Gene Therapy for Glioblastoma Multiforme
Abstract
:1. Introduction
1.1. Standard Treatment of Glioblastoma
1.2. Epidemiology, Radiology, Basic Molecular Profiling, and Pathology of GBM
1.3. Rationale for Glioblastoma Gene Therapy
2. Materials and Methods
3. Gene Therapy for GBM Using Viral Vectors
3.1. Gene Therapy for GBM Using One Viral Vector
3.2. Gene Therapy for GBM Using Two Viral Vectors
3.3. Alphaviruses in GBM Therapy
3.4. Genetically Modified Viruses for Oncolytic Therapy of GBM
4. Gene Therapy for GBM Using Nonviral Vectors
4.1. Gene Therapy for GBM Using Polymeric Vectors
4.2. Gene Therapy for GBM Using Non-Polymeric Vectors
4.3. Gene Therapy for GBM Using Protein, Peptide, and Lipoprotein Vectors
4.4. Gene Therapy for GBM Using Magnetic Nanoparticles
Viruses | Genome | Key Characteristics | Reference |
---|---|---|---|
Adenovirus | dsDNA | -Viral proteins facilitate endosomal escape and nuclear genome delivery. -Broad host range, infecting both dividing and non-dividing cells. -Short-term gene expression. -Strong immunogenicity. | [47] |
Adeno associated viruses (AAVs) [48] | ssDNA | -Transduce cells via episomal transgene expression or random chromosomal integration. -Non-toxic, minimal inflammatory response. | Adeno associated viruses (AAVs) [48] |
Retroviruses (classic) [49] | ssRNA | -RNA genome is retro-transcribed into linear double-stranded DNA and integrated into host chromatin. -Requires dividing cells for infection. -Enable long-term expression. | Retroviruses (classic) [49] |
Lentiviruses [50] | ssRNA | -Subgroup of retroviruses that infect both dividing and non-dividing cells. -Utilizes active nuclear import, enabling host genome integration. -Stable and sustained transgene expression. | Lentiviruses [50] |
Herpes simplex virus (HSV) [51] | dsDNA | -High vector capacity (~30 kb), allowing delivery of large genes or multiple transgenes. -Minimal integration into host DNA. -Establishes latent infection. | Herpes simplex virus (HSV) [51] |
Alphavirus [52] | ssRNA | -SFV particles express IL-12. -Replication-proficient SFV(A774nsP) vector displayed potent oncolytic effects. -miRT124 sequence insertion into SFV4 vectors improves tumor targeting and survival. -SFV-AM6-124T overcomes innate anti-viral signaling. -Combined SFV-AM6-124T and anti-PD1 promotes inflammatory response and improves the immune microenvironment in the GBM model. | [25,26,27,28,29,30] |
Nonviral Vector | Advantages | Limitations |
---|---|---|
Liposomes | -Biodegradable and non-cytotoxic. -Low immunogenicity. -Capable of encapsulating both hydrophilic and hydrophobic drugs. | -Short shelf life and susceptibility to degradation during storage. -Transient gene transfection, leading to temporary therapeutic effects. -Short half-life in systemic circulation, limiting in vivo applications. |
Gold Nanoparticles | -Non-biodegradable but highly stable in biological environments. -Functionalize with biomolecules such as peptides, antibodies, and DNA for targeted delivery. | -Lack of biodegradability may lead to long-term accumulation and potential toxicity. -Requires careful design to minimize adverse side effects in vivo. |
Dendrimers | -Highly branched structure allows for precise functionalization, high drug-loading capacity, and targeting. -Non-immunogenic. | -Limited drug and vector release. -Cationic properties may cause cytotoxicity. |
Polymeric Micelles | -Self-assembled nanoscale structures enhance the solubility and stability of hydrophobic drugs. | -Potential cytotoxicity. -Low loading efficiency. |
Poly (beta-amino esters) | -Biodegradable, ensuring safe elimination from the body post-therapy. -Lower cytotoxicity compared to other vectors. -High transfection efficiency. -Facilitates controlled and sustained release of drugs or genes over time. | -Requires optimization to balance degradation rates and therapeutic delivery. |
Vector/Gene Therapy Agent | Mechanism of Anti-GBM Effect |
---|---|
Retro- or adenovirus/HSV-tk [53]. | Converts ganciclovir to the antiviral drug ganciclovir triphosphate. |
Retrovirus/Toca511 [54]. | Converts prodrug 5-FC to anti-neoplastic 5-FU. |
Adenovirus/SCH-58500 [55]. | Tumor suppressor gene therapy transfects the tumor cell with the missing p53 gene. |
Adenovirus/Ad-p53 [55] | Tumor suppressor gene therapy transfects the tumor cell with the missing p53 gene. |
Adenovirus/AdV-tk [56] | Gene-mediated cytotoxic therapy converts valacyclovir to antiviral drug acyclovir. |
Lentivirus/based doublecortin (DCX) [57]. | Direct local delivery of lentivirus-based DCX gene therapy is a potential differentiation-based therapeutic approach for GBM treatment. |
Vector | Description/Mechanism |
---|---|
Liposome/SGT-53. | Tumor suppressor gene therapy transfects p53 gene. Restoring p53 function by SGT-53 boosts antitumor immunity, augments anti-PD1 therapy, sensitizes tumors otherwise insensitive to anti-PD1 immunotherapy and reduces immune-related adverse events [39]. |
Spherical Gold and Nucleic Acid NP (NU-0129) [58]. | RNA interference gene therapy transfects tumor cells with siRNA targeting oncogene Bcl2-L12 |
PAMAM (Polyamidoamine) Cationic Dendrimers [59,60]. | Dendrimers form complexes with negatively charged nucleic acids and deliver gene therapy to glioma by penetrating cellular and endosomal membranes and crossing the BBB. They can deliver various nucleic acids, including antisense oligonucleotides, microRNAs, siRNAs, and genes (DNA) into glioma cells. |
Dendrigraft poly-l-lysine (DGL) [61,62]. | DGL has many external amino groups for binding nucleic acids for gene therapy. DGL is conjugated to transferrin- or laminin-targeted peptides that facilitate the DGL-conjugates’ passage through the blood–brain barrier and glioma targeting. |
Polymeric Micelles [63,64]. | Micelles are amphiphilic copolymers whose cores can carry gene therapy agents. Micelles of cationic and hydrophobic polymer components can deliver negatively charged nucleic acids and hydrophobic cancer drugs, respectively. |
PBAEs (Poly-β-amino esters) [65]. | PBAEs are cationic polymers designed for gene delivery. They are biodegradable and have low cytotoxicity. Extensive polymer libraries can be synthesized using combinatorial chemistry to make PBAE polymers with various amine compositions. High-throughput screening of hundreds of PBAE polymers can find the best vectors for gene delivery. PBAE vectors can transfect up to 90% of primary GBM cells and silence up to 85% of genes with minimal cytotoxicity. |
Nanoparticles | Gene Therapy | Mechanism of Action | Surface Modification | Particle Size (nm) | Combination Therapy | Reference |
---|---|---|---|---|---|---|
NU 0129 | siRNA | Targets oncogene Bcl2-L12 | See details under combination therapy section. | Exact size information not available. | NU-0129 drug product consists of 25 mg of conjugated drug substance (0.987 mg of Bcl2L12 siRNA duplex) and 120 mg of D-mannitol (USP) | [22,66] |
RGD | TRAIL | Binds to integrin α(v)β(3) | PEG-PEI | 10 nM | Paclitaxel | [33] |
PU | miR145 | Targets Oct4 and Sox2 | PU-PEI | N/A | Radiation and TMZ | [34,35] |
ECHO | SiRNA | Anti-HIF-1alpha | EHCO/siRNA, RGD−PEG/EHCO/siRNA, BN−PEG/EHCO/siRNA and mPEG/EHCO/siRNA | 179 ± 9, 184 ± 6, 170 ± 10 and 186 ± 9 | - | [34,38] |
SGT53 | Wild-type P53 Plasmid DNA | Restoring P53 function sensitizes refractory tumors to anti-PD1 antibodies | N/A | 114.4 ± 8.4 nm | N/A | [22,39] |
Albumin-SPNP | siRNA | Downregulates STAT3 | RGD | 115 ± 23.4 | Radiation | [40] |
HDL-SPNP | CpG | Toll-like receptor 9 (TLR9) agonist increases anti-tumor CD8+ T cell responses | DTX | 8–12 nm | Docetaxel, Radiation | [41] |
Iron oxide | siRNA | knockdowns the GFP transgene expression in C6/GFP+ cells | PEG-PEI-CTX | 7.5 nm | Chlorotoxin | [44] |
PAMAM | Antisense oligonucleotides, microRNAs, siRNAs, and genes | N/A | histidine and arginine; PAMAM-PEG conjugated with transferrin, chlorotoxin, or Angiopep-2 | 1 to 13 nm | N/A | [22] |
Dendrigraft poly-l-lysine (DGL) | pORF-hTRAIL or survivin pcDNA3.1-ING4 | Tumor suppressor gene inhibitor for growth 4 | transferrin- or laminin-targeted peptides | 30–158 nm | doxorubicin | [22] |
Polymeric Micelles (folate) | TRAIL; BCL-2 siRNA; pORF-hTRAIL | N/A | FA-PEG-PEI; FA-PEI; RGD-PEG-PEI | N/A | CD/5-FC; Doxorubicin; paclitaxel | [22] |
Poly(β-amino ester) | DNA | N/A | PEG | N/A | ganciclovir | [22] |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.; Kosel, M.L.; Smirnov, I.V.; et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 2015, 372, 2499–2508. [Google Scholar] [CrossRef]
- Hammoud, M.A.; Sawaya, R.; Shi, W.; Thall, P.F.; Leeds, N.E. Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J. Neurooncol. 1996, 27, 65–73. [Google Scholar] [CrossRef]
- Minniti, G.; Lombardi, G.; Paolini, S. Glioblastoma in elderly patients: Current management and future perspectives. Cancers 2019, 11, 336. [Google Scholar] [CrossRef]
- Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef]
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef]
- Umemura, Y.; Orringer, D.; Junck, L.; Varela, M.L.; West, M.E.J.; Faisal, S.M.; Comba, A.; Heth, J.; Sagher, O.; Leung, D.; et al. Combined cytotoxic and immune-stimulatory gene therapy for primary adult high-grade glioma: A phase 1, first-in-human trial. Lancet Oncol. 2023, 24, 1042–1052. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K.; Aster, J.C. Robbins & Cotran Pathologic Basis of Disease, 10th ed.; Elsevier: Philadelphia, PA, USA, 2021; p. xii. 1379p. [Google Scholar]
- Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 2013, 19, 764–772. [Google Scholar] [CrossRef]
- Rees, J.H.; Smirniotopoulos, J.G.; Jones, R.V.; Wong, K. Glioblastoma multiforme: Radiologic-pathologic correlation. Radiographics 1996, 16, 1413–1438. [Google Scholar] [CrossRef] [PubMed]
- Zagzag, D.; Goldenberg, M.; Brem, S. Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: An experimental study in a rabbit brain-tumor model. AJR Am. J. Roentgenol. 1989, 153, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.N.; Yang, Z.H.; Liu, Y.H.; Ying, H.Q.; Zhang, H.; Xue, Y.X. Vascular endothelial growth factor increases permeability of the blood-tumor barrier via caveolae-mediated transcellular pathway. J. Mol. Neurosci. 2011, 44, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Dähnert, W. Radiology Review Manual, 7th ed.; Wolters Kluwer Health/Lippincott Williams Wilkins: Philadelphia, PA, USA, 2011; p. xxix. 1227p. [Google Scholar]
- Toh, C.H.; Wei, K.C.; Chang, C.N.; Hsu, P.W.; Wong, H.F.; Ng, S.H.; Castillo, M.; Lin, C.P. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am. J. Neuroradiol. 2012, 33, 1534–1538. [Google Scholar] [CrossRef]
- Osborn, A.G.; Linscott, L.L.; Salzman, K.L. Osborn’s Brain: Imaging, Pathology, and Anatomy, 3rd ed.; Elsevier: Salt Lake City, UT, USA, 2023. [Google Scholar]
- Hilario, A.; Ramos, A.; Perez-Nunez, A.; Salvador, E.; Millan, J.M.; Lagares, A.; Sepulveda, J.M.; Gonzalez-Leon, P.; Hernandez-Lain, A.; Ricoy, J.R. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. AJNR Am. J. Neuroradiol. 2012, 33, 701–707. [Google Scholar] [CrossRef]
- Lemarie, A.; Lubrano, V.; Delmas, C.; Lusque, A.; Cerapio, J.P.; Perrier, M.; Siegfried, A.; Arnauduc, F.; Nicaise, Y.; Dahan, P.; et al. The STEMRI trial: Magnetic resonance spectroscopy imaging can define tumor areas enriched in glioblastoma stem-like cells. Sci. Adv. 2023, 9, eadi0114. [Google Scholar] [CrossRef]
- Brooks, W.H.; Caldwell, H.D.; Mortara, R.H. Immune responses in patients with gliomas. Surg. Neurol. 1974, 2, 419–423. [Google Scholar]
- Dix, A.R.; Brooks, W.H.; Roszman, T.L.; Morford, L.A. Immune defects observed in patients with primary malignant brain tumors. J. Neuroimmunol. 1999, 100, 216–232. [Google Scholar] [CrossRef]
- Caffery, B.; Lee, J.S.; Alexander-Bryant, A.A. Vectors for glioblastoma gene therapy: Viral & non-viral delivery strategies. Nanomaterials 2019, 9, 105. [Google Scholar] [CrossRef]
- Mozhei, O.; Teschemacher, A.G.; Kasparov, S. Viral vectors as gene therapy agents for treatment of glioblastoma. Cancers 2020, 12, 3724. [Google Scholar] [CrossRef]
- Oldfield, E.H.; Ram, Z.; Culver, K.W.; Blaese, R.M.; DeVroom, H.L.; Anderson, W.F. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum. Gene Ther. 1993, 4, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef] [PubMed]
- Liljestrom, P.; Garoff, H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 1991, 9, 1356–1361. [Google Scholar] [CrossRef]
- Roche, F.P.; Sheahan, B.J.; O’Mara, S.M.; Atkins, G.J. Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol. Appl. Neurobiol. 2010, 36, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, J.E.; Vaha-Koskela, M.J.; Ruotsalainen, J.J.; Martikainen, M.W.; Stanford, M.M.; McCart, J.A.; Bell, J.C.; Hinkkanen, A.E. Intravenously administered alphavirus vector VA7 eradicates orthotopic human glioma xenografts in nude mice. PLoS ONE 2010, 5, e8603. [Google Scholar] [CrossRef]
- Martikainen, M.; Niittykoski, M.; von und zu Fraunberg, M.; Immonen, A.; Koponen, S.; van Geenen, M.; Vaha-Koskela, M.; Ylosmaki, E.; Jaaskelainen, J.E.; Saksela, K.; et al. MicroRNA-attenuated clone of virulent Semliki Forest virus overcomes antiviral type I interferon in resistant mouse CT-2A glioma. J. Virol. 2015, 89, 10637–10647. [Google Scholar] [CrossRef]
- Martikainen, M.; Ramachandran, M.; Lugano, R.; Ma, J.; Martikainen, M.M.; Dimberg, A.; Yu, D.; Merits, A.; Essand, M. IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. Mol. Ther. Oncolytics 2021, 21, 37–46. [Google Scholar] [CrossRef]
- Reale, A.; Gatta, A.; Shaik, A.K.B.; Shallak, M.; Chiaravalli, A.M.; Cerati, M.; Zaccaria, M.; La Rosa, S.; Calistri, A.; Accolla, R.S.; et al. An oncolytic HSV-1 vector induces a therapeutic adaptive immune response against glioblastoma. J. Transl. Med. 2024, 22, 862. [Google Scholar] [CrossRef]
- Wang, X.L.; Ramusovic, S.; Nguyen, T.; Lu, Z.R. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug. Chem. 2007, 18, 2169–2177. [Google Scholar] [CrossRef]
- Zhan, C.; Wei, X.; Qian, J.; Feng, L.; Zhu, J.; Lu, W. Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J. Control Release 2012, 160, 630–636. [Google Scholar] [CrossRef]
- Costa, P.M.; de Lima, M.C.P. Viral and non-viral gene therapy for glioblastoma: New insights into the treatment of malignant brain tumors. J. Genet. Syndr. Gene Ther. 2013, 4, 161. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chien, Y.; Chiou, G.Y.; Cherng, J.Y.; Wang, M.L.; Lo, W.L.; Chang, Y.L.; Huang, P.I.; Chen, Y.W.; Shih, Y.H.; et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 2012, 33, 1462–1476. [Google Scholar] [CrossRef] [PubMed]
- Javid, H.; Oryani, M.A.; Rezagholinejad, N.; Esparham, A.; Tajaldini, M.; Karimi-Shahri, M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med. 2024, 13, e6800. [Google Scholar] [CrossRef] [PubMed]
- Menegotto, P.R.; da Costa Lopez, P.L.; Souza, B.K.; de Farias, C.B.; Filippi-Chiela, E.C.; Vieira, I.A.; Schwartsmann, G.; Lenz, G.; Roesler, R. Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. Mol. Neurobiol. 2017, 54, 888–894. [Google Scholar] [CrossRef]
- Wang, X.L.; Xu, R.; Wu, X.; Gillespie, D.; Jensen, R.; Lu, Z.R. Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol. Pharm. 2009, 6, 738–746. [Google Scholar] [CrossRef]
- Kim, S.S.; Harford, J.B.; Moghe, M.; Rait, A.; Chang, E.H. Combination with SGT-53 overcomes tumor resistance to a checkpoint inhibitor. Oncoimmunology 2018, 7, e1484982. [Google Scholar] [CrossRef]
- Gregory, J.V.; Kadiyala, P.; Doherty, R.; Cadena, M.; Habeel, S.; Ruoslahti, E.; Lowenstein, P.R.; Castro, M.G.; Lahann, J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat. Commun. 2020, 11, 5687. [Google Scholar] [CrossRef]
- Kadiyala, P.; Li, D.; Nunez, F.M.; Altshuler, D.; Doherty, R.; Kuai, R.; Yu, M.; Kamran, N.; Edwards, M.; Moon, J.J.; et al. High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 2019, 13, 1365–1384. [Google Scholar] [CrossRef]
- Afonso, I.; Neves, A.R.; Eusebio, D.; Albuquerque, T.; Vives, E.; Boisguerin, P.; Santos, A.O.; Sousa, A.; Costa, D. Design of Experiments to Tailor the Potential of BSA-Coated Peptide Nanocomplexes for Temozolomide/p53 Gene Co-Delivery. Pharmaceutics 2024, 16, 1389. [Google Scholar] [CrossRef]
- Cen, B.; Zhang, J.; Pan, X.; Xu, Z.; Li, R.; Chen, C.; Wang, B.; Li, Z.; Zhang, G.; Ji, A.; et al. Stimuli-Responsive Peptide/siRNA Nanoparticles as a Radiation Sensitizer for Glioblastoma Treatment by Co-Inhibiting RELA/P65 and EGFR. Int. J. Nanomed. 2024, 19, 11517–11537. [Google Scholar] [CrossRef]
- Veiseh, O.; Kievit, F.M.; Fang, C.; Mu, N.; Jana, S.; Leung, M.C.; Mok, H.; Ellenbogen, R.G.; Park, J.O.; Zhang, M. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010, 31, 8032–8042. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Connolly, A.M.; Lehman, K.J.; Griffin, D.A.; Khan, S.Z.; Dharia, S.D.; Quintana-Gallardo, L.; Rodino-Klapac, L.R. Testing preexisting antibodies prior to AAV gene transfer therapy: Rationale, lessons and future considerations. Mol. Ther. Methods Clin. Dev. 2022, 25, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, T.W.; Read, S.B.; Burrows, F.J.; Kruse, C.A. Suicide gene therapy with Herpes simplex virus thymidine kinase and ganciclovir is enhanced with connexins to improve gap junctions and bystander effects. Histol. Histopathol. 2003, 18, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, M.S. Adenoviruses. In Fields Virology, 3rd ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippicott-Raven: Philadelphia, PA, USA, 1996; pp. 2149–2171. [Google Scholar]
- Tal, J. Adeno-associated virus-based vectors in gene therapy. J. Biomed. Sci. 2000, 7, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.D. Development and application of retroviral vectors. In Retroviruses; Coffin, J.M., Hughes, S.H., Varmus, H.E., Eds.; Cold Spring Laboratory Press: Cold Spring Harbor, NY, USA, 1997; pp. 437–474. [Google Scholar]
- Vigna, E.; Naldini, L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2000, 2, 308–316. [Google Scholar] [CrossRef]
- Spaete, R.R.; Frenkel, N. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982, 30, 295–304. [Google Scholar] [CrossRef]
- Lundstrom, K. Alphaviruses in gene therapy. Viruses 2015, 7, 2321–2333. [Google Scholar] [CrossRef]
- Santra, M.; Zheng, X.; Roberts, C.; Santra, S.; Lu, M.; Panda, S.; Jiang, F.; Chopp, M. Single doublecortin gene therapy significantly reduces glioma tumor volume. J. Neurosci. Res. 2010, 88, 304–314. [Google Scholar] [CrossRef]
- Huang, T.T.; Hlavaty, J.; Ostertag, D.; Espinoza, F.L.; Martin, B.; Petznek, H.; Rodriguez-Aguirre, M.; Ibanez, C.E.; Kasahara, N.; Gunzburg, W.; et al. Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther. 2013, 20, 544–551. [Google Scholar] [CrossRef]
- Lang, F.F.; Bruner, J.M.; Fuller, G.N.; Aldape, K.; Prados, M.D.; Chang, S.; Berger, M.S.; McDermott, M.W.; Kunwar, S.M.; Junck, L.R.; et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: Biological and clinical results. J. Clin. Oncol. 2003, 21, 2508–2518. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Aguilar, L.K.; Bell, S.D.; Kaur, B.; Hardcastle, J.; Cavaliere, R.; McGregor, J.; Lo, S.; Ray-Chaudhuri, A.; Chakravarti, A.; et al. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 2011, 29, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Rainov, N.G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 2000, 11, 2389–2401. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.A.; Day, E.S.; Ko, C.H.; Hurley, L.A.; Luciano, J.P.; Kouri, F.M.; Merkel, T.J.; Luthi, A.J.; Patel, P.C.; Cutler, J.I.; et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, J.; Jiang, C.; Hong, B.; Hao, B. Plasmid pORF-hTRAIL targeting to glioma using transferrin-modified polyamidoamine dendrimer. Drug Des. Dev. Ther. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Fan, J.; Wang, Z.; Zeng, X.; Sun, Y.; Song, P.; Ju, D. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 2014, 35, 7588–7597. [Google Scholar] [CrossRef]
- Kodama, Y.; Kuramoto, H.; Mieda, Y.; Muro, T.; Nakagawa, H.; Kurosaki, T.; Sakaguchi, M.; Nakamura, T.; Kitahara, T.; Sasaki, H. Application of biodegradable dendrigraft poly-l-lysine to a small interfering RNA delivery system. J. Drug Target. 2017, 25, 49–57. [Google Scholar] [CrossRef]
- Liu, S.; Guo, Y.; Huang, R.; Li, J.; Huang, S.; Kuang, Y.; Han, L.; Jiang, C. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials 2012, 33, 4907–4916. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, J.; Xie, C.; Wagner, E.; Lu, W.; Li, Y.; Wei, X.; Dong, J.; Liu, M. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery. J. Gene Med. 2013, 15, 291–305. [Google Scholar] [CrossRef]
- Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res. 2010, 27, 2569–2589. [Google Scholar] [CrossRef]
- Tzeng, S.Y.; Green, J.J. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv. Healthc. Mater. 2013, 2, 468–480. [Google Scholar] [CrossRef]
- Kumthekar, P.; Ko, C.H.; Paunesku, T.; Dixit, K.; Sonabend, A.M.; Bloch, O.; Tate, M.; Schwartz, M.; Zuckerman, L.; Lezon, R.; et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med. 2021, 13, eabb3945. [Google Scholar] [CrossRef] [PubMed]
- Frumento, D.; Grossi, G.; Falesiedi, M.; Musumeci, F.; Carbone, A.; Schenone, S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int. J. Mol. Sci. 2024, 25, 1398. [Google Scholar] [CrossRef] [PubMed]
- Greppi, M.; De Franco, F.; Obino, V.; Rebaudi, F.; Goda, R.; Frumento, D.; Vita, G.; Baronti, C.; Melaiu, O.; Bozzo, M.; et al. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances. Immunol. Lett. 2024, 270, 106932. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, M.; Zhang, W. Neoantigen discovery and applications in glioblastoma: An immunotherapy perspective. Cancer Lett. 2022, 550, 215945. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.; Green, J.; Graff, S.A.; Li, Q.; Heiss, J.D. Gene Therapy for Glioblastoma Multiforme. Viruses 2025, 17, 118. https://doi.org/10.3390/v17010118
Shah S, Green J, Graff SA, Li Q, Heiss JD. Gene Therapy for Glioblastoma Multiforme. Viruses. 2025; 17(1):118. https://doi.org/10.3390/v17010118
Chicago/Turabian StyleShah, Smit, Joshua Green, Shantelle A. Graff, Qi Li, and John D. Heiss. 2025. "Gene Therapy for Glioblastoma Multiforme" Viruses 17, no. 1: 118. https://doi.org/10.3390/v17010118
APA StyleShah, S., Green, J., Graff, S. A., Li, Q., & Heiss, J. D. (2025). Gene Therapy for Glioblastoma Multiforme. Viruses, 17(1), 118. https://doi.org/10.3390/v17010118