Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Definition of a Threshold to Identify Surges in Clinical Cases
2.3. Classification-Based Predictive Models
2.4. Regression-Based Predictive Models
3. Results
3.1. PCA and Heatmap
3.2. Cluster-Based Risk Assessment Model
3.3. Regression-Based Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mingaleeva, R.N.; Nigmatulina, N.A.; Sharafetdinova, L.M.; Romozanova, A.M.; Gabdoulkhakova, A.G.; Filina, Y.V.; Shavaliyev, R.F.; Rizvanov, A.A.; Miftakhova, R.R. Biology of the SARS-CoV-2 Coronavirus. Biochemistry 2022, 87, 1662–1678. [Google Scholar] [CrossRef]
- Bennett, C.M.; Vally, H. The evolving epidemiology of SARS-CoV-2. Microbiol. Aust. 2024, 45, 4–7. [Google Scholar] [CrossRef]
- Holmes, E.C. The Emergence and Evolution of SARS-CoV-2. Annu. Rev. Virol. 2024, 11, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Manabe, H.; Manabe, T.; Honda, Y.; Kawade, Y.; Kambayashi, D.; Manabe, Y.; Kudo, K. Simple mathematical model for predicting COVID-19 outbreaks in Japan based on epidemic waves with a cyclical trend. BMC Infect. Dis. 2024, 24, 465. [Google Scholar] [CrossRef] [PubMed]
- San Martín-López, J.V.; Mesa, N.; Bernal-Bello, D.; Morales-Ortega, A.; Rivilla, M.; Guerrero, M.; Calderón, R.; Farfán, A.I.; Rivas, L.; Soria, G.; et al. Seven Epidemic Waves of COVID-19 in a Hospital in Madrid: Analysis of Severity and Associated Factors. Viruses 2023, 15, 1839. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J. Coronavirus Pandemic (COVID-19). Our World in Data, 2024. Available online: https://ourworldindata.org/coronavirus (accessed on 9 February 2024).
- Jewell, N.P.; Lewnard, J.A.; Jewell, B.L. Predictive Mathematical Models of the COVID-19 Pandemic: Underlying Principles and Value of Projections. JAMA 2020, 323, 1893. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.; Padmanabhan, P.; Kierzek, A.M.; Van Der Graaf, P.H. Mechanistic Models of COVID-19: Insights into Disease Progression, Vaccines, and Therapeutics. Int. J. Antimicrob. Agents 2022, 60, 106606. [Google Scholar] [CrossRef] [PubMed]
- Wolkewitz, M.; Lambert, J.; Von Cube, M.; Bugiera, L.; Grodd, M.; Hazard, D.; White, N.; Barnett, A.; Kaier, K. Statistical Analysis of Clinical COVID-19 Data: A Concise Overview of Lessons Learned, Common Errors and How to Avoid Them. Clin. Epidemiol. 2020, 12, 925–928. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Mohammad-Rahimi, H.; Motie, P.; Minabi, M.A.S.; Taheri, M.; Nateghinia, S. Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review. Heliyon 2021, 7, e08143. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Rodríguez, M.G.; Silva-Lance, F.; Parra-Arroyo, L.; Medina-Salazar, D.A.; Martínez-Ruiz, M.; Melchor-Martínez, E.M.; Martínez-Prado, M.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Barceló, D.; et al. Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. TrAC Trends Anal. Chem. 2022, 155, 116585. [Google Scholar] [CrossRef]
- Scott, L.C.; Aubee, A.; Babahaji, L.; Vigil, K.; Tims, S.; Aw, T.G. Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environ. Res. 2021, 200, 111374. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.; Mohamed, E.A. The estimations of the COVID-19 incubation period: A scoping reviews of the literature. J. Infect. Public Health 2021, 14, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Islam Md, A.; Hossen, F.; Rahman Md, A.; Sultana, K.F.; Hasan, M.N.; Haque Md, A.; Sosa-Hernández, J.E.; Oyervides-Muñoz, M.A.; Parra-Saldívar, R.; Ahmed, T.; et al. An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 infections. Curr. Opin. Environ. Sci. Health 2023, 31, 100396. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Hernández, J.E.; Oyervides-Muñoz, M.A.; Melchor-Martínez, E.M.; Driver, E.M.; Bowes, D.A.; Kraberger, S.; Lucero-Saucedo, S.L.; Fontenele, R.S.; Parra-Arroyo, L.; Holland, L.A.; et al. Extensive Wastewater-Based Epidemiology as a Resourceful Tool for SARS-CoV-2 Surveillance in a Low-to-Middle-Income Country through a Successful Collaborative Quest: WBE, Mobility, and Clinical Tests. Water 2022, 14, 1842. [Google Scholar] [CrossRef]
- Sapula, S.A.; Whittall, J.J.; Pandopulos, A.J.; Gerber, C.; Venter, H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 785, 147270. [Google Scholar] [CrossRef]
- Armenta-Castro, A.; Oyervides-Muñoz, M.A.; Aguayo-Acosta, A.; Lucero-Saucedo, S.L.; Robles-Zamora, A.; Rodriguez-Aguillón, K.O.; Ovalle-Carcaño, A.; Parra-Saldívar, R.; Sosa-Hernández, J.E. Academic institution extensive, building-by-building wastewater-based surveillance platform for SARS-CoV-2 monitoring, clinical data correlation, and potential national proxy. medRxiv 2024, 24313081. [Google Scholar] [CrossRef]
- Jeanne, L.; Bourdin, S.; Nadou, F.; Noiret, G. Economic globalization and the COVID-19 pandemic: Global spread and inequalities. GeoJournal 2022, 88, 1181–1188. [Google Scholar] [CrossRef]
- Bali Swain, R.; Lin, X.; Wallentin, F.Y. COVID-19 pandemic waves: Identification and interpretation of global data. Heliyon 2024, 10, e25090. [Google Scholar] [CrossRef]
- Taboada, B.I.; Zárate, S.; García-López, R.; Muñoz-Medina, J.E.; Gómez-Gil, B.; Herrera-Estrella, A.; Sanchez-Flores, A.; Salas-Lais, A.G.; Roche, B.; Martínez-Morales, G.; et al. SARS-CoV-2 Omicron variants BA.4 and BA.5 dominated the fifth COVID-19 epidemiological wave in Mexico. Microb. Genom. 2023, 9, 001120. [Google Scholar] [CrossRef]
- Aguayo-Acosta, A.; Oyervides-Muñoz, M.A.; Rodriguez-Aguillón, K.O.; Ovalle-Carcaño, A.; Romero-Castillo, K.D.; Robles-Zamora, A.; Johnson, M.; Parra-Saldívar, R.; Sosa-Hernández, J.E. Omicron and Delta variant prevalence detection and identification during the fourth COVID-19 wave in Mexico using wastewater-based epidemiology. IJID Reg. 2024, 10, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wolken, M.; Sun, T.; McCall, C.; Schneider, R.; Caton, K.; Hundley, C.; Hopkins, L.; Ensor, K.; Domakonda, K.; Kalvapalle, P.; et al. Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. Water Res. 2023, 231, 119648. [Google Scholar] [CrossRef] [PubMed]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Torres-Franco, A.; Rodriguéz, E.; Diaz, I.; Koritnik, T.; Silva, P.G.D.; Mesquita, J.R.; Trkov, M.; Paragi, M.; Muñoz, R.; et al. Centralized and decentralized wastewater-based epidemiology to infer COVID-19 transmission—A brief review. One Health 2022, 15, 100405. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz-Hernández, S.I.; Álvarez-Contreras, A.K. Omicron Variant in Mexico: The Fourth COVID-19 Wave. Disaster Med. Public Health Prep. 2022, 16, 2260–2261. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Nagata, M.H. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos Solitons Fractals 2020, 139, 110055. [Google Scholar] [CrossRef]
- Lai, M.; Cao, Y.; Wulff, S.S.; Robinson, T.J.; McGuire, A.; Bisha, B. A time series based machine learning strategy for wastewater-based forecasting and nowcasting of COVID-19 dynamics. Sci. Total Environ. 2023, 897, 165105. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; He, F.; Lancaster, E.; Lee, J. Application of machine learning for multi-community COVID-19 outbreak predictions with wastewater surveillance. PLoS ONE 2022, 17, e0277154. [Google Scholar] [CrossRef] [PubMed]
- Parra-Arroyo, L.; Martínez-Ruiz, M.; Lucero, S.; Oyervides-Muñoz, M.A.; Wilkinson, M.; Melchor-Martínez, E.M.; Araújo, R.G.; Coronado-Apodaca, K.G.; Velasco Bedran, H.; Buitrón, G.; et al. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. TrAC Trends Anal. Chem. 2023, 158, 116890. [Google Scholar] [CrossRef]
- McMahan, C.S.; Self, S.; Rennert, L.; Kalbaugh, C.; Kriebel, D.; Graves, D.; Colby, C.; Deaver, J.A.; Popat, S.C.; Karanfil, T.; et al. COVID-19 wastewater epidemiology: A model to estimate infected populations. Lancet Planet. Health 2021, 5, e874–e881. [Google Scholar] [CrossRef] [PubMed]
- Melvin, R.G.; Hendrickson, E.N.; Chaudhry, N.; Georgewill, O.; Freese, R.; Schacker, T.W.; Simmons, G.E. A novel wastewater-based epidemiology indexing method predicts SARS-CoV-2 disease prevalence across treatment facilities in metropolitan and regional populations. Sci. Rep. 2021, 11, 21368. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, J.; Trowsdale, S.; Armstrong, B.A.; Chapman, J.R.; Carter, K.M.; Croucher, D.M.; Trent, C.R.; Sim, R.E.; Gilpin, B.J. Sensitivity of wastewater-based epidemiology for detection of SARS-CoV-2 RNA in a low prevalence setting. Water Res. 2022, 211, 118032. [Google Scholar] [CrossRef]
- Mohring, J.; Leithäuser, N.; Wlazło, J.; Schulte, M.; Pilz, M.; Münch, J.; Küfer, K.-H. Estimating the COVID-19 prevalence from wastewater. Sci. Rep. 2024, 14, 14384. [Google Scholar] [CrossRef] [PubMed]
- Dye, C.; Barclay, W.S. Should we worry about a growing threat from “bird flu”? BMJ 2024, 385, q1199. [Google Scholar] [CrossRef]
Threshold | Accuracy | ||
---|---|---|---|
In Cases per 100,000 Inhabitants | Daily New Cases in Nuevo Leon | Daily New Cases in Mexico City | |
1 | 53.22 | 218.05 | 77.08% |
1.5 | 79.83 | 327.07 | 85.42% |
2 | 106.44 | 436.09 | 83.33% |
2.5 | 133.05 | 545.11 | 79.17% |
3 | 159.66 | 654.14 | 79.17% |
3.5 | 186.27 | 763.16 | 75.00% |
4 | 212.88 | 872.18 | 68.75% |
Accuracy | Sensitivity | Specificity | Youden | |
---|---|---|---|---|
Training | 0.8788 | 0.8500 | 0.9231 | 0.7731 |
Test | 0.8571 | 0.9091 | 0.6667 | 0.5758 |
F1 | 0.8043 | 0.8065 | 0.8000 | 0.6065 |
F2 | 0.8182 | 0.8000 | 0.8571 | 0.6571 |
Model | RMSE | R2 | MAPE | |
---|---|---|---|---|
Simple linear regression | 10.0227 | 0.4002 | 398.7772 | |
Machine learning-based regression | Training | 4.6434 | 0.8935 | 159.9020 |
Test | 6.8573 | 0.8042 | 76.8172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenta-Castro, A.; de la Rosa, O.; Aguayo-Acosta, A.; Oyervides-Muñoz, M.A.; Flores-Tlacuahuac, A.; Parra-Saldívar, R.; Sosa-Hernández, J.E. Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making. Viruses 2025, 17, 109. https://doi.org/10.3390/v17010109
Armenta-Castro A, de la Rosa O, Aguayo-Acosta A, Oyervides-Muñoz MA, Flores-Tlacuahuac A, Parra-Saldívar R, Sosa-Hernández JE. Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making. Viruses. 2025; 17(1):109. https://doi.org/10.3390/v17010109
Chicago/Turabian StyleArmenta-Castro, Arnoldo, Orlando de la Rosa, Alberto Aguayo-Acosta, Mariel Araceli Oyervides-Muñoz, Antonio Flores-Tlacuahuac, Roberto Parra-Saldívar, and Juan Eduardo Sosa-Hernández. 2025. "Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making" Viruses 17, no. 1: 109. https://doi.org/10.3390/v17010109
APA StyleArmenta-Castro, A., de la Rosa, O., Aguayo-Acosta, A., Oyervides-Muñoz, M. A., Flores-Tlacuahuac, A., Parra-Saldívar, R., & Sosa-Hernández, J. E. (2025). Interpretation of COVID-19 Epidemiological Trends in Mexico Through Wastewater Surveillance Using Simple Machine Learning Algorithms for Rapid Decision-Making. Viruses, 17(1), 109. https://doi.org/10.3390/v17010109