Comparative Analyses of Antiviral Potencies of Second-Generation Integrase Strand Transfer Inhibitors (INSTIs) and the Developmental Compound 4d Against a Panel of Integrase Quadruple Mutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vector Constructs
2.2. Cell-Based Assays
2.3. Pseudotyped HIV-1 Production
2.4. Antiviral Assays to Determine EC50
2.5. Single-Round Infection Assays
3. Results
3.1. Antiviral Potencies of Compound 4d and the Second-Generation INSTIs Against a Panel of IN Quadruple Mutants with Mutations at IN Positions L74, E92, or T97 Combined with E138A/K/G140S/Q148H
3.2. Replication of IN Quadruple Mutants in a Single-Round Infection Assay
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R., Jr.; Hughes, S.H. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Bedimo, R.; Hoy, J.F.; Landovitz, R.J.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.A.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2022 Recommendations of the International Antiviral Society-USA Panel. JAMA 2023, 329, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Vitoria, M.; Hill, A.; Ford, N.; Doherty, M.; Clayden, P.; Venter, F.; Ripin, D.; Flexner, C.; Domanico, P.L. The transition to dolutegravir and other new antiretrovirals in low-income and middle-income countries: What are the issues? AIDS 2018, 32, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, Y.; Twimukye, A.; Malaba, T.; Orrell, C.; Myer, L.; Waitt, C.; Lamorde, M.; Kambugu, A.; Reynolds, H.; Khoo, S.; et al. Engendering health systems in response to national rollout of dolutegravir-based regimens among women of childbearing potential: A qualitative study with stakeholders in South Africa and Uganda. BMC Health Serv. Res. 2020, 20, 705. [Google Scholar] [CrossRef]
- Jewell, B.L.; Mudimu, E.; Stover, J.; Ten Brink, D.; Phillips, A.N.; Smith, J.A.; Martin-Hughes, R.; Teng, Y.; Glaubius, R.; Mahiane, S.G.; et al. Potential effects of disruption to HIV programmes in sub-Saharan Africa caused by COVID-19: Results from multiple mathematical models. Lancet HIV 2020, 7, e629–e640. [Google Scholar] [CrossRef]
- Mendelsohn, A.S.; Ritchwood, T. COVID-19 and Antiretroviral Therapies: South Africa’s Charge Towards 90-90-90 in the Midst of a Second Pandemic. AIDS Behav. 2020, 24, 2754–2756. [Google Scholar] [CrossRef]
- Markowitz, M.; Frank, I.; Grant, R.M.; Mayer, K.H.; Elion, R.; Goldstein, D.; Fisher, C.; Sobieszczyk, M.E.; Gallant, J.E.; Van Tieu, H.; et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): A multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV 2017, 4, e331–e340. [Google Scholar] [CrossRef]
- Landovitz, R.J.; Li, S.; Grinsztejn, B.; Dawood, H.; Liu, A.Y.; Magnus, M.; Hosseinipour, M.C.; Panchia, R.; Cottle, L.; Chau, G.; et al. Safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-uninfected individuals: HPTN 077, a phase 2a randomized controlled trial. PLoS Med. 2018, 15, e1002690. [Google Scholar] [CrossRef]
- Landovitz, R.J.; Li, S.; Eron, J.J., Jr.; Grinsztejn, B.; Dawood, H.; Liu, A.Y.; Magnus, M.; Hosseinipour, M.C.; Panchia, R.; Cottle, L.; et al. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: A secondary analysis of the HPTN 077 trial. Lancet HIV 2020, 7, e472–e481. [Google Scholar] [CrossRef]
- Lepik, K.J.; Harrigan, P.R.; Yip, B.; Wang, L.; Robbins, M.A.; Zhang, W.W.; Toy, J.; Akagi, L.; Lima, V.D.; Guillemi, S.; et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS 2017, 31, 1425–1434. [Google Scholar] [CrossRef]
- George, J.M.; Kuriakose, S.S.; Dee, N.; Stoll, P.; Lalani, T.; Dewar, R.; Khan, M.A.; Rehman, M.T.; Grossman, Z.; Maldarelli, F.; et al. Rapid Development of High-Level Resistance to Dolutegravir With Emergence of T97A Mutation in 2 Treatment-Experienced Individuals With Baseline Partial Sensitivity to Dolutegravir. Open Forum Infect. Dis. 2018, 5, ofy221. [Google Scholar] [CrossRef] [PubMed]
- Castagna, A.; Maggiolo, F.; Penco, G.; Wright, D.; Mills, A.; Grossberg, R.; Molina, J.M.; Chas, J.; Durant, J.; Moreno, S.; et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J. Infect. Dis. 2014, 210, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Eron, J.J.; Clotet, B.; Durant, J.; Katlama, C.; Kumar, P.; Lazzarin, A.; Poizot-Martin, I.; Richmond, G.; Soriano, V.; Ait-Khaled, M.; et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J. Infect. Dis. 2013, 207, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Rhee, S.Y.; Chu, C.; Avalos, A.; Ahluwalia, A.K.; Gupta, R.K.; Jordan, M.R.; Shafer, R.W. Treatment Emergent Dolutegravir Resistance Mutations in Individuals Naive to HIV-1 Integrase Inhibitors: A Rapid Scoping Review. Viruses 2023, 15, 1932. [Google Scholar] [CrossRef]
- Li, M.; Oliveira Passos, D.; Shan, Z.; Smith, S.J.; Sun, Q.; Biswas, A.; Choudhuri, I.; Strutzenberg, T.S.; Haldane, A.; Deng, N.; et al. Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants. Sci. Adv. 2023, 9, eadg5953. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Burke, T.R., Jr.; Hughes, S.H. HIV-1 Integrase Inhibitors That Are Broadly Effective against Drug-Resistant Mutants. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- Jozwik, I.K.; Passos, D.O.; Lyumkis, D. Structural Biology of HIV Integrase Strand Transfer Inhibitors. Trends Pharmacol. Sci. 2020, 41, 611–626. [Google Scholar] [CrossRef]
- Blanco, J.L.; Varghese, V.; Rhee, S.Y.; Gatell, J.M.; Shafer, R.W. HIV-1 integrase inhibitor resistance and its clinical implications. J. Infect. Dis. 2011, 203, 1204–1214. [Google Scholar] [CrossRef]
- Malet, I.; Thierry, E.; Wirden, M.; Lebourgeois, S.; Subra, F.; Katlama, C.; Deprez, E.; Calvez, V.; Marcelin, A.G.; Delelis, O. Combination of two pathways involved in raltegravir resistance confers dolutegravir resistance. J. Antimicrob. Chemother. 2015, 70, 2870–2880. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Smith, S.J.; Maskell, D.P.; Metifiot, M.; Pye, V.E.; Fesen, K.; Marchand, C.; Pommier, Y.; Cherepanov, P.; Hughes, S.H.; et al. HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases. ACS Chem. Biol. 2016, 11, 1074–1081. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Burke, T.R., Jr.; Hughes, S.H. Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology 2018, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Hughes, S.H. Rapid screening of HIV reverse transcriptase and integrase inhibitors. J. Vis. Exp. 2014, 86, 51400. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R., Jr.; Hughes, S.H. HIV-1 Integrase Inhibitors That Are Active against Drug-Resistant Integrase Mutants. Antimicrob. Agents Chemother. 2020, 64, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Z.; Smith, S.J.; Maskell, D.P.; Metifiot, M.; Pye, V.E.; Fesen, K.; Marchand, C.; Pommier, Y.; Cherepanov, P.; Hughes, S.H.; et al. Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors. J. Med. Chem. 2017, 60, 7315–7332. [Google Scholar] [CrossRef]
- Chu, C.; Tao, K.; Kouamou, V.; Avalos, A.; Scott, J.; Grant, P.M.; Rhee, S.Y.; McCluskey, S.M.; Jordan, M.R.; Morgan, R.L.; et al. Prevalence of Emergent Dolutegravir Resistance Mutations in People Living with HIV: A Rapid Scoping Review. Viruses 2024, 16, 399. [Google Scholar] [CrossRef]
- Cook, N.J.; Li, W.; Berta, D.; Badaoui, M.; Ballandras-Colas, A.; Nans, A.; Kotecha, A.; Rosta, E.; Engelman, A.N.; Cherepanov, P. Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science 2020, 367, 806–810. [Google Scholar] [CrossRef]
- Passos, D.O.; Li, M.; Jozwik, I.K.; Zhao, X.Z.; Santos-Martins, D.; Yang, R.; Smith, S.J.; Jeon, Y.; Forli, S.; Hughes, S.H.; et al. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science 2020, 367, 810–814. [Google Scholar] [CrossRef]
- Hachiya, A.; Kirby, K.A.; Ido, Y.; Shigemi, U.; Matsuda, M.; Okazaki, R.; Imamura, J.; Sarafianos, S.G.; Yokomaku, Y.; Iwatani, Y. Impact of HIV-1 Integrase L74F and V75I Mutations in a Clinical Isolate on Resistance to Second-Generation Integrase Strand Transfer Inhibitors. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
WT or IN Mutant | BIC | DTG | CAB | 4d |
---|---|---|---|---|
WT | 2.4 ± 0.4 nM | 2.6 ± 0.3 nM | 1.8 ± 0.5 nM | 1.5 ± 0.3 nM |
E138A/G140S/Q148H | 5.1 ± 0.5 nM | 13.8 ± 4.8 nM | 70.2 ± 9.0 nM | 7.3 ± 0.4 nM |
E138K/G140S/Q148H | 4.7 ± 1.0 nM | 10.3 ± 0.6 nM | 44.7 ± 1.6 nM | 4.5 ± 0.3 nM |
E92Q/E138A/G140S/Q148H | 102.5 ± 13.6 nM | 280.1 ± 29.4 nM | 952.1 ± 15.7 nM | 120.9 ± 22.6 nM |
E92Q/E138K/G140S/Q148H | 78.5 ± 10.9 nM | 126.5 ± 31.0 nM | 513.8 ± 77.9 nM | 179.2 ± 27.6 nM |
T97A/E138A/140S/Q148H | 126.0 ± 6.0 nM | 175.5 ± 19.8 nM | 2903 ± 313.3 nM | 92.5 ± 4.7 nM |
T97A/E138K/140S/Q148H | 64.3 ± 4.5 nM | 221.8 ± 25.9 nM | 1989.3 ± 306.3 nM | 52.1 ± 8.8 nM |
L74M/E138A/G140S/Q148H | 102.5 ± 13.6 nM | 126.6 ± 6.2 nM | 656.2 ± 54.0 nM | 24.3 ± 3.0 nM |
L74M/E138K/G140S/Q148H | 52.9 ± 8.2 nM | 163.4 ± 11.0 nM | 541.3 ± 75.9 nM | 24.4 ± 3.4 nM |
L74I/E138A/G140S/Q148H | 59.3 ± 6.7 nM | 78.5 ± 7.3 nM | 677.9 ± 26.5 nM | 26.8 ± 3.8 nM |
L74I/E138K/G140S/Q148H | 48.7 ± 4.5 nM | 81.6 ± 3.6 nM | 699.1 ± 89.3 nM | 26.0 ± 3.7 nM |
WT or IN Mutant | Single-Round Infectivity (% of WT) |
---|---|
WT | 100 |
E92Q/E138A/G140S/Q148H | 57.0 ± 12.2 |
E92Q/E138K/G140S/Q148H | 63.0 ± 8.5 |
T97A/E138A/G140S/Q148H | 56.7 ± 5.8 |
T97A/E138K/G140S/Q148H | 61.0 ± 7.3 |
L74M/E138A/G140S/Q148H | 57.0 ± 12.3 |
L74M/E138K/G140S/Q148H | 67.0 ± 8.5 |
L74I/E138A/G140S/Q148H | 72.0 ± 1.6 |
L74I/E138K/G140S/Q148H | 70.0 ± 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, S.J.; Zhao, X.Z.; Hughes, S.H.; Burke, T.R., Jr. Comparative Analyses of Antiviral Potencies of Second-Generation Integrase Strand Transfer Inhibitors (INSTIs) and the Developmental Compound 4d Against a Panel of Integrase Quadruple Mutants. Viruses 2025, 17, 121. https://doi.org/10.3390/v17010121
Smith SJ, Zhao XZ, Hughes SH, Burke TR Jr. Comparative Analyses of Antiviral Potencies of Second-Generation Integrase Strand Transfer Inhibitors (INSTIs) and the Developmental Compound 4d Against a Panel of Integrase Quadruple Mutants. Viruses. 2025; 17(1):121. https://doi.org/10.3390/v17010121
Chicago/Turabian StyleSmith, Steven J., Xue Zhi Zhao, Stephen H. Hughes, and Terrence R. Burke, Jr. 2025. "Comparative Analyses of Antiviral Potencies of Second-Generation Integrase Strand Transfer Inhibitors (INSTIs) and the Developmental Compound 4d Against a Panel of Integrase Quadruple Mutants" Viruses 17, no. 1: 121. https://doi.org/10.3390/v17010121
APA StyleSmith, S. J., Zhao, X. Z., Hughes, S. H., & Burke, T. R., Jr. (2025). Comparative Analyses of Antiviral Potencies of Second-Generation Integrase Strand Transfer Inhibitors (INSTIs) and the Developmental Compound 4d Against a Panel of Integrase Quadruple Mutants. Viruses, 17(1), 121. https://doi.org/10.3390/v17010121