolysis for optimal replication. J. Gen. Virol. 2015, 96, 2693–2696. [Google Scholar] [CrossRef]
- Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 2014, 14, 361–376. [Google Scholar] [CrossRef]
- Schwerk, J.; Jarret, A.P.; Joslyn, R.C.; Savan, R. Landscape of post-transcriptional gene regulation during hepatitis C virus infection. Curr. Opin. Virol. 2015, 12, 75–84. [Google Scholar] [CrossRef]
- Batra, R.; Stark, T.J.; Clark, E.; Belzile, J.P.; Wheeler, E.C.; Yee, B.A.; Huang, H.; Gelboin-Burkhart, C.; Huelga, S.C.; Aigner, S.; et al. RNA-binding protein CPEB1 remodels host and viral RNA landscapes. Nat. Struct. Mol. Biol. 2016, 23, 1101–1110. [Google Scholar] [CrossRef]
- Mino, T.; Takeuchi, O. Post-transcriptional regulation of immune responses by RNA binding proteins. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 2018, 94, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Etebari, K.; Asgari, S. N6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Commun. Biol. 2022, 5, 607. [Google Scholar] [CrossRef] [PubMed]
Low Titer Midgut | ||||
Gene ID | RefSeq | Gene Description | Fold Change | Adjusted p-Value |
AAEL021204 | LOC110678065 | uncharacterized | 41.83931626 | 2.25 × 10−26 |
AAEL019786 | LOC5570400 | RYamide neuropeptide receptor | 39.88676288 | 4.96 × 10−36 |
AAEL023555 | LOC110678199 | bypass of stop codon protein 1-like | 33.39579316 | 9.73 × 10−36 |
AAEL004369 | LOC5564633 | alpha-glucosidase | 32.01020047 | 1.60 × 10−6 |
AAEL022194 | LOC110681519 | cysteine and histidine-rich domain-containing protein-like | 31.66204628 | 4.84 × 10−6 |
AAEL023070 | LOC110678485 | cytochrome b5-like | 29.19310477 | 5.27 × 10−5 |
AAEL024968 | LOC110676149 | prisilkin-39-like | 29.0463297 | 4.40 × 10−22 |
AAEL025215 | LOC110676953 | uncharacterized | 27.60545214 | 1.44 × 10−7 |
AAEL023063 | LOC110679464 | uncharacterized | 27.42324924 | 9.20 × 10−17 |
AAEL015345 | LOC5570300 | uncharacterized | 26.78206758 | 1.32 × 10−15 |
AAEL022938 | LOC5575293 | Membrane trafficking protein emp24 domain-containing protein 7 | 25.61985948 | 2.62 × 10−7 |
AAEL027327 | LOC110676057 | uncharacterized | 23.81667017 | 0.001830549 |
AAEL001364 | LOC5570357 | UDP-glucuronosyltransferase 3A1 | 23.77138085 | 2.04 × 1012 |
AAEL013570 | LOC5578233 | uncharacterized | 23.76901847 | 1.80 × 10−5 |
AAEL008355 | LOC5570460 | uncharacterized | 23.09585163 | 5.24 × 10−20 |
AAEL014170 | LOC5563842 | G8 domain-containing protein DDB_G0286311 | 22.51193091 | 9.46 × 10−16 |
AAEL027489 | LOC5570061 | uncharacterized | 21.82318215 | 0.003321752 |
AAEL022803 | LOC110680552 | LMBR1 domain-containing protein 2 homolog | 19.58182813 | 1.66 × 10−8 |
AAEL027016 | LOC5576973 | UDP-glucuronosyltransferase 2B15 | −30.62089836 | 1.01 × 10−5 |
AAEL025019 | LOC110680819 | Ubiquinol-cytochrome c reductase complex assembly factor 6 | −45.53775816 | 5.97 × 10−19 |
High titer midgut | ||||
Gene ID | RefSeq | Gene description | Fold change | Adjusted p-value |
AAEL021204 | LOC110678065 | uncharacterized | 44.0209 | 8.18 × 10−30 |
AAEL019786 | LOC5570400 | RYamide neuropeptide receptor | 42.24056 | 4.45 × 10−41 |
AAEL023555 | LOC110678199 | bypass of stop codon protein 1-like | 35.27338 | 2.19 × 10−40 |
AAEL022938 | LOC5575293 | transmembrane emp24 domain-containing protein 7 | 34.89804 | 1.30 × 10−15 |
AAEL027489 | LOC5570061 | uncharacterized | 33.20381 | 5.51 × 10−7 |
AAEL022194 | LOC110681519 | cysteine and histidine-rich domain-containing protein-like | 31.87992 | 2.39 × 10−6 |
AAEL024968 | LOC110676149 | prisilkin-39-like | 30.32939 | 1.80 × 10−24 |
AAEL022213 | LOC110678859 | 26S proteasome non-ATPase regulatory subunit | 30.2607 | 1.08 × 10−5 |
AAEL023063 | LOC110679464 | uncharacterized | 30.07491 | 1.08 × 10−20 |
AAEL023070 | LOC110678485 | cytochrome b5-like | 30.04727 | 1.28 × 10−5 |
AAEL015345 | LOC5570300 | uncharacterized | 28.75877 | 2.42 × 10−18 |
AAEL001364 | LOC5570357 | UDP-glucuronosyltransferase 3A1 | 25.3656 | 1.47 × 10−14 |
AAEL008355 | LOC5570460 | uncharacterized | 24.54677 | 5.08 × 10−23 |
AAEL013570 | LOC5578233 | uncharacterized | 24.22035 | 6.72 × 10−6 |
AAEL014170 | LOC5563842 | G8 domain-containing protein DDB_G0286311 | 23.49 | 1.80 × 10−17 |
AAEL022803 | LOC110680552 | LMBR1 domain-containing protein 2 homolog | 21.75694 | 4.38 × 10−11 |
AAEL020474 | LOC5575291 | methyltransferase-like protein 5 | 13.78589111 | 2.16 × 10−13 |
AAEL029015 | LOC5574611 | uncharacterized | 10.44243 | 0.00678 |
AAEL007381 | LOC5569108 | uncharacterized | −11.0121 | 0.006332 |
AAEL019643 | LOC5576254 | mitochondrial ribosomal protein L53 | −15.0348 | 0.003854 |
Low titer carcass | ||||
Gene ID | RefSeq | Gene description | Fold change | Adjusted p-value |
AAEL020237 | LOC110681415 | cyclin-dependent kinase 5 activator 1-like | 19.32486515 | 6.13 × 10−11 |
AAEL017349 | LOC23687769 | heat shock 70 kDa protein cognate 3 | 18.49037534 | 1.43 × 10−5 |
AAEL019591 | LOC5568644 | uncharacterized | 17.64663545 | 2.35 × 10−11 |
AAEL013721 | LOC5578521 | RISC-loading complex subunit tarbp2 | 17.10792675 | 7.77 × 10−13 |
AAEL011715 | LOC5575241 | non-structural maintenance of chromosomes element 1 homolog | 16.4312446 | 3.92 × 10−12 |
AAEL021204 | LOC110678065 | uncharacterized | 15.79915401 | 0.000187282 |
AAEL009330 | LOC5571803 | carbonic anhydrase II, putative | 15.65841653 | 1.61 × 10−12 |
AAEL024640 | LOC5574307 | uncharacterized | 15.41944881 | 5.09 × 10−8 |
AAEL024122 | LOC110676237 | uncharacterized | 14.97321087 | 7.55 × 10−9 |
AAEL023803 | LOC110675921 | uncharacterized | 14.7932861 | 3.76 × 10−7 |
AAEL021758 | LOC110680549 | uncharacterized | 14.55831826 | 5.09 × 10−8 |
AAEL027718 | LOC110676787 | uncharacterized | 14.40108737 | 6.85 × 10−5 |
AAEL007879 | LOC5569726 | uncharacterized | 14.02614153 | 1.76 × 10−6 |
AAEL025296 | LOC110679326 | uncharacterized | 13.4317571 | 0.000512544 |
AAEL009683 | LOC5572259 | uncharacterized | 13.33276801 | 3.15 × 10−5 |
AAEL023555 | LOC110678199 | bypass of stop codon protein 1-like | 13.24276866 | 3.89 × 10−5 |
AAEL003290 | LOC5577738 | cell wall protein DAN4 precursor, putative | 13.05133731 | 2.55 × 10−5 |
AAEL023873 | LOC5572852 | uncharacterized | 12.32245107 | 1.29 × 10−5 |
AAEL015285 | LOC5566943 | glutathione S-transferase T3 | 11.66563043 | 0.000184333 |
AAEL001364 | LOC5570357 | UDP-glucuronosyltransferase 3A1 | −14.75718212 | 3.15 × 10−5 |
AAEL025361 | LOC5571051 | uncharacterized | −16.07641618 | 2.49 × 10−6 |
AAEL025907 | LOC110673982 | Pyruvate dehydrogenase [acetyl-transferring]-phosphatase 1, mitochondrial-like | −32.91331556 | 1.47 × 10−8 |
High titer carcass | ||||
Gene ID | RefSeq | Gene description | Fold change | Adjusted p-value |
AAEL019591 | LOC5568644 | uncharacterized | 21.51946 | 1.80 × 10−17 |
AAEL000109 | LOC5567790 | Enolase-phosphatase E1 | 21.39589 | 8.86 × 10−7 |
AAEL011715 | LOC5575241 | non-structural maintenance of chromosomes element 1 homolog | 20.57616 | 9.85 × 10−20 |
AAEL007879 | LOC5569726 | uncharacterized | 20.47561 | 9.82 × 10−16 |
AAEL024122 | LOC110676237 | uncharacterized | 20.41267 | 3.44 × 10−18 |
AAEL020237 | LOC110681415 | cyclin-dependent kinase 5 activator 1-like | 20.23749 | 4.98 × 10−12 |
AAEL013721 | LOC5578521 | RISC-loading complex subunit tarbp2 | 20.23062 | 1.00 × 10−18 |
AAEL022938 | LOC5575293 | transmembrane emp24 domain-containing protein 7 | 20.16567 | 7.91 × 10−6 |
AAEL015285 | LOC5566943 | glutathione S-transferase T3 | 19.56361 | 4.18 × 10−13 |
AAEL017349 | LOC23687769 | heat shock 70 kDa protein cognate 3 | 19.55707 | 3.79 × 10−6 |
AAEL023873 | LOC5572852 | uncharacterized | 18.83925 | 1.63 × 10−15 |
AAEL009330 | LOC5571803 | carbonic anhydrase 7 | 18.83826 | 2.29 × 10−19 |
AAEL024640 | LOC5574307 | uncharacterized | 18.7741 | 1.19 × 10−12 |
AAEL027718 | LOC110676787 | uncharacterized | 18.7525 | 3.55 × 10−8 |
AAEL009683 | LOC5572259 | uncharacterized | 18.65438 | 2.60 × 10−11 |
AAEL021758 | LOC110680549 | uncharacterized | 18.62961 | 9.39 × 10−15 |
AAEL000325 | LOC5575187 | probable cytochrome P450 313a2 | 16.52559 | 1.71 × 10−6 |
AAEL004369 | LOC5564633 | alpha-glucosidase | 16.43245 | 0.000598 |
AAEL025296 | LOC110679326 | uncharacterized | 14.10447 | 0.000246 |
AAEL019786 | LOC5570400 | RYamide neuropeptide receptor | 13.91278 | 9.23 × 10−5 |
AAEL003290 | LOC5577738 | cell wall protein DAN4 precursor, putative | 12.84058 | 2.17 × 10−5 |
AAEL023803 | LOC110675921 | uncharacterized | 12.46491 | 3.38 × 10−5 |
AAEL025019 | LOC110680819 | uncharacterized protein C12orf73 homolog | 10.66611 | 0.001682 |
AAEL009036 | LOC5571393 | uncharacterized | 10.11032 | 0.000912 |
AAEL015345 | LOC5570300 | uncharacterized | −14.4716 | 4.16 × 10−5 |
AAEL001364 | LOC5570357 | UDP-glucuronosyltransferase 3A1 | −15.1184 | 1.43 × 10−5 |
AAEL007381 | LOC5569108 | uncharacterized | −19.6795 | 0.000267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodoameda, P.; Ditter, R.E.; Santos, S.R.; Clem, R.J. Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus. Viruses 2024, 16, 1487. https://doi.org/10.3390/v16091487
Hodoameda P, Ditter RE, Santos SR, Clem RJ. Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus. Viruses. 2024; 16(9):1487. https://doi.org/10.3390/v16091487
Chicago/Turabian StyleHodoameda, Peter, Robert E. Ditter, Scott R. Santos, and Rollie J. Clem. 2024. "Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus" Viruses 16, no. 9: 1487. https://doi.org/10.3390/v16091487
APA StyleHodoameda, P., Ditter, R. E., Santos, S. R., & Clem, R. J. (2024). Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus. Viruses, 16(9), 1487. https://doi.org/10.3390/v16091487